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1. Introduction

Given a Laurent series G(q) =
∑

n gnq
n, a particularly interesting problem is to

determine if there exists an arithmetic progressionMn+w such that the coefficients
of G(q) indexed by this arithmetic progression vanish, namely, gMn+w = 0. For
G(q) a quotient of several Ramanujan’s theta series,

f(a, b) :=
∑
n∈Z

an(n+1)/2bn(n−1)/2, (1.1)

the study of its vanishing coefficients indexed by an arithmetic progression has a
long history. Here it is known from the Jacobi triple product identity [4, p. 35,
Entry 19] that f(a, b) has a product form

f(a, b) = (−a,−b, ab; ab)∞, (1.2)

where the q-Pochhammer symbols are defined by

(A; q)∞ :=
∏
k≥0

(1−Aqk),

(A1, . . . , Aℓ; q)∞ := (A1; q)∞ · · · (Aℓ; q)∞.

Usually, theta quotients are expressed in the above product form.

The very first result along this line was obtained Richmond and Szekeres [23],
who proved with the use of the circle method that h(4n+2) = 0 for the Ramanujan–
Göllnitz–Gordon continued fraction∑

n≥0

h(n)qn :=
(q, q7; q8)∞
(q3, q5; q8)∞

. (1.3)

Such result was subsequently extended by Andrews and Bressoud [2] to arbitrary
moduli with recourse to Ramanujan’s 1ψ1 summation formula. Through a similar
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analysis, a more general result was discovered by Alladi and Gordon [1]. Other
results sharing the same nature can be found in Chan and Yesilyurt [6], Mc Laughlin
[17,20], Tang [26], Chern and Tang [7, 8], and Du and Tang [12].

Another important source of coefficient-vanishing properties associated with
theta series is a recent paper of Hirschhorn [15], in which it was shown that
γ1,1,5(5n+ 2) = γ1,1,5(5n+ 4) = 0 where∑

n≥0

γ1,1,5(n)q
n := (−q,−q4; q5)∞(q, q9; q10)3∞.

The basic idea of Hirschhorn’s approach relies on reformulating this q-product back
to the summation form by (1.1) and then making a suitable change of variables
for the sum indices. After some primary considerations due to Tang [25], and
Baruah and Kaur [3], Mc Laughlin [19] moved a huge step forward by establishing
new results under various moduli. For other related results, see, for instance, Mc
Laughlin and Zimmer [21], and Vandna and Kuar [32].

To tackle the coefficient-vanishing puzzle associated with theta series, various
approaches were developed, including analytic techniques such as the circle method
[23], q-hypergeometric transformations [1, 2], computer algebra [33], and explicit
dissection formulas [11, 13, 16, 27, 31]. However, a particularly powerful method is
the one that was first presented in [2, Section 3], relying on subtle substitutions
of sum indices for the summation form of theta series. This idea will be the main
ingredient in our work.

Also, in a series of papers of Tang [28–30], it was discovered that the previous
coefficient-vanishing results on theta series are only the tip of the iceberg. More
precisely, Tang considered five families of coefficient functions:∑

n

αi,j,r,ℓ,m(n)qn :=
(qi, qr−i; qr)ℓ∞
(qj , qr−j ; qr)m∞

, (1.4)

∑
n

βi,j,r,ℓ,m(n)qn :=
(qi, qr−i; qr)ℓ∞

(−qj ,−qr−j ; qr)m∞
, (1.5)∑

n

γi,j,r,ℓ,m(n)qn := (−qi,−qr−i; qr)ℓ∞(qj , q2r−j ; q2r)m∞, (1.6)∑
n

δi,j,r,ℓ,m(n)qn := (qi, qr−i; qr)ℓ∞(−qj ,−q2r−j ; q2r)m∞, (1.7)∑
n

ϵi,j,r,ℓ,m(n)qn := (qi, qr−i; qr)ℓ∞(qj , q2r−j ; q2r)m∞. (1.8)

It was observed that the coefficient-vanishing property still holds for a vast number
of choices of i, j and r even if the powers ℓ and m vary. In particular, dozens
of such relations were established in an explicit way, and further a list of general
conjectures was proposed. These observations stimulate our investigation from a
broader setting.

Define the huffing operator [15, (19.4.7)] for G(q) =
∑

n gnq
n a Laurent series

and M a positive integer by

HM

(
G(q)

)
:=
∑
n

gMnq
Mn. (1.9)
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Then gMn+w = 0 is equivalent to

HM

(
q−wG(q)

)
= 0. (1.10)

We first state our coefficient-vanishing results with the above H-operator notation.

Theorem 1.1. Let µ ≥ 1, ℓ ≥ 0 and m ≥ 0 be integers.

(i) If M = 2ℓ+ 6m+ 3 and σ = −(2ℓ+ 4m+ 2)k, then for κ ∈ {0, 1}, λ ∈ {0, 1}
and any k such that gcd(k,M) = 1,

HM

(
qσ · f

(
(−1)κqk, (−1)κqµM−k

)2ℓ
×
(

f
(
−q2k,−qµM−2k

)
f
(
(−1)λqk, (−1)λqµM−k

))2m+1
)

= 0. (1.11)

(ii) If M = 8ℓ+ 6m+ 3 and σ = −(6ℓ+ 4m+ 2)k, then for κ ∈ {0, 1}, λ ∈ {0, 1}
and any k such that gcd(k,M) = 1,

HM

(
qσ · f

(
(−1)κq2k, (−1)κqµM−2k

)2ℓ
×
(

f
(
−q2k,−qµM−2k

)
f
(
(−1)λqk, (−1)λqµM−k

))2m+1
)

= 0. (1.12)

(iii) If M = 4ℓ + 6m + 5 and σ = −(2ℓ + 2m + 2)k, then for κ ∈ {1}, λ ∈ {0, 1}
and any k such that gcd(k,M) = 1,

HM

(
qσ · f

(
(−1)κq2k, (−1)κqµM−2k

)2ℓ+1

×
(

f
(
−q2k,−qµM−2k

)
f
(
(−1)λqk, (−1)λqµM−k

))4m+2
)

= 0. (1.13)

Theorem 1.2. Let µ ≥ 1, ℓ ≥ 0 and m ≥ 0 be integers.

(i) If M = 4ℓ + 2m + 3 and σ = −(3ℓ +m + 2)k, then for (κ, λ) ∈ {(0, 1), (1, 0)}
and any k such that gcd(k,M) = 1,

HM

(
qσ · f

(
(−1)κqk, (−1)κqµM−k

)2ℓ+1

× f
(
(−1)λqµM+k, (−1)λqµM−k

)2m+1
)
= 0. (1.14)

(ii) If M = 2ℓ+ 4m+ 3 and σ = −(2ℓ+ 2m+ 2)k, then for (κ, λ) ∈ {(0, 1), (1, 1)}
and any k such that gcd(k,M) = 1,

HM

(
qσ · f

(
(−1)κqk, (−1)κqµM−k

)2ℓ+1

× f
(
(−1)λqµM+2k, (−1)λqµM−2k

)2m+1
)
= 0. (1.15)

Theorem 1.3. Let µ ≥ 1, ℓ ≥ 0 and m ≥ 0 be integers.

(i) If M = 4ℓ + 2m + 3 and σ = −(ℓ +m + 1)k, then for (κ, λ) ∈ {(0, 1), (1, 0)}
and any k such that gcd(k,M) = 1,

HM

(
qσ · f

(
(−1)κqk, (−1)κqµM−k

)2ℓ+1
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× f
(
(−1)λqk, (−1)λq2µM−k

)2m+1
)
= 0. (1.16)

(ii) If M = 2ℓ+16m+9 and σ = −(2ℓ+12m+7)k, then for (κ, λ) ∈ {(0, 1), (1, 1)}
and any k such that gcd(k,M) = 1,

HM

(
qσ · f

(
(−1)κqk, (−1)κqµM−k

)2ℓ+1

× f
(
(−1)λq4k, (−1)λq2µM−4k

)2m+1
)
= 0. (1.17)

(iii) If M = 16ℓ+2m+9 and σ = −(10ℓ+2m+6)k, then for (κ, λ) ∈ {(1, 0), (1, 1)}
and any k such that gcd(k,M) = 1,

HM

(
qσ · f

(
(−1)κq2k, (−1)κqµM−2k

)2ℓ+1

× f
(
(−1)λqk, (−1)λq2µM−k

)2m+1
)
= 0. (1.18)

Theorem 1.4. Let µ ≥ 1, ℓ ≥ 0 and m ≥ 0 be integers.

(i) Assume that gcd(2ℓ+1, 2m+1) = 1. If M = 2ℓ+4m+3 and σ = 2(2m+1)2k,
then for (κ, λ) ∈ {(0, 1), (1, 0)} and any k such that gcd(k,M) = 1,

HM

(
qσ · f

(
(−1)κq(2m+1)k, (−1)κqµM−(2m+1)k

)2ℓ+1

× f
(
(−1)λq(2ℓ+1)k, (−1)λq2µM−(2ℓ+1)k

)2m+1
)
= 0. (1.19)

(ii) Assume that gcd(2ℓ+1, 2m+2) = 1. If M = 2ℓ+4m+5 and σ = 2(2m+2)2k,
then for (κ, λ) ∈ {(1, 0), (1, 1)} and any k such that gcd(k,M) = 1,

HM

(
qσ · f

(
(−1)κq(2m+2)k, (−1)κqµM−(2m+2)k

)2ℓ+1

× f
(
(−1)λq(2ℓ+1)k, (−1)λq2µM−(2ℓ+1)k

)2m+2
)
= 0. (1.20)

(iii) Assume that gcd(2ℓ+2, 2m+1) = 1. If M = 4ℓ+2m+5 and σ = 3(2ℓ+2)2k,
then for (κ, λ) ∈ {(0, 1), (1, 1)} and any k such that gcd(k,M) = 1,

HM

(
qσ · f

(
(−1)κq(2m+1)k, (−1)κqµM−(2m+1)k

)2ℓ+2

× f
(
(−1)λq(4ℓ+4)k, (−1)λq2µM−(4ℓ+4)k

)2m+1
)
= 0. (1.21)

In the next corollary, we will translate the previous H-operator relations to
explicit formulas involving the five coefficient functions α, β, γ, δ and ϵ defined in
(1.4)–(1.8) together with two new families:∑

n

ϕi,j,r,ℓ,m(n)qn := (−qi,−qr−i; qr)ℓ∞(qj , qr−j ; qr)m∞, (1.22)∑
n

ψi,j,r,ℓ,m(n)qn := (qi, qr−i; qr)ℓ∞(qj , qr−j ; qr)m∞. (1.23)

Corollary 1.5. We have the following results of the form

χak,hMµ+bk,Mµ,ℓ,m(Mn+ sk) = 0,

where χ is among the seven coefficient functions, ℓ ≥ 0, m ≥ 0, µ ≥ 1, M ≥ 1, h ≥
0 and s are integers, a and b are positive integers, and k is such that gcd(k,M) = 1.
Also, if the same relation holds true for several choices of χ, we write for simplicity
{χ1, χ2, . . .}ak,hMµ+bk,Mµ,ℓ,m.
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Namely,

{ϕ, ψ}k,2k,(2ℓ+8m+5)µ,2ℓ+1,2m+1

(
(2ℓ+ 8m+ 5)n+ (2ℓ+ 6m+ 4)k

)
= 0,

{α, β}2k,k,(8ℓ+6m+3)µ,2ℓ+2m+1,2m+1

(
(8ℓ+ 6m+ 3)n+ (6ℓ+ 4m+ 2)k

)
= 0,

{α, β}2k,k,(4ℓ+6m+5)µ,2ℓ+4m+3,4m+2

(
(4ℓ+ 6m+ 5)n+ (2ℓ+ 2m+ 2)k

)
= 0,

{γ, δ}k,(4ℓ+2m+3)µ+k,(4ℓ+2m+3)µ,2ℓ+1,2m+1

(
(4ℓ+ 2m+ 3)n+ (3ℓ+m+ 2)k

)
= 0,

{γ, ϵ}k,(2ℓ+4m+3)µ+2k,(2ℓ+4m+3)µ,2ℓ+1,2m+1

(
(2ℓ+ 4m+ 3)n+ (2ℓ+ 2m+ 2)k

)
= 0,

{γ, δ}k,k,(4ℓ+2m+3)µ,2ℓ+1,2m+1

(
(4ℓ+ 2m+ 3)n+ (ℓ+m+ 1)k

)
= 0,

{γ, ϵ}k,4k,(2ℓ+16m+9)µ,2ℓ+1,2m+1

(
(2ℓ+ 16m+ 9)n+ (2ℓ+ 12m+ 7)k

)
= 0,

{δ, ϵ}2k,k,(16ℓ+2m+9)µ,2ℓ+1,2m+1

(
(16ℓ+ 2m+ 9)n+ (10ℓ+ 2m+ 6)k

)
= 0.

Further, if gcd(2ℓ+ 1, 2m+ 1) = 1,

{γ, δ}(2m+1)k,(2ℓ+1)k,(2ℓ+4m+3)µ,2ℓ+1,2m+1

(
(2ℓ+ 4m+ 3)n− 2(2m+ 1)2k

)
= 0;

if gcd(2ℓ+ 1, 2m+ 2) = 1,

{δ, ϵ}(2m+2)k,(2ℓ+1)k,(2ℓ+4m+5)µ,2ℓ+1,2m+2

(
(2ℓ+ 4m+ 5)n− 2(2m+ 2)2k

)
= 0;

if gcd(2ℓ+ 2, 2m+ 1) = 1,

{γ, ϵ}(2m+1)k,(4ℓ+4)k,(4ℓ+2m+5)µ,2ℓ+2,2m+1

(
(4ℓ+ 2m+ 5)n− 3(2ℓ+ 2)2k

)
= 0.

2. Outline

We outline the basic idea of our approach in this section. Let us begin with Entry
29 of Chapter XVI in Ramanujan’s Notebooks [22, p. 199]:

Entry 29. If ab = cd, then

f(a, b)f(c, d) + f(−a,−b)f(−c,−d) = 2f(ac, bd)f(ad, bc), (2.1)

and

f(a, b)f(c, d)− f(−a,−b)f(−c,−d) = 2af(b/c, ac2d)f(b/d, acd2). (2.2)

From this entry, it is directly seen that a product of two theta functions can
be reformulated as a linear combination of other theta products. In fact, results
of this nature can be traced at least back to Schröter’s 1854 dissertation, which is
recorded as Lemma 3.1 in Section 3. Upon setting a = c = qk and b = d = q−k+M ,
and then summing (2.1) and (2.2), we have

f
(
qk, q−k+M

)
= f

(
q2k, q−2k+2M

)
f
(
qM , qM

)
+ qkf

(
q2k+M , q−2k+M

)
f
(
1, q2M

)
.

Recall that the H-operator has a property that for any given series F in qM ,

HM

(
G(q) · F (qM )

)
= F (qM ) ·HM

(
G(q)

)
.

Based on this fact, we observe that on the right-hand side of the above reformula-
tion of f

(
qk, q−k+M

)
, there is only one effective factor in each summand, namely,

f
(
q2k, q−2k+2M

)
and qkf

(
q2k+M , q−2k+M

)
, under the action of HM .

More generally, we know from a recent result of Mc Laughlin that the above
treatment can be embedded into a broader setting. In particular, for any theta
power or any product of two theta powers, we may expand it as a linear combination,∑

A F , such that A is a theta series, usually times a power of −1 and a power
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of q, and F is a series in qM for a certain M . Therefore, under the action of HM ,
only A is effective in each summand. These results are recorded in Theorems 3.5
and 3.8.

A surprising fact of the aforementioned linear expansion of a theta power is its
hidden symmetry. To be precise, if we write the theta power

f
(
(−1)κqk+A′

, (−1)κq−k+(A−A′)
)m

=
∑

A F

as above, then for each summand A F with only one exception, there exists a
companion summand A ′F ′ such that F = F ′. In other words, we may pair the
summands and write the theta power as

f
(
(−1)κqk+A′

, (−1)κq−k+(A−A′)
)m

= A0F0 +
∑(

AI + AII

)
F .

On the other hand, the quintuple product identity tells us that

f
(
−q2k,−qµ−2k

)
f
(
−qµ,−q2µ

)
f
(
(−1)κqk, (−1)κqµ−k

) = f
(
(−1)κq3k+µ, (−1)κq−3k+2µ

)
+ (−1)κ+1qkf

(
(−1)κq3k+2µ, (−1)κq−3k+µ

)
.

With the linear expansion formula for products of two theta powers, we find that a
similar symmetry also holds true for powers of the theta quotient on the left-hand
side of the above, and particularly, the exceptional unpaired summand vanishes.
Namely, (

f
(
−q2k,−qµ−2k

)
f
(
(−1)κqk, (−1)κqµ−k

))m

=
∑(

AI + AII

)
F .

These results are recorded in Corollaries 3.6, 3.7 and 3.9.

With the above preparation in mind, it is easily seen that the theta products or
quotients in Theorems 1.1–1.4 can be reformulated as(∑

A F
)
·
(∑

BG
)
,

or with our pairing process,(
A0F0 +

∑(
AI + AII

)
F
)
·
(
B0G0 +

∑(
BI + BII

)
G
)
,

where F and G (including F0 and G0) are series in q
M for a certainM . We remark

that A0 or B0 may vanish. Our next observation comes from the known coefficient-
vanishing results in the literature. Briefly speaking, if a coefficient-vanishing phe-
nomenon appears, we either encounter a series of cancelations according to the
pairing process:

HM

(
A0B0

)
= 0,

HM

(
A0BI

)
= ±HM

(
A0BII

)
,

HM

(
B0AI

)
= ±HM

(
B0AII

)
,

HM

(
AIBI

)
= ±HM

(
AIIBII

)
,

HM

(
AIBII

)
= ±HM

(
AIIBI

)
,

or we uniformly have

HM

(
A B

)
= 0.
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The above two situations lead us to two different strategies for proving a given
coefficient-vanishing problem. In particular, Theorems 1.1–1.3 fall into the former
situation, and Theorem 1.4 requires the latter strategy. Detailed discussions and
proofs are presented in Section 6.

What remains is a unified verification of the above relations. Since our main
focus lies on the behavior of

H (q) := qwf
(
(−1)κqu+A′M , (−1)κq−u+(A−A′)M

)
× f

(
(−1)λqv+B′M , (−1)λq−v+(B−B′)M

)
under the action of HM , an effective way is to use the summation form of theta
series:

H (q) =
∑

m,n∈Z

(−1)κm+λnqAM(m2 )+A′Mm+BM(n2)+B′Mn+um+vn+w.

It turns out that what plays a central role under the action of HM is the factor
qum+vn+w. This requires us to determine the solution set {(m,n) : m,n ∈ Z} of
the linear congruence

um+ vn+ w ≡ 0 (mod M).

For this purpose, we begin with the homogeneous case:

um+ vn ≡ 0 (mod M).

Our target is to construct a sublattice (of Z2) representation of its solution set.
Then for the inhomogeneous case, we only need to make a shift on the previously
obtained sublattice of Z2. See Lemma 4.1 and Theorem 4.2 for details.

Finally, with the knowledge of the structure of the solution set of um+vn+w ≡ 0
(mod M), we make substitutions for the summation indices m and n, and obtain
an explicit double summation formula for HM

(
H (q)

)
:

HM

(
H (q)

)
= HM

 ∑
m,n∈Z

(∗ · · · ∗)

 =
∑
s,t∈Z

(∗ · · · ∗),

in two new indices s and t over Z. This reformulation allows us to determine for
which H (q), the relation HM

(
H (q)

)
= 0 holds true. Also of interest are two

companions of H (q):

Ĥ (q) := qŵf
(
(−1)κqu+A′M , (−1)κq−u+(A−A′)M

)
× f

(
(−1)λqv+(B−B′)M , (−1)λq−v+B′M

)
,

Ȟ (q) := qw̌f
(
(−1)κqu+(A−A′)M , (−1)κq−u+A′M

)
× f

(
(−1)λqv+(B−B′)M , (−1)λq−v+B′M

)
.

We provide some effective criteria to check if HM

(
H (q)

)
equals HM

(
Ĥ (q)

)
or

HM

(
Ȟ (q)

)
. The related results are presented in Corollary 5.2 and Theorems 5.3

and 5.4.
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3. Expanding and pairing powers of theta series

3.1. Schröter and Mc Laughlin. As we have pointed out in the previous section,
reformulations of a product of Ramanujan’s theta series, such as (2.1) and (2.2),
have been widely studied. Among these results, a particularly interesting identity
comes from Schröter’s 1854 dissertation [24]; see also [5, p. 111].

Lemma 3.1 (Schröter). We have

f
(
qAx, qA/x

)
f
(
qBy, qB/y

)
=

A+B−1∑
n=0

qAn2

xnf
(
qA+B+2Anx/y, qA+B−2Any/x

)
× f

(
qAB(A+B+2n)(xByA), qAB(A+B−2n)/(xByA)

)
. (3.1)

In particular,

f
(
qz, q/z

)2
=

1∑
n=0

qn
2

znf
(
q2+2n, q2−2n

)
f
(
q2+2nz2, q2−2n/z2

)
. (3.2)

In a recent paper of Mc Laughlin [18], Schröter’s identity was generalized to a
product of an arbitrary number of theta series. In particular, the following formula
is stated in [18, (4.4)].

Lemma 3.2 (Mc Laughlin). For m ≥ 3,

f
(
qz, q/z

)m
=

1∑
n1=0

2∑
n2=0

· · ·
m−1∑

nm−1=0

znm−1qn
2
1+(n2−n1)

2+···+(nm−1−nm−2)
2

× f
(
q2+2n1 , q2−2n1

)
f
(
qm+2nm−1zm, qm−2nm−1/zm

)
×

m−1∏
i=2

f
(
qi(i+1)+2(i+1)ni−1−2ini , qi(i+1)−2(i+1)ni−1+2ini

)
. (3.3)

In fact, the above identity is a particular case of [18, Corollary 4.2], which may
also be specialized as follows.

Lemma 3.3. For m1,m2 ≥ 1 with m = m1 +m2,

f
(
qxy, q/(xy)

)m1
f
(
qx/y, qy/x

)m2

=

1∑
n1=0

2∑
n2=0

· · ·
m−1∑

nm−1=0

xnm−1y2nm1
−nm−1qn

2
1+(n2−n1)

2+···+(nm−1−nm−2)
2

× f
(
q2+2n1y2, q2−2n1y−2

)
× f

(
qm+2nm−1xmym1−m2 , qm−2nm−1x−mym2−m1

)
×

m1∏
i=2

f
(
qi(i+1)+2(i+1)ni−1−2iniy−2, qi(i+1)−2(i+1)ni−1+2iniy2

)
×

m−1∏
i=m1+1

f
(
qi(i+1)+2(i+1)ni−1−2iniy2m1 , qi(i+1)−2(i+1)ni−1+2iniy−2m1

)
. (3.4)

Proof. This lemma follows upon setting z = x, a1 = · · · = am1 = y and am1+1 =
· · · = am1+m2 = y−1 in [18, Corollary 4.2]. □
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3.2. One theta power. We will make use of Schröter’s formula and Mc Laugh-
lin’s generalization to expand an arbitrary theta power as a summation of theta
products. Before stating our result, an auxiliary lemma is established.

Lemma 3.4. For each positive integer i, define

τi(n) :=

{
0 if n = 0,

i+ 1− n if n ̸= 0,

for 0 ≤ n ≤ i. Let m be a fixed positive integer. Then

τ(n1, n2, . . . , nm) :=
(
τ1(n1), τ2(n2), . . . , τm(nm)

)
(3.5)

is a bijection on the Cartesian product Im := {0, 1}×{0, 1, 2}× · · ·×{0, 1, . . . ,m}.
Further, for (n1, n2, . . . , nm) ∈ Im, define

σ(n1, n2, . . . , nm; q) := q
n2
1+(n2−n1)2+···+(nm−nm−1)2−nm

2 f(q1+n1 , q1−n1)

×
m∏
i=2

f
(
q

i(i+1)
2 +(i+1)ni−1−ini , q

i(i+1)
2 −(i+1)ni−1+ini

)
. (3.6)

Then

σ(n1, n2, . . . , nm; q) = σ
(
τ1(n1), τ2(n2), . . . , τm(nm); q

)
. (3.7)

Proof. The first part of this lemma is obvious. For the second part, we apply
induction on m. Notice that the m = 1 case is trivial. This is because τ1(n) = n
for 0 ≤ n ≤ 1. Let us assume that (3.7) holds true for m− 1 with m ≥ 2. That is,

σ(n1, n2, . . . , nm−1; q) = σ
(
τ1(n1), τ2(n2), . . . , τm−1(nm−1); q

)
. (3.8)

We notice that

σ(n1, n2, . . . , nm; q)

= σ(n1, n2, . . . , nm−1; q)q
(nm−nm−1)2−(nm−nm−1)

2

× f
(
q

m(m+1)
2 +(m+1)nm−1−mnm , q

m(m+1)
2 −(m+1)nm−1+mnm

)
=: σ(n1, n2, . . . , nm−1; q) · g(nm−1, nm). (3.9)

Now we claim that

g
(
τm−1(nm−1), τm(nm)

)
= g(nm−1, nm). (3.10)

There are four cases:

▶ nm−1 = 0 and nm = 0. Then

g
(
τm−1(nm−1), τm(nm)

)
= g(0, 0) = g(nm−1, nm).

▶ nm−1 ̸= 0 and nm = 0. Then

g
(
τm−1(nm−1), τm(nm)

)
= g
(
m− nm−1, 0

)
= q

(−m+nm−1)2−(−m+nm−1)

2

× f
(
q

m(m+1)
2 +(m+1)(m−nm−1), q

m(m+1)
2 −(m+1)(m−nm−1)

)
= q

(−m+nm−1)2−(−m+nm−1)

2
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×
∑
s∈Z

(
q

m(m+1)
2 +(m+1)(m−nm−1)

) s(s+1)
2

×
(
q

m(m+1)
2 −(m+1)(m−nm−1)

) s(s−1)
2

(s 7→ −1 − s) = q
(−nm−1)2−(−nm−1)

2

×
∑
s∈Z

(
q

m(m+1)
2 +(m+1)nm−1

) s(s+1)
2
(
q

m(m+1)
2 −(m+1)nm−1

) s(s−1)
2

= q
(−nm−1)2−(−nm−1)

2 f
(
q

m(m+1)
2 +(m+1)nm−1 , q

m(m+1)
2 −(m+1)nm−1

)
= g(nm−1, 0) = g(nm−1, nm).

▶ nm−1 = 0 and nm ̸= 0. Then

g
(
τm−1(nm−1), τm(nm)

)
= g
(
0,m+ 1− nm

)
= q

(m+1−nm)2−(m+1−nm)
2

× f
(
q

m(m+1)
2 −m(m+1−nm), q

m(m+1)
2 +m(m+1−nm)

)
= q

(m+1−nm)2−(m+1−nm)
2

×
∑
s∈Z

(
q

m(m+1)
2 −m(m+1−nm)

) s(s+1)
2
(
q

m(m+1)
2 +m(m+1−nm)

) s(s−1)
2

(s 7→ 1 − s) = q
n2
m−nm

2

∑
s∈Z

(
q

m(m+1)
2 −mnm

) s(s+1)
2
(
q

m(m+1)
2 +mnm

) s(s−1)
2

= q
n2
m−nm

2 f
(
q

m(m+1)
2 −mnm , q

m(m+1)
2 +mnm

)
= g(0, nm) = g(nm−1, nm).

▶ nm−1 ̸= 0 and nm ̸= 0. Then

g
(
τm−1(nm−1), τm(nm)

)
= g
(
m− nm−1,m+ 1− nm

)
= q

(1+nm−1−nm)2−(1+nm−1−nm)

2

× f
(
q

m(m+1)
2 +(m+1)(m−nm−1)−m(m+1−nm),

q
m(m+1)

2 −(m+1)(m−nm−1)+m(m+1−nm)
)

= q
(1+nm−1−nm)2−(1+nm−1−nm)

2

×
∑
s∈Z

(
q

m(m+1)
2 +(m+1)(m−nm−1)−m(m+1−nm))

s(s+1)
2

×
(
q

m(m+1)
2 −(m+1)(m−nm−1)+m(m+1−nm)

) s(s−1)
2

= q
(nm−nm−1)2−(nm−nm−1)

2

×
∑
s∈Z

(
q

m(m+1)
2 +(m+1)nm−1−mnm

) s(s+1)
2
(
q

m(m+1)
2 −(m+1)nm−1+mnm

) s(s−1)
2

= q
(nm−nm−1)2−(nm−nm−1)

2

× f
(
q

m(m+1)
2 +(m+1)nm−1−mnm , q

m(m+1)
2 −(m+1)nm−1+mnm

)
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= g(nm−1, nm).

Finally, we conclude that

σ
(
τ1(n1), τ2(n2), . . . , τm(nm); q

)
(by (3.9)) = σ

(
τ1(n1), τ2(n2), . . . , τm−1(nm−1); q

)
· g
(
τm−1(nm−1), τm(nm)

)
(by (3.10)) = σ

(
τ1(n1), τ2(n2), . . . , τm−1(nm−1); q

)
· g(nm−1, nm)

(by (3.8)) = σ(n1, n2, . . . , nm−1; q) · g(nm−1, nm)

(by (3.9)) = σ(n1, n2, . . . , nm; q).

This gives our desired result. □

Theorem 3.5. Let A, A′ and k be integers. Form ≥ 1, there exist series M
(m)
s (qA)

(0 ≤ s ≤ m− 1) in qA, depending only on s and m, such that

f
(
(−1)κqk+A′

, (−1)κq−k+(A−A′)
)m

=

m−1∑
s=0

(−1)κsqksf
(
(−1)κmqkm+As+A′m, (−1)κmq−km−As+(A−A′)m

)
× qA

′sM (m)
s (qA). (3.11)

Further, for 1 ≤ s ≤ m− 1,

M (m)
s (qA) = M

(m)
m−s(q

A). (3.12)

Proof. The case of m = 1 is trivial. In particular,

M
(1)
0 (qA) = 1. (3.13)

For m = 2, we replace q by q
A
2 and choose z = (−1)κqk+(A′−A

2 ) in (3.2). Then

f
(
(−1)κqk+A′

, (−1)κq−k+(A−A′)
)2

=

1∑
s=0

(−1)κsqksf
(
q2k+As+2A′

, q−2k−As+2(A−A′)
)

× qA
′sq

s2−s
2 Af

(
q(1+s)A, q(1−s)A

)
.

Thus, for 0 ≤ s ≤ 1,

M (2)
s (qA) = q

s2−s
2 Af

(
q(1+s)A, q(1−s)A

)
. (3.14)

For m ≥ 3, we replace q by q
A
2 and choose z = (−1)κqk+(A′−A

2 ) in (3.3). Then

f
(
(−1)κqk+A′

, (−1)κq−k+(A−A′)
)m

=

m−1∑
s=0

(−1)κsqksf
(
(−1)κmqkm+As+A′m, (−1)κmq−km−As+(A−A′)m

)
× qA

′s
1∑

n1=0

· · ·
m−2∑

nm−2=0

q
n2
1+(n2−n1)2+···+(nm−2−nm−3)2+(s−nm−2)2−s

2 A

× f(q(1+n1)A, q(1−n1)A)
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×
m−2∏
i=2

f
(
q(

i(i+1)
2 +(i+1)ni−1−ini)A, q(

i(i+1)
2 −(i+1)ni−1+ini)A

)
× f

(
q(

m(m−1)
2 +mnm−2−(m−1)s)A, q(

m(m−1)
2 −mnm−2+(m−1)s)A

)
Recalling the notation in Lemma 3.4, we find that for 0 ≤ s ≤ m− 1,

M (m)
s (qA) =

∑
(n1,...,nm−2)∈Im−2

σ
(
n1, . . . , nm−2, s; q

A
)
. (3.15)

Therefore, (3.11) is established.

For (3.12), we notice that the m = 1 and 2 cases are trivial. Assume that m ≥ 3,
we deduce from the above that for 1 ≤ s ≤ m− 1,

M
(m)
m−s(q

A) =
∑

(n1,...,nm−2)∈Im−2

σ
(
n1, . . . , nm−2,m− s; qA

)
(τ in (3.5) is bijective) =

∑
(n1,...,nm−2)∈Im−2

σ
(
τ1(n1), . . . , τm−2(nm−2), τm−1(s); q

A
)

(by (3.7)) =
∑

(n1,...,nm−2)∈Im−2

σ
(
n1, . . . , nm−2, s; q

A
)

(by (3.15)) = M (m)
s (qA),

thereby concluding our proof. □

Finally, (3.12) allows us to pair terms in (3.11).

Corollary 3.6. Let M
(m)
s be as in Theorem 3.5. Then

f
(
(−1)κqk+A′

, (−1)κq−k+(A−A′)
)m

=

m−1∑
s=0

PsM
(m)
s (qA), (3.16)

where

P0 = f
(
(−1)κmqkm+A′m, (−1)κmq−km+(A−A′)m

)
(3.17)

and for 1 ≤ s ≤ m− 1,

Ps =
1

2

{
(−1)κsq(k+A′)s

× f
(
(−1)κmqkm+As+A′m, (−1)κmq−km−As+(A−A′)m

)
+ (−1)κ(m−s)q(k+A′)(m−s)

× f
(
(−1)κmqkm−As+(A+A′)m, (−1)κmq−km+As−A′m

)}
. (3.18)

Proof. Recalling (3.12), we deduce from (3.11) that

f
(
(−1)κqk+A′

, (−1)κq−k+(A−A′)
)m

= f
(
(−1)κmqkm+A′m, (−1)κmq−km+(A−A′)m

)
M

(m)
0 (qA)

+
1

2

m−1∑
s=1

(−1)κsqksf
(
(−1)κmqkm+As+A′m, (−1)κmq−km−As+(A−A′)m

)
× qA

′sM (m)
s (qA)
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+
1

2

m−1∑
s=1

(−1)κsqksf
(
(−1)κmqkm+As+A′m, (−1)κmq−km−As+(A−A′)m

)
× qA

′sM
(m)
m−s(q

A).

For the last summation in the above, we then change the indices by s 7→ m − s.
The desired result therefore follows. □

Corollary 3.7. Let M
(m)
s be as in Theorem 3.5. Let A = 2A′. Then

f
(
(−1)κqk+A′

, (−1)κq−k+A′)m
=

m−1∑
s=0

PsM
(m)
s (qA), (3.19)

where

P0 = f
(
(−1)κmqkm+A′m, (−1)κmq−km+A′m

)
(3.20)

and for 1 ≤ s ≤ m− 1,

Ps =
1

4

{
(−1)κsq(k+A′)s

× f
(
(−1)κmqkm+A′(m+2s), (−1)κmq−km+A′(m−2s)

)
+ (−1)κsq(−k+A′)s

× f
(
(−1)κmqkm+A′(m−2s), (−1)κmq−km+A′(m+2s)

)}
+

1

4

{
(−1)κ(m−s)q(k+A′)(m−s)

× f
(
(−1)κmqkm+A′(3m−2s), (−1)κmq−km+A′(−m+2s)

)
+ (−1)κ(m−s)q(−k+A′)(m−s)

× f
(
(−1)κmqkm+A′(−m+2s), (−1)κmq−km+A′(3m−2s)

)}
. (3.21)

Proof. Recalling Corollary 3.6, we find that

2f
(
(−1)κqk+A′

, (−1)κq−k+A′)m
= f

(
(−1)κqk+A′

, (−1)κq−k+A′)m
+ f

(
(−1)κq−k+A′

, (−1)κqk+A′)m
= f

(
(−1)κmqkm+A′m, (−1)κmq−km+A′m

)
M

(m)
0 (qA)

+
1

2

{
(−1)κsq(k+A′)s

× f
(
(−1)κmqkm+2A′s+A′m, (−1)κmq−km−2A′s+A′m

)
+ (−1)κ(m−s)q(k+A′)(m−s)

× f
(
(−1)κmqkm−2A′s+3A′m, (−1)κmq−km+2A′s−A′m

)}
M (m)

s (qA)

+ f
(
(−1)κmq−km+A′m, (−1)κmqkm+A′m

)
M

(m)
0 (qA)

+
1

2

{
(−1)κsq(−k+A′)s

× f
(
(−1)κmq−km+2A′s+A′m, (−1)κmqkm−2A′s+A′m

)
+ (−1)κ(m−s)q(−k+A′)(m−s)
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× f
(
(−1)κmq−km−2A′s+3A′m, (−1)κmqkm+2A′s−A′m

)}
M (m)

s (qA)

= 2f
(
(−1)κmqkm+A′m, (−1)κmq−km+A′m

)
M

(m)
0 (qA)

+
1

2

{
(−1)κsq(k+A′)s

× f
(
(−1)κmqkm+A′(m+2s), (−1)κmq−km+A′(m−2s)

)
+ (−1)κsq(−k+A′)s

× f
(
(−1)κmqkm+A′(m−2s), (−1)κmq−km+A′(m+2s)

)}
M (m)

s (qA)

+
1

2

{
(−1)κ(m−s)q(k+A′)(m−s)

× f
(
(−1)κmqkm+A′(3m−2s), (−1)κmq−km+A′(−m+2s)

)
+ (−1)κ(m−s)q(−k+A′)(m−s)

× f
(
(−1)κmqkm+A′(−m+2s), (−1)κmq−km+A′(3m−2s)

)}
M (m)

s (qA),

as requested. □

3.3. Two theta powers. Our next concern is about reformulating a product of
two theta powers.

Theorem 3.8. Let A, A′ and k be integers. For m1,m2 ≥ 1 with m = m1 +m2,

there exist series N
(m1,m2)

s (qA
′
, qA) (0 ≤ s ≤ m−1), depending only on s, m1 and

m2, such that

f
(
(−1)κqk+A′

, (−1)κq−k+(A−A′)
)m1

f
(
(−1)κqk+(A−A′), (−1)κq−k+A′)m2

=

m−1∑
s=0

(−1)κsqks

× f
(
(−1)κmqkm+As+Am2+A′(m1−m2), (−1)κmq−km−As+Am1−A′(m1−m2)

)
× N (m1,m2)

s (qA
′
, qA). (3.22)

Proof. We replace q by q
A
2 and choose x = (−1)κqk and y = qA

′−A
2 in (3.4). Then

the index nm−1 in (3.4) is renamed by s so we have the summation with index s
in (3.22). The first two lines of the summand in (3.22) are given by the following
factor of the summand in (3.4):

xsf
(
qm+2sxmym1−m2 , qm−2sx−mym2−m1

)
.

We will not present the explicit expression of N
(m1,m2)

s (qA
′
, qA) but it can be

calculated by summing the remaining factors of the summand in (3.4) over indices
n1, . . . , nm−2. □

Corollary 3.9. Let M
(m)
s and N

(m1,m2)
s be as in Theorems 3.5 and 3.8. Then(

f
(
−q2k,−qµ−2k

)
f
(
(−1)κqk, (−1)κqµ−k

))m

=
1

f
(
−qµ,−q2µ

)m
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×

{
m−1∑
s=0

Q(0)
s M (m)

s (q3µ) +

m−1∑
m1=1

m−1∑
s=0

Q(m1)
s N (m1,m−m1)

s (qµ, q3µ)

}
, (3.23)

where

Q
(0)
0 = f

(
(−1)κmq3km+µm, (−1)κmq−3km+2µm

)
+ (−1)(κ+1)mqkmf

(
(−1)κmq3km+2µm, (−1)κmq−3km+µm

)
, (3.24)

for 1 ≤ s ≤ m− 1,

Q(0)
s =

1

2

{
(−1)κsq(3k+µ)s

× f
(
(−1)κmq3km+µ(m+3s), (−1)κmq−3km+µ(2m−3s)

)
+ (−1)(κ+1)m+κsqkm+(−3k+µ)s

× f
(
(−1)κmq3km+µ(2m−3s), (−1)κmq−3km+µ(m+3s)

)}
+

1

2

{
(−1)(κ+1)m+κ(m−s)qkm+(−3k+µ)(m−s)

× f
(
(−1)κmq3km+µ(−m+3s), (−1)κmq−3km+µ(4m−3s)

)
+ (−1)κ(m−s)q(3k+µ)(m−s)

× f
(
(−1)κmq3km+µ(4m−3s), (−1)κmq−3km+µ(−m+3s)

)}
, (3.25)

and for 1 ≤ m1 ≤ m− 1 and 0 ≤ s ≤ m− 1,

Q(m1)
s =

(
m
m1

)
2

{
(−1)(κ+1)(m−m1)+κsqk(m−m1)+3ks

× f
(
(−1)κmq3km+µ(2m−m1+3s), (−1)κmq−3km+µ(m+m1−3s)

)
+ (−1)(κ+1)m1+κsqkm1−3ks

× f
(
(−1)κmq3km+µ(m+m1−3s), (−1)κmq−3km+µ(2m−m1+3s)

)}
.

(3.26)

Proof. We know from the quintuple product identity (see [14, p. 99, Eq. (10.1.4)]
or [9, p. 119, Eq. (1.9)]) that

f
(
−q2k,−qµ−2k

)
f
(
−qµ,−q2µ

)
f
(
(−1)κqk, (−1)κqµ−k

) = f
(
(−1)κq3k+µ, (−1)κq−3k+2µ

)
+ (−1)κ+1qkf

(
(−1)κq3k+2µ, (−1)κq−3k+µ

)
.

Thus, we write(
f
(
−q2k,−qµ−2k

)
f
(
−qµ,−q2µ

)
f
(
(−1)κqk, (−1)κqµ−k

) )m

= SI + SII + SIII , (3.27)

where

SI = f
(
(−1)κq3k+µ, (−1)κq−3k+2µ

)m
,

SII = (−1)(κ+1)mqkmf
(
(−1)κq3k+2µ, (−1)κq−3k+µ

)m
,

SIII =

m−1∑
m1=1

(
m

m1

)
(−1)(κ+1)(m−m1)qk(m−m1)
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× f
(
(−1)κq3k+µ, (−1)κq−3k+2µ

)m1

× f
(
(−1)κq3k+2µ, (−1)κq−3k+µ

)m−m1
.

By Corollary 3.6 with (k,A′, A) 7→ (3k, µ, 3µ), we have

SI =

m−1∑
s=0

Q
(0)
s,IM

(m)
s (q3µ), (3.28)

where

Q
(0)
0,I = f

(
(−1)κmq3km+µm, (−1)κmq−3km+2µm

)
,

and for 1 ≤ s ≤ m− 1,

Q
(0)
s,I =

1

2

{
(−1)κsq(3k+µ)s

× f
(
(−1)κmq3km+µ(m+3s), (−1)κmq−3km+µ(2m−3s)

)
+ (−1)κ(m−s)q(3k+µ)(m−s)

× f
(
(−1)κmq3km+µ(4m−3s), (−1)κmq−3km+µ(−m+3s)

)}
.

Next, we have

SII = (−1)(κ+1)mqkmf
(
(−1)κq−3k+µ, (−1)κq3k+2µ

)m
.

Applying Corollary 3.6 with (k,A′, A) 7→ (−3k, µ, 3µ) gives

SII =

m−1∑
s=0

Q
(0)
s,IIM

(m)
s (q3µ), (3.29)

where

Q
(0)
0,II = (−1)(κ+1)mqkmf

(
(−1)κmq−3km+µm, (−1)κmq3km+2µm

)
,

and for 1 ≤ s ≤ m− 1,

Q
(0)
s,II =

1

2

{
(−1)(κ+1)m+κsqkm+(−3k+µ)s

× f
(
(−1)κmq−3km+µ(m+3s), (−1)κmq3km+µ(2m−3s)

)
+ (−1)(κ+1)m+κ(m−s)qkm+(−3k+µ)(m−s)

× f
(
(−1)κmq−3km+µ(4m−3s), (−1)κmq3km+µ(−m+3s)

)}
.

For SIII , we notice that

2SIII =

m−1∑
m1=1

(
m

m1

)
(−1)(κ+1)(m−m1)qk(m−m1)

× f
(
(−1)κq3k+µ, (−1)κq−3k+2µ

)m1

× f
(
(−1)κq3k+2µ, (−1)κq−3k+µ

)m−m1

+

m−1∑
m1=1

(
m

m−m1

)
(−1)(κ+1)m1qkm1

× f
(
(−1)κq3k+µ, (−1)κq−3k+2µ

)m−m1
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× f
(
(−1)κq3k+2µ, (−1)κq−3k+µ

)m1

=: SIII1 + SIII2 .

By Theorem 3.8 with (k,A′, A) 7→ (3k, µ, 3µ), we have

SIII1 =

m−1∑
m1=1

m−1∑
s=0

Q
(m1)
s,III1

N (m1,m−m1)
s (qµ, q3µ), (3.30)

where for 0 ≤ s ≤ m− 1,

Q
(m1)
s,III1

=

(
m

m1

)
(−1)(κ+1)(m−m1)+κsqk(m−m1)+3ks

× f
(
(−1)κmq3km+µ(2m−m1+3s), (−1)κmq−3km+µ(m+m1−3s)

)
.

Also,

SIII2 =

m−1∑
m1=1

(
m

m1

)
(−1)(κ+1)m1qkm1

× f
(
(−1)κq−3k+µ, (−1)κq3k+2µ

)m1

× f
(
(−1)κq−3k+2µ, (−1)κq3k+µ

)m−m1
.

Applying Theorem 3.8 with (k,A′, A) 7→ (−3k, µ, 3µ) gives

SIII2 =

m−1∑
m1=1

m−1∑
s=0

Q
(m1)
s,III2

N (m1,m−m1)
s (qµ, q3µ), (3.31)

where for 0 ≤ s ≤ m− 1,

Q
(m1)
s,III2

=

(
m

m1

)
(−1)(κ+1)m1+κsqkm1−3ks

× f
(
(−1)κmq−3km+µ(2m−m1+3s), (−1)κmq3km+µ(m+m1−3s)

)
.

Recalling (3.27), we deduce from (3.28), (3.29), (3.30) and (3.31) that(
f
(
−q2k,−qµ−2k

)
f
(
−qµ,−q2µ

)
f
(
(−1)κqk, (−1)κqµ−k

) )m

= SI + SII +
1

2

(
SIII1 + SIII2

)
=

m−1∑
s=0

(
Q

(0)
s,I + Q

(0)
s,II

)
M (m)

s (q3µ)

+
1

2

m−1∑
m1=1

m−1∑
s=0

(
Q

(m1)
s,III1

+ Q
(m1)
s,III2

)
N (m1,m−m1)

s (qµ, q3µ).

This implies our desired result. □

Corollary 3.10. For any nonnegative integers m′ and µ, and integer k such that
gcd(k, 3(2ℓ+ 1)) = 1,

H3(2m′+1)

(
q−2(2m′+1)k

(
f
(
−q2k,−q3(2m′+1)µ−2k

)
f
(
(−1)κqk, (−1)κq3(2m′+1)µ−k

))2m′+1
)

= 0. (3.32)
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Proof. For notational convenience, we write m = 2m′ + 1 and keep in mind that
m is odd. We also write M = 3m = 3(2m′ + 1). By Corollary 3.9 with certain
common factors extracted and powers of (−1) modified, we have(

f
(
−q2k,−qMµ−2k

)
f
(
(−1)κqk, (−1)κqMµ−k

))m

= A
(0)
0 F

(0)
0 +

m−1∑
s=1

A
(0)
s,1 F

(0)
s,1 +

m−1∑
s=1

A
(0)
s,2 F

(0)
s,2 +

m−1∑
m1=1

m−1∑
s=0

A (m1)
s F (m1)

s ,

where each F
(⋆)
⋆ is a series in qM , and

A
(0)
0 = f

(
(−1)κqMk+Mµm, (−1)κq−Mk+2Mµm

)
+ (−1)κ+1qkmf

(
(−1)κqMk+2Mµm, (−1)κq−Mk+Mµm

)
,

for 1 ≤ s ≤ m− 1,

A
(0)
s,1 = q3ksf

(
(−1)κqMk+Mµ(m+3s), (−1)κq−Mk+Mµ(2m−3s)

)
+ (−1)κ+1qkm−3ksf

(
(−1)κqMk+Mµ(2m−3s), (−1)κq−Mk+Mµ(m+3s)

)
,

A
(0)
s,2 = (−1)κ+1qkm−3k(m−s)f

(
(−1)κqMk+Mµ(−m+3s), (−1)κq−Mk+Mµ(4m−3s)

)
+ q3k(m−s)f

(
(−1)κqMk+Mµ(4m−3s), (−1)κq−Mk+Mµ(−m+3s)

)
,

and for 1 ≤ m1 ≤ m− 1 and 0 ≤ s ≤ m− 1,

A (m1)
s

= qk(m−m1)+3ksf
(
(−1)κqMk+Mµ(2m−m1+3s), (−1)κq−Mk+Mµ(m+m1−3s)

)
+ (−1)κ+1qkm1−3ksf

(
(−1)κqMk+Mµ(m+m1−3s), (−1)κq−Mk+Mµ(2m−m1+3s)

)
.

To show our desired result, it suffices to verify that for each choice of A
(⋆)
⋆ ,

HM

(
q−2kmA

(⋆)
⋆

)
= 0.

We first notice that

q−2kmA
(0)
0 = q−2kmf

(
(−1)κqMk+Mµm, (−1)κq−Mk+2Mµm

)
+ (−1)κ+1q−kmf

(
(−1)κqMk+2Mµm, (−1)κq−Mk+Mµm

)
.

The two theta functions in the above are series in qM . Also, since gcd(k,M) = 1,
we have {

−2km ̸≡ 0 (mod M),

−km ̸≡ 0 (mod M).

Thus,

HM

(
q−2kmA

(0)
0

)
= 0 + 0 = 0.

For A
(0)
s,1 and A

(0)
s,2 with 1 ≤ s ≤ m − 1, and A

(m1)
s with 1 ≤ m1 ≤ m − 1 and

0 ≤ s ≤ m− 1, we first prove an auxiliary result: If

A = f
(
(−1)κqMk+M2µ, (−1)κq−Mk

)
+ (−1)κ+1q−Mkf

(
(−1)κqMk, (−1)κq−Mk+M2µ

)
,
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then

A = 0.

To show this, we observe that

A =
∑
s∈Z

(−1)κsqM
2µ(s2)−Mks

+ (−1)κ+1
∑
t∈Z

(−1)κtqM
2µ(t2)+Mkt−Mk

=
∑
s∈Z

(−1)κsqM
2µ(s2)−Mks

+ (−1)κ+1
∑
t∈Z

(−1)κ(1−t)qM
2µ(1−t

2 )+Mk(1−t)−Mk

=
∑
s∈Z

(−1)κsqM
2µ(s2)−Mks −

∑
t∈Z

(−1)κtqM
2µ(t2)−Mkt

= 0.

Now, we notice that

q−2kmA
(0)
s,1

= q−2km+3ksf
(
(−1)κqMk+Mµ(m+3s), (−1)κq−Mk+Mµ(2m−3s)

)
+ (−1)κ+1q−km−3ksf

(
(−1)κqMk+Mµ(2m−3s), (−1)κq−Mk+Mµ(m+3s)

)
.

Here the two theta functions are series in qM . Since 1 ≤ s ≤ m − 1, we find that
−2km + 3ks ≡ 0 (mod M) only if 3s = 2m provided that m is a multiple of 3.
Similarly, −km − 3ks ≡ 0 (mod M) only if 3s = 2m. Thus, when 3s ̸= 2m, we
have

HM

(
q−2kmA

(0)
s,1

)
= 0 + 0 = 0.

When 3s = 2m, we have

q−2kmA
(0)
s,1 = A = 0,

which implies that

HM

(
q−2kmA

(0)
s,1

)
= 0.

Also, for A
(0)
s,2 , we only need to consider the two cases 3s ̸= m and 3s = m by a

similar argument.

Finally, for A
(m1)
s with 1 ≤ m1 ≤ m− 1 and 0 ≤ s ≤ m− 1, we have

q−2kmA (m1)
s

= q−km−km1+3ksf
(
(−1)κqMk+Mµ(2m−m1+3s), (−1)κq−Mk+Mµ(m+m1−3s)

)
+ (−1)κ+1q−2km+km1−3ksf

(
(−1)κqMk+Mµ(m+m1−3s), (−1)κq−Mk+Mµ(2m−m1+3s)

)
.

We still observe that the two theta functions are series in qM . Since 1 ≤ m1 ≤ m−1
and 0 ≤ s ≤ m − 1, we have −m < 3s −m1 < 3m. Then −km − km1 + 3ks ≡ 0
(mod M) only if 3s − m1 = m. Also, −2km + km1 − 3ks ≡ 0 (mod M) only if
3s−m1 = m. Therefore, when 3s−m1 ̸= m,

HM

(
q−2kmA (m1)

s

)
= 0 + 0 = 0.
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When 3s−m1 = m, we have

q−2kmA (m1)
s = A = 0,

which implies that

HM

(
q−2kmA (m1)

s

)
= 0.

The above discussion therefore completes our proof. □

4. Sublattices of Z2 and the solution set of linear congruences

4.1. Homogeneous linear congruences. We start by constructing a sublattice
of Z2 to represent the solution set of a homogeneous linear congruence.

Lemma 4.1. Let M be a positive integer. Let u and v be integers and write
d∗ = gcd(u, v,M). Let du = gcd(u,M) and dv = gcd(v,M). Also, let u′ = u/du
and v′ = v/dv. Assume that integers a1, b1, a2 and b2 with gcd(a1, b1) = 1 and
gcd(a2, b2) = 1 are such that

u′a1 + v′a2 ≡ 0 (mod d∗M/(dudv)), (4.1)

u′b1 + v′b2 ≡ 0 (mod d∗M/(dudv)) (4.2)

and

a1b2 − a2b1 = ±d∗M/(dudv). (4.3)

Then

{(m,n) ∈ Z2 : um+ vn ≡ 0 (mod M)}
=
{(

(dv/d
∗)(a1s+ b1t), (du/d

∗)(a2s+ b2t)
)
: (s, t) ∈ Z2

}
. (4.4)

In particular, if we write d = gcd(u, v), then the linear Diophantine equation

udvx+ vduy = dM (4.5)

is solvable. Let (x, y) = (α, β) be a specific solution. Then the integers a1, b1, a2
and b2 can be chosen as 

a1 = α,

b1 = −vd∗/(ddv),
a2 = β,

b2 = ud∗/(ddu).

(4.6)

Proof. For convenience, we write

L := {(m,n) ∈ Z2 : um+ vn ≡ 0 (mod M)}
and

R :=
{(

(dv/d
∗)(a1s+ b1t), (du/d

∗)(a2s+ b2t)
)
: (s, t) ∈ Z2

}
.

We start by noticing that

L = {(m,n) ∈ Z2 : u⋇m+ v⋇n ≡ 0 (mod M⋇)},

where u⋇ = u/d∗, v⋇ = v/d∗ andM⋇ =M/d∗. Notice also that gcd(u⋇, v⋇,M⋇) =
1. Let us write

d⋇u = gcd(u⋇,M⋇) =
du
d∗
,
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d⋇v = gcd(v⋇,M⋇) =
dv
d∗
.

Then, gcd(u⋇, d⋇v ) = 1 and gcd(v⋇, d⋇u ) = 1 (and so gcd(d⋇u , d
⋇
v ) = 1) since

gcd(u⋇, v⋇,M⋇) = 1. This also implies that

d∗M

dudv
=

M⋇

d⋇u d
⋇
v

is an integer. Further, we notice that

u⋇

d⋇u
=

u

du
= u′,

v⋇

d⋇v
=

v

dv
= v′.

Also, since d⋇u = gcd(u⋇,M⋇) and d⋇v = gcd(v⋇,M⋇), we have

gcd(u′, d∗M/(dudv)) = gcd(u⋇/d⋇u ,M
⋇/(d⋇u d

⋇
v )) = 1,

and
gcd(v′, d∗M/(dudv)) = gcd(v⋇/d⋇v ,M

⋇/(d⋇u d
⋇
v )) = 1.

It can be seen that for any solution (m,n) to

u⋇m+ v⋇n ≡ 0 (mod M⋇),

we have d⋇v | m and d⋇u | n. We shall write m′ = m/d⋇v and n′ = n/d⋇u . Then by
recalling that u′ = u⋇/d⋇u , v

′ = v⋇/d⋇v and d∗M/(dudv) =M⋇/(d⋇u d
⋇
v ), we have

L = {(d⋇v m′, d⋇u n
′) ∈ Z2 : u′m′ + v′n′ ≡ 0 (mod d∗M/(dudv))}.

Now, it suffices to show that

L ′ := {(m′, n′) ∈ Z2 : u′m′ + v′n′ ≡ 0 (mod d∗M/(dudv))}
= {(a1s+ b1t, a2s+ b2t) : (s, t) ∈ Z2} =: R′.

Let us fix m′. Since

u′m′ + v′n′ ≡ 0 (mod d∗M/(dudv)),

we find that all n′ such that (m′, n′) ∈ L ′ form a bilateral arithmetic progression
of common difference ±d∗M/(dudv). Namely,

n′ ≡ −u′v′m′ (mod d∗M/(dudv)),

where v′ is such that v′v′ ≡ 1 (mod d∗M/(dudv)); this is doable since v
′ is coprime

to d∗M/(dudv) as shown in the previous paragraph. Now we consider the linear
Diophantine equation

a1s+ b1t = m′.

Since gcd(a1, b1) = 1, it is always solvable and has infinitely many solutions. Let
(s0, t0) be a specific solution. Then the general solutions (s, t) satisfy

a1(s− s0) + b1(t− t0) = 0. (4.7)

Recalling that gcd(a1, b1) = 1, we have s − s0 = kb1 and t − t0 = −ka1 for any
k ∈ Z. Thus, the general solutions (s, t) to (4.7) can be parameterized as{

s = s0 + kb1

t = t0 − ka1
(with k ∈ Z).
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We then observe that the integers

a2s+ b2t = a2(s0 + kb1) + b2(t0 − ka1)

= a2s0 + b2t0 + k(a2b1 − a1b2)

also form a bilateral arithmetic progression of common difference ±d∗M/(dudv)
since a1b2 − a2b1 = ±d∗M/(dudv) according to (4.3). To show that the list {n′} is
identical to the list {a2s + b2t}, it suffices to examine that one element in {a2s +
b2t} is also in {n′}. Evidently, a2s0 + b2t0 is such an element. This is because
a1s0 + b1t0 = m′ by our assumption. Then

u′m′ + v′(a2s0 + b2t0) = u′(a1s0 + b1t0) + v′(a2s0 + b2t0)

= (u′a1 + v′a2)s0 + (u′b1 + v′b2)t0

≡ 0 + 0 = 0 (mod d∗M/(dudv)).

Therefore, ranging m′ over Z gives R′ = L ′, which further yields R = L .

Finally, we notice that

gcd(u′, v′) =
d

d∗
.

Recalling that d∗M/(dudv) is an integer, we conclