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Abstract. Euclidean billiard partitions were recently introduced by Andrews, Dragović

and Radnović in their study of periodic trajectories of ellipsoidal billiards in the Euclidean

space. They are integer partitions into distinct parts such that (E1) adjacent parts are never
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1. Introduction

Euclidean billiard partitions arose from the work of Dragović and Radnović [9]
in which periodic trajectories of ellipsoidal billiards in the Euclidean space were
studied. Briefly speaking, such partitions are constructed by the period of a periodic
trajectory as the largest part, followed by a sequence of winding numbers as the
remaining parts. Recently, Andrews, Dragović and Radnović [7] further translated
this geometric definition to the language of partition theory.

Definition 1.1. Euclidean billiard partitions are integer partitions into distinct
parts such that

(E1) adjacent parts are never both odd;
(E2) the smallest part is even.

We denote by B the set of Euclidean billiard partitions.

Given any integer partition λ, let us adopt the convention that |λ| and ♯(λ)
denote the sum of all parts (namely, the size) and the number of parts (namely,
the length) in λ, respectively. Also, we denote by ♯a,M (λ) the number of parts in λ
that are congruent to a modulo M .

In order to enumerate the number of possible choices of types of caustics for each
billiard trajectory, Andrews, Dragović and Radnović assigned a weight φ to each
Euclidean billiard partition λ as follows:

φ(λ) :=

{
♯(λ)− 2♯1,2(λ)− 1 if the largest part in λ is even,

♯(λ)− 2♯1,2(λ) if the largest part in λ is odd.

The main result in [7] is the following bivariate generating function identity for
Euclidean billiard partitions.
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Theorem 1.1 (Andrews–Dragović–Radnović [7, Theorem 2.8]). We have

1 +
∑
λ∈B

xφ(λ)q|λ| = 1 +
∑
d≥1

∑
m≥0

s(d,m)

(q2; q2)d
(1.1)

where

s(d,m) =


x2n−dqd

2+2n2−2dn+3n

[
n− 1

2n− d

]
q2

if m = 2n+ 1,

x2n−d−1qd
2+2n2−2dn+2d−n

[
n− 1

2n− d− 1

]
q2

if m = 2n,

with the q-Pochhammer symbol defined for n ∈ N ∪ {∞} by

(A; q)n :=

n−1∏
k=0

(1−Aqk)

and the q-binomial coefficients defined by[
A
B

]
q

:=


(q; q)A

(q; q)B(q; q)A−B
if 0 ≤ B ≤ A,

0 otherwise.

Looking at the geometric side, the weight φ is of high significance. However, it
is more natural to consider simply the enumerations of parts in certain arithmetic
progressions (such as the number of odd parts appearing in the definition of φ)
from a partition-theoretic perspective. For instance, one might be curious if there
is an explicit expression for the generating function

B(x, y, q) := 1 +
∑
λ∈B

x♯(λ)y♯1,2(λ)q|λ|.

Meanwhile, we may further separate the set of Euclidean billiard partitions into
disjoint subsets according to the parity of the largest part.

Definition 1.2. Let BE (resp. BO) denote the set of Euclidean billiard partitions
with the largest part even (resp. odd).

As long as one can get nice expressions for the trivariate generating functions

BE(x, y, q) :=
∑
λ∈BE

x♯(λ)y♯1,2(λ)q|λ|,

BO(x, y, q) :=
∑
λ∈BO

x♯(λ)y♯1,2(λ)q|λ|,

it is immediate that

1 +
∑
λ∈B

xφ(λ)q|λ| = 1 + x−1BE(x, x
−2, q) +BO(x, x

−2, q), (1.2)

so the generating function identities for BE(x, y, q) and BO(x, y, q) as well as for
B(x, y, q) shall deliver more information.

Motivated by the above discussions, the first objective of this paper concerns the
following trivariate generating function identities.
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Theorem 1.2. We have

1 +
∑
λ∈B

x♯(λ)y♯1,2(λ)q|λ| =
∑
i≥0

∑
j≥0

xi+jyjqi
2+j2+i+2j

(q2; q2)i+j

[
i
j

]
q2
. (1.3)

Furthermore,∑
λ∈BE

x♯(λ)y♯1,2(λ)q|λ| =
∑
i≥1

∑
j≥0

xi+jyjqi
2+j2+i+2j

(q2; q2)i+j

[
i− 1
j

]
q2

(1.4)

and ∑
λ∈BO

x♯(λ)y♯1,2(λ)q|λ| =
∑
i≥1

∑
j≥0

xi+jyjqi
2+j2+3i

(q2; q2)i+j

[
i− 1
j − 1

]
q2
. (1.5)

Remark 1.1. Making the following change of variables{
i = n

j = d− n
⇐⇒

{
d = i+ j

n = i

in (1.4) and (1.5), we obtain

x−1BE(x, x
−2, q) =

∑
d≥1

∑
n≥0

x2n−d−1qd
2+2n2−2dn+2d−n

(q2; q2)d

[
n− 1
d− n

]
q2

and

BO(x, x
−2, q) =

∑
d≥1

∑
n≥0

x2n−dqd
2+2n2−2dn+3n

(q2; q2)d

[
n− 1

d− n− 1

]
q2
.

Recalling (1.2) immediately yields the result of Andrews, Dragović and Radnović
in (1.1), while we shall also invoke a trivial property of the q-binomial coefficients
[4, p. 35, (3.3.2)]: [

A
B

]
q

=

[
A

A−B

]
q

.

On the other hand, it is plain that Condition (E2) in Definition 1.1 only con-
strains the parity of the smallest part in the partition in question. Therefore,
Euclidean billiard partitions form a subset of distinct partitions that are only re-
stricted by Condition (E1).

Definition 1.3. We denote by S the set of integer partitions into distinct parts
such that

(E1) adjacent parts are never both odd.

Furthermore, let SE (resp. SO) denote the set of partitions in S with the largest
part even (resp. odd).

We have parallel results for these partitions.

Theorem 1.3. We have

1 +
∑
λ∈S

x♯(λ)y♯1,2(λ)q|λ| =
∑
i≥0

∑
j≥0

xi+jyjqi
2+j2+i

(q2; q2)i+j

[
i+ 1
j

]
q2
. (1.6)
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Furthermore, ∑
λ∈SE

x♯(λ)y♯1,2(λ)q|λ| =
∑
i≥1

∑
j≥0

xi+jyjqi
2+j2+i

(q2; q2)i+j

[
i
j

]
q2

(1.7)

and ∑
λ∈SO

x♯(λ)y♯1,2(λ)q|λ| =
∑
i≥1

∑
j≥0

xi+jyj+1qi
2+j2+i−1

(q2; q2)i+j

[
i− 1
j

]
q2
. (1.8)

To establish Theorem 1.1, Andrews, Dragović and Radnović utilized the tech-
nique of separable integer partition classes, which was later systematically elabo-
rated by Andrews in [5]. However, our derivation of the above trivariate generating
function identities relies on a different approach by absorbing ideas from linked par-
tition ideals introduced by Andrews [1–3] in the 1970s and reflourished by Chern
and Li [8] quite recently. In particular, a major advantage of the method of linked
partition ideals is that it allows us to freely insert new parameters to count addi-
tional partition statistics that are closely related to the shape of the partitions in
question.

In Sect. 2, we refine the framework of linked partition ideals, which will be used
in Sect. 3 for the combinatorial constructions on Euclidean billiard partitions. We
shall then derive a system of q-difference equations involving the desired generating
functions. By solving this q-difference system with corresponding boundary condi-
tions (i.e. initial coefficients of the power series solutions), we prove Theorems 1.3
and 1.2 in Sects. 4 and 5, respectively. We close this paper with a conclusion in
Sect. 6.

2. Refined span one linked partition ideals

In the study of partitions constrained by conditions on the difference of neighboring
parts such as partitions related to Schur-type identities [6] or partitions arising from
the Kanade–Russell conjectures [8], a special type of linked partition ideals, known
as span one linked partition ideals, is of particular importance. However, to fit
Euclidean billiard partitions into this framework, we have to first make a couple of
refinements. It is necessary to point out in advance that this section only covers
some generic definitions and the concrete example for Euclidean billiard partitions
will be presented in the next section.

Definition 2.1 (Refined span one linked partition ideals). Assume that we are
given

▶ a finite set Π = {π1, . . . , πJ , πJ+1, . . . , πJ+K} of integer partitions where π1 =
· · · = πJ = ∅, the empty partition, while we deliberately assume that they are
different, and πJ+1, . . . , πJ+K are different nonempty partitions;

▶ a map of linking sets, L : Π → P (Π), the power set of Π, such that for 1 ≤ j ≤ J ,
πj ∈ L(πj) and πj′ ̸∈ L(πj) whenever 1 ≤ j′ ≤ J and j′ ̸= j, and that for
1 ≤ k ≤ K, there is exactly one πj with 1 ≤ j ≤ J such that πj ∈ L(πJ+k);

▶ and a positive integer T called the modulus such that it is no smaller than the
largest part among all partitions in Π.
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We say a refined span one linked partition ideal I = I (⟨Π,L⟩, T ) is the multiset
of partitions of the form

λ = ϕ0(λ0)⊕ ϕT (λ1)⊕ · · · ⊕ ϕNT (λN )⊕ ϕ(N+1)T (πj)⊕ ϕ(N+2)T (πj)⊕ · · ·
= ϕ0(λ0)⊕ ϕT (λ1)⊕ · · · ⊕ ϕNT (λN ), (2.1)

where all λi are from Π with λi ∈ L(λi−1) for each i, and λN is not the empty
partition while the empty partition πj with 1 ≤ j ≤ J is such that πj ∈ L(λN ).
We also include J copies of the empty partition in I , and they correspond to

∅ = ϕ0(π1)⊕ ϕT (π1)⊕ · · ·
= · · ·
= ϕ0(πJ)⊕ ϕT (πJ)⊕ · · · .

Here for any two partitions µ and ν, µ⊕ ν gives a partition by collecting all parts
in µ and ν, and ϕm(µ) gives a partition by adding m to each part of µ.

Remark 2.1. The original definition of span one linked partition ideals (see, e.g. [6,
Definition 2.1]) corresponds to the J = 1 case. However, we also slightly loosen the
requirements for the map of linking sets for generality — in the original definition,
all nonempty partitions in Π are assumed to be in L(π1), where π1 is the only
empty partition in Π in the J = 1 case.

The underlying logic of (refined) span one linked partition ideals is that for every
partition λ ∈ I , we may decompose the parts into blocks B0,B1, . . . such that all
parts between Ti+1 and Ti+T fall into the block Bi. Now applying the operator
ϕ−Ti to each block, we get a list of partitions with the largest part at most T , and
they are all in Π.

We shall call the partition ϕ−Ti(Bi) the prototype of the block Bi.

If we denote by λi the prototype of the block Bi, then we get a finite chain
of partitions in Π, i.e. λ0 → λ1 → · · · → λN (where λN corresponds to the last
nonempty block), which can be further extended as an infinite chain ending with a
series of empty partitions πj → πj → · · · such that πj ∈ L(λN ) where 1 ≤ j ≤ J .
In particular, the correspondence of

λ

⇕
λ0 → λ1 → · · · → λN → πj → πj → · · ·

is connected by (2.1). By abuse of notation, we will not distinguish a partition λ
in I and its linked partition ideal decomposition λ0λ1λ2 · · · , which is short for the
chain λ0 → λ1 → λ2 → · · · , and for convenience, we simply write λ = λ0λ1λ2 · · · .

Recall that the refined span one linked partition ideal I = I (⟨Π,L⟩, T ) is a
multiset of partitions. For instance, the multiplicity of the empty partition ∅ is J
as we have

∅ = πjπj · · ·
for every 1 ≤ j ≤ J . Now a crucial question concerns the multiplicity of nonempty
partitions in I .

Lemma 2.1. Let λ be a nonempty partition in I = I (⟨Π,L⟩, T ). Assume that
BM is the first nonempty block with prototype λM .
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(1). If M = 0, then the multiplicity of λ in I is 1, and we have λ = λ0λ1 · · · .
(2). If M > 0, and assume that there are α empty partitions among π1, . . . , πJ , given

by πj1 , . . . , πjα , such that λM is in L(πj1), . . . ,L(πjα), then the multiplicity of
λ in I is α, and we have

λ = πjaπja · · ·πjaλMλM+1 · · · ,

for each 1 ≤ a ≤ α.

Proof. Since the block BM is nonempty, so is its prototype λM and we see that λM

is uniquely given by one of πJ+1, . . . , πJ+K . Now if the successor of λM , namely,
λM+1 is nonempty, it is also uniquely given by one of πJ+1, . . . , πJ+K ; if λM+1 is
the empty partition, then it is still uniquely determined as there is exactly one of
the empty partitions π1, . . . , πJ contained in L(λM ). Continuing this process, we
find that all λm with m ≥ M are uniquely determined.

It remains to characterize the predecessor of λM . If M = 0, then there is no
predecessor of λM and hence λ is uniquely given by λ0λ1 · · · . If M > 0, then by our
assumption, λM−1 is one of the empty partitions π1, . . . , πJ , say πj . Furthermore,
we must have λM ∈ L(πj); otherwise, λM cannot be the successor of πj . Finally,
we note that the empty partition predecessor of πj could only be πj itself as for
1 ≤ j′ ≤ J with j′ ̸= j, we have πj ̸∈ L(πj′). In other words, λM is preceded by
πjπj · · ·πj , as required. □

Definition 2.2. Let 1 ≤ i ≤ J +K and 1 ≤ j ≤ J be given indices, we denote by
Ii,j the following subset of I = I (⟨Π,L⟩, T ):

Ii,j := {λ ∈ I : λ0 = πi and λ ends with πjπj · · · }.

We further define

Ii = Ii,0 := {λ ∈ I : λ0 = πi}.

An immediate consequence of Lemma 2.1 is as follows.

Corollary 2.2. Let 1 ≤ i ≤ J +K, 1 ≤ j ≤ J and 1 ≤ k, k′ ≤ K be indices. Then

(1). No partition repeats in Ii.
(2). No partition is contained in both Ij and IJ+k, and no partition is contained

in both IJ+k and IJ+k′ whenever k ̸= k′.

Now we consider the related generating functions.

Definition 2.3. Assume that s is a partition statistic such that for λ ∈ I with
the linked partition ideal decomposition λ = λ0λ1 · · · ,

s(λ) = s(λ0) + s(λ1) + · · · .

Define for 1 ≤ i ≤ J +K and 1 ≤ j ≤ J ,

Hi,j(x) = Hi,j(x, y, q) :=
∑

λ∈Ii,j

x♯(λ)ys(λ)q|λ|.

We further define

Hi(x) = Hi,0(x) = Hi,0(x, y, q) :=
∑
λ∈Ii

x♯(λ)ys(λ)q|λ|.
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We shall establish the following relations satisfied by these generating functions.
In particular, if the relations are listed explicitly, we are led to a system of q-
difference equations.

Theorem 2.3. For 1 ≤ i ≤ J +K and 0 ≤ j ≤ J ,

Hi,j(x) = x♯(πi)ys(πi)q|πi|
∑

i′:πi′∈L(πi)

Hi′,j(xq
T ). (2.2)

Proof. Given any partition λ ∈ Ii,j , if we write in terms of the linked partition
ideal decomposition λ = λ0λ1 · · · , then λ0 = πi. Note that

λ = ϕ0(λ0)⊕ ϕT (λ1)⊕ ϕ2T (λ2)⊕ · · ·
= λ0 ⊕ ϕT

(
λ1 ⊕ ϕT (λ2)⊕ · · ·

)
= πi ⊕ ϕT (λ′),

where λ′ = λ1⊕ϕT (λ2)⊕· · · . In particular, λ′ ∈
⊔

i′:πi′∈L(πi)
Ii′,j as λ1 ∈ L(λ0) =

L(πi). Further,

s(λ) = s(λ0) + s(λ1) + s(λ2) + · · · = s(πi) + s(λ′).

Noting that λ′ ∈
⊔

i′:πi′∈L(πi)
Ii′,j bijectively correspond to λ ∈ Ii,j , we conclude

that

Hi,j(x) =
∑

λ∈Ii,j

x♯(λ)ys(λ)q|λ|

=
∑

i′:πi′∈L(πi)

∑
λ′∈Ii′,j

x♯(πi)+♯(λ′)ys(πi)+s(λ′)q|πi|+|λ′|+T ·♯(λ′)

= x♯(πi)ys(πi)q|πi|
∑

i′:πi′∈L(πi)

∑
λ′∈Ii′,j

(xqT )♯(λ
′)ys(λ

′)q|λ
′|

= x♯(πi)ys(πi)q|πi|
∑

i′:πi′∈L(πi)

Hi′,j(xq
T ),

as requested. □

3. Euclidean billiard partitions

Following the framework in the previous section, we choose

Π = {π1, π2, π3, π4, π5}
= {∅E ,∅O, 1, 2, 1 + 2},

where both ∅E and ∅O are the empty partition while they are deliberately assumed
to be different. Also, the map of linking sets is given by

π ∈ Π L(π)
π1 = ∅E {π1, π3, π4, π5} = {∅E , 1, 2, 1 + 2}
π2 = ∅O {π2, π4} = {∅O, 2}
π3 = 1 {π2, π4} = {∅O, 2}
π4 = 2 {π1, π3, π4, π5} = {∅E , 1, 2, 1 + 2}
π5 = 1 + 2 {π1, π3, π4, π5} = {∅E , 1, 2, 1 + 2}

Finally, the modulus is chosen by T = 2.
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Recalling Definitions 2.2 and 2.3, we shall consider the generating functions for
1 ≤ i ≤ 5 and 1 ≤ j ≤ 2,

Hi,j(x) :=
∑

λ∈Ii,j

x♯(λ)y♯1,2(λ)q|λ|,

and additionally,

Hi(x) = Hi,0(x) :=
∑
λ∈Ii

x♯(λ)y♯1,2(λ)q|λ|.

By Theorem 2.3, we have the following q-difference system.

Proposition 3.1. For 0 ≤ j ≤ 2,

H1,j(x) = H1,j(xq
2) +H3,j(xq

2) +H4,j(xq
2) +H5,j(xq

2), (3.1a)

H2,j(x) = H2,j(xq
2) +H4,j(xq

2), (3.1b)

H3,j(x) = xyq
(
H2,j(xq

2) +H4,j(xq
2)
)
, (3.1c)

H4,j(x) = xq2
(
H1,j(xq

2) +H3,j(xq
2) +H4,j(xq

2) +H5,j(xq
2)
)
, (3.1d)

H5,j(x) = x2yq3
(
H1,j(xq

2) +H3,j(xq
2) +H4,j(xq

2) +H5,j(xq
2)
)
. (3.1e)

Note that by (3.1a), (3.1d) and (3.1e),{
H4,j(x) = xq2H1,j(x),

H5,j(x) = x2yq3H1,j(x),

and that by (3.1b) and (3.1c),

H3,j(x) = xyqH2,j(x).

Therefore, the above q-difference system can be simplified as follows.

Corollary 3.2. For 0 ≤ j ≤ 2,{
H1,j(x) = (1 + xq4 + x2yq7)H1,j(xq

2) + xyq3H2,j(xq
2), (3.2a)

H2,j(x) = xq4H1,j(xq
2) +H2,j(xq

2). (3.2b)

Recall the conditions

(E1) adjacent parts are never both odd;
(E2) the smallest part is even.

Partitions in B (i.e. Euclidean billiard partitions) are partitions into distinct parts
satisfying both (E1) and (E2); partitions in S are partitions into distinct parts
satisfying only (E1).

It is plain that partitions in I = I (⟨Π,L⟩, T ) are partitions into distinct parts.

Now we explain why we assign the subscripts “E” and “O” in π1 = ∅E and
π2 = ∅O. Let λ ∈ I . Assume that in the linked partition ideal decomposition
λ0λ1 · · · of λ, there is a node, say λM , equals ∅E . If at least one nonempty
partition precedes λM , and assume that λM ′ is the last nonempty partition among
λ0, . . . , λM−1, then ∅E ∈ L(λM ′) so that λM ′ ∈ {π4, π5} = {2, 1 + 2}. In other
words, the largest part in λ that precedes the block BM is 2M ′ + 2, which is even.
Similarly, when λM = ∅O, the last nonempty partition λM ′ preceding λM , if exists,
is such that λM ′ ∈ {π3} = {1} so that the largest part in λ that precedes the block
BM is 2M ′ + 1, which is odd. In conclusion, the subscript “E” or “O” records the
parity of the largest part preceding an empty block in the decomposition.
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Meanwhile, when λM = ∅E , the first nonempty partition λM ′′ succeeding λM , if
exists, is such that λM ′′ ∈ L(∅E) so that λM ′′ ∈ {π3, π4, π5} = {1, 2, 1+ 2}. When
λM = ∅O, the first nonempty partition λM ′′ succeeding λM , if exists, is such that
λM ′′ ∈ L(∅O) so that λM ′′ ∈ {π4} = {2}. Therefore, in the decomposition of λ,
the segments

π3 → ∅ → ∅ → · · · → ∅ → π3 and π3 → ∅ → ∅ → · · · → ∅ → π5,

or equivalently in λ, the consecutive parts

(2M ′ + 1) + (2M ′′ + 1) and (2M ′ + 1) + (2M ′′ + 1) + (2M ′′ + 2)

are forbidden. As a consequence, for partitions in I , Condition (E1) is satisfied.

Conversely, we may naturally decompose partitions in S ⊃ B as refined span one
linked partition ideals. However, it should be emphasized that if the decomposition
of λ ∈ S ⊃ B is such that the first nonempty block has prototype π4 = 2 while it
is not the leading block B0, then as suggested by Lemma 2.1, λ has exactly two
decompositions in I :

π1π1 · · ·π1π4 · · · and π2π2 · · ·π2π4 · · · .

Example 3.1. (i). We decompose the partition 1 + 2 + 3 + 8 + 9 + 10 in S as

π5π3π2π4π5π1π1 · · ·

since

1 + 2 + 3 + 8 + 9 + 10 = ϕ0(1 + 2)⊕ ϕ2(1)⊕ ϕ4(∅)⊕ ϕ6(2)

⊕ ϕ8(1 + 2)⊕ ϕ10(∅)⊕ ϕ12(∅)⊕ · · · .

(ii). We decompose the partition 6 + 7 + 8 + 11 + 14 + 15 in S (and also in B) as

π1π1π4π5π1π3π4π3π2π2 · · · or π2π2π4π5π1π3π4π3π2π2 · · ·

since

6 + 7 + 8 + 11 + 14 + 15 = ϕ0(∅)⊕ ϕ2(∅)⊕ ϕ4(2)⊕ ϕ6(1 + 2)⊕ ϕ8(∅)

⊕ ϕ10(1)⊕ ϕ12(2)⊕ ϕ14(1)⊕ ϕ16(∅)⊕ ϕ18(∅)⊕ · · · .

The above discussions can be summarized as follows.

Proposition 3.3. The following statements are true:

(1). Partitions in S have a bijective correspondence with nonempty partitions in
I1 ⊔I3 ⊔I4 ⊔I5. Further, partitions in S with largest part even (resp. odd)
have a bijective correspondence with nonempty partitions in I1,1⊔I3,1⊔I4,1⊔
I5,1 (resp. I1,2 ⊔ I3,2 ⊔ I4,2 ⊔ I5,2).

(2). Partitions in B have a bijective correspondence with nonempty partitions in
I2 ⊔ I4. Further, partitions in S with largest part even (resp. odd) have a
bijective correspondence with nonempty partitions in I2,1 ⊔ I4,1 (resp. I2,2 ⊔
I4,2).
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4. Proof of Theorem 1.3

Now we establish the generating function identities in Theorem 1.3. Note that once
we have confirmed (1.6) and (1.7), it is immediate that∑

λ∈SO

x♯(λ)y♯1,2(λ)q|λ| =
∑
λ∈S

x♯(λ)y♯1,2(λ)q|λ| −
∑
λ∈SE

x♯(λ)y♯1,2(λ)q|λ|

=
∑
i≥0

∑
j≥0

xi+jyjqi
2+j2+i

(q2; q2)i+j

([
i+ 1
j

]
q2

−
[
i
j

]
q2

)

=
∑
i≥0

∑
j≥1

xi+jyjqi
2+j2+i

(q2; q2)i+j
· q2(i+1−j)

[
i

j − 1

]
q2

=
∑
i≥0

∑
j≥1

xi+jyjqi
2+j2+3i−2j+2

(q2; q2)i+j

[
i

j − 1

]
q2

((i, j) 7→ (i − 1, j + 1)) =
∑
i≥1

∑
j≥0

xi+jyj+1qi
2+j2+i−1

(q2; q2)i+j

[
i− 1
j

]
q2
,

thereby implying (1.8). Here we make use of the following relation for q-binomial
coefficients [4, p. 35, (3.3.3)]: whenever (A,B) ̸= (0, 0),[

A
B

]
q

=

[
A− 1
B

]
q

+ qA−B

[
A− 1
B − 1

]
q

. (4.1)

Now it suffices to prove (1.6) and (1.7).

4.1. Proof of (1.6). By Proposition 3.3,

1 +
∑
λ∈S

x♯(λ)y♯1,2(λ)q|λ| = H1(x) +H3(x) +H4(x) +H5(x).

Recalling (3.1a) further gives

1 +
∑
λ∈S

x♯(λ)y♯1,2(λ)q|λ| = H1(xq
−2). (4.2)

For convenience, let us write

S(x) := H1(xq
−2).

First, it follows from (3.2a) that

H2(xq
2) = x−1y−1q−3

(
H1(x)− (1 + xq4 + x2yq7)H1(xq

2)
)
.

Substituting the above into (3.2b) yields

q2H1(xq
−2)− (1 + q2 + xq4 + x2yq5)H1(x) + (1 + xq4)H1(xq

2) = 0.

Namely,

q2S(x)− (1 + q2 + xq4 + x2yq5)S(xq2) + (1 + xq4)S(xq4) = 0. (4.3)

We then write

S(x) :=
∑
n≥0

snx
n.
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Apparently,

s0 = 1, (4.4)

s1 = yq + q2 + yq3 + q4 + · · · = q(y + q)

1− q2
. (4.5)

We may translate the q-difference equation (4.3) into a recurrence of sn: for n ≥ 2,

(1− q2n)(1− q2n−2)sn = q2n(1− q2n−2)sn−1 + yq2n−1sn−2. (4.6)

Now let us define, for n ≥ 0,

tn := sn(q
2; q2)n. (4.7)

Then by (4.4) and (4.5),

t0 = 1,

t1 = q(y + q).

Further, for n ≥ 2, (4.6) becomes

tn = q2ntn−1 + yq2n−1tn−2.

If we write

T (x) :=
∑
n≥0

tnx
n,

then

T (x)− 1− xq(y + q) = xq2
(
T (xq2)− 1

)
+ x2yq3T (xq2),

that is,

T (x)− xq2(1 + xyq)T (xq2) = 1 + xyq. (4.8)

Here we present an explicit expression of T (x).

Lemma 4.1. We have

T (x) =
∑
i≥0

xiqi(i+1)(−xyq; q2)i+1. (4.9)

Proof. Let us prove a truncated result: for N ≥ 1,

T (x)− xNqN(N+1)(−xyq; q2)NT (xq2N ) =

N−1∑
i=0

xiqi(i+1)(−xyq; q2)i+1. (4.10)

We shall see that our lemma follows by letting N → ∞.

To show (4.10), we induct on N . First, the base case N = 1 is exactly (4.8).
Now assume that (4.10) is valid for some N ≥ 1. Replacing x by xq2N in (4.8)
gives

T (xq2N )− xq2N+2(1 + xyq2N+1)T (xq2N+2) = 1 + xyq2N+1.

Multiplying by xNqN(N+1)(−xq; q2)N on both sides of the above, and then com-
bining the resulting relation with (4.10), we have

T (x)− xN+1q(N+1)(N+2)(−xyq; q2)N+1T (xq
2N+2) =

N∑
i=0

xiqi(i+1)(−xyq; q2)i+1.

This is exactly the N + 1 case of (4.10) and therefore the desired result holds. □
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Finally, to deduce an explicit expression for S(x), we need to reformulate T (x).
We require the q-binomial theorem [4, p. 36, (3.3.6)]: for n ≥ 0,

(z; q)n =
∑
j≥0

[
n
j

]
q

(−1)jq(
j
2)zj . (4.11)

By (4.9),

T (x) =
∑
i≥0

xiqi(i+1)(−xyq; q2)i+1

(by (4.11)) =
∑
i≥0

xiqi(i+1)
∑
j≥0

[
i+ 1
j

]
q2
q2(

j
2)(xyq)j

=
∑
i≥0

∑
j≥0

xi+jyjqi
2+j2+i

[
i+ 1
j

]
q2
.

Recall that

S(x) =
∑
n≥0

snx
n

(by (4.7)) =
∑
n≥0

tn
(q2; q2)n

xn.

Therefore,

S(x) =
∑
i≥0

∑
j≥0

xi+jyjqi
2+j2+i

(q2; q2)i+j

[
i+ 1
j

]
q2
,

which confirms (1.6) by recalling (4.2).

4.2. Proof of (1.7). The proof can be processed in the same way. We have

1 +
∑
λ∈SE

x♯(λ)y♯1,2(λ)q|λ| = H1,1(x) +H3,1(x) +H4,1(x) +H5,1(x)

= H1,1(xq
−2).

Letting

SE(x) := H1,1(xq
−2),

we also have

q2SE(x)− (1 + q2 + xq4 + x2yq5)SE(xq
2) + (1 + xq4)SE(xq

4) = 0.

If we further write

SE(x) :=
∑
n≥0

sE,nx
n,

then

sE,0 = 1,

sE,1 = q2 + q4 + · · · = q2

1− q2
.

Defining

tE,n := sE,n(q
2; q2)n
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and writing

TE(x) :=
∑
n≥0

tE,nx
n,

we arrive at

TE(x)− xq2(1 + xyq)TE(xq
2) = 1.

It follows that

TE(x)− xNqN(N+1)(−xyq; q2)NTE(xq
2N ) =

N−1∑
i=0

xiqi(i+1)(−xyq; q2)i,

so that

TE(x) =
∑
i≥0

xiqi(i+1)(−xyq; q2)i

(by (4.11)) =
∑
i≥0

∑
j≥0

xi+jyjqi
2+j2+i

[
i
j

]
q2
.

Thus,

SE(x) =
∑
i≥0

∑
j≥0

xi+jyjqi
2+j2+i

(q2; q2)i+j

[
i
j

]
q2
,

as desired.

5. Proof of Theorem 1.2

For the proof of Theorem 1.2, we also note first that∑
λ∈BO

x♯(λ)y♯1,2(λ)q|λ| =
∑
λ∈B

x♯(λ)y♯1,2(λ)q|λ| −
∑
λ∈BE

x♯(λ)y♯1,2(λ)q|λ|

=
∑
i≥1

∑
j≥0

xi+jyjqi
2+j2+i+2j

(q2; q2)i+j

([
i
j

]
q2

−
[
i− 1
j

]
q2

)

(by (4.1)) =
∑
i≥1

∑
j≥0

xi+jyjqi
2+j2+3i

(q2; q2)i+j

[
i− 1
j − 1

]
q2
.

Thus, it is only necessary to establish (1.3) and (1.4).

5.1. Proof of (1.3). We still deduce from Proposition 3.3 that

1 +
∑
λ∈B

x♯(λ)y♯1,2(λ)q|λ| = H2(x) +H4(x),

so that by (3.1b),

1 +
∑
λ∈B

x♯(λ)y♯1,2(λ)q|λ| = H2(xq
−2). (5.1)

Let us write

B(x) := H2(xq
−2).

Now it follows from (3.2b) that

H1(xq
2) = x−1q−4

(
H2(x)−H2(xq

2)
)
.
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Substituting the above into (3.2a) implies that

q2B(x)− (1 + q2 + xq4 + x2yq7)B(xq2) + (1 + xq4)B(xq4) = 0. (5.2)

Writing

B(x) :=
∑
n≥0

bnx
n,

then

b0 = 1,

b1 = q2 + q4 + · · · = q2

1− q2
,

and for n ≥ 2,

(1− q2n)(1− q2n−2)bn = q2n(1− q2n−2)bn−1 + yq2n+1bn−2.

Let

cn := bn(q
2; q2)n

and

C(x) :=
∑
n≥0

cnx
n.

Then

C(x)− xq2(1 + xyq3)C(xq2) = 1. (5.3)

We find that

C(x) =
∑
i≥0

xiqi(i+1)(−xyq3; q2)i, (5.4)

whose truncated version is

C(x)− xNqN(N+1)(−xyq3; q2)NC(xq2N ) =

N−1∑
i=0

xiqi(i+1)(−xyq3; q2)i,

which can be easily shown by induction on N .

Finally, by (4.11),

C(x) =
∑
i≥0

∑
j≥0

xi+jyjqi
2+j2+i+2j

[
i
j

]
q2
,

and therefore,

B(x) =
∑
i≥0

∑
j≥0

xi+jyjqi
2+j2+i+2j

(q2; q2)i+j

[
i
j

]
q2
.
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5.2. Proof of (1.4). We carry out similar arguments and get∑
λ∈BE

x♯(λ)y♯1,2(λ)q|λ| = H2,1(x) +H4,1(x)

= H2,1(xq
−2).

Letting

BE(x) := H2,1(xq
−2),

then

q2BE(x)− (1 + q2 + xq4 + x2yq7)BE(xq
2) + (1 + xq4)BE(xq

4) = 0.

Now we write

BE(x) :=
∑
n≥0

bE,nx
n,

and note that

bE,0 = 0,

bE,1 = q2 + q4 + · · · = q2

1− q2
.

Let

cE,n := bE,n(q
2; q2)n

and

CE(x) :=
∑
n≥0

cE,nx
n.

Then

CE(x)− xq2(1 + xyq3)CE(xq
2) = xq2.

It follows that

CE(x)− xNqN(N+1)(−xyq3; q2)NCE(xq
2N ) =

N∑
i=1

xiqi(i+1)(−xyq3; q2)i−1,

so that

CE(x) =
∑
i≥1

xiqi(i+1)(−xyq3; q2)i−1

(by (4.11)) =
∑
i≥1

∑
j≥0

xi+jyjqi
2+j2+i+2j

[
i− 1
j

]
q2
,

which finally yields

BE(x) =
∑
i≥1

∑
j≥0

xi+jyjqi
2+j2+i+2j

(q2; q2)i+j

[
i− 1
j

]
q2
.
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6. Conclusion

The past applications of linked partition ideas in the literature were usually re-
stricted to partitions under conditions on the difference of neighboring parts. Our
paper seems to be the first with parity conditions on adjacent parts considered.
Such an analysis is made possible by subtly assigning different names to the empty
partition in the linked partition ideal decomposition. More generally, we may carry
out the same idea to cope with partitions under one or more conditions such as the
prohibition or allowance of adjacent parts λi and λi+1 with λi ≡ a (mod m) and
λi+1 ≡ a′ (mod m′). It is expected that the advent of such refinements shall bring
about more potential for the use of linked partition ideas in the investigation of
generating functions for partitions.

Acknowledgements. I am grateful to George Andrews for helpful discussions on
an earlier version of this paper. This work was supported in part by a Killam
Postdoctoral Fellowship from the Killam Trusts.
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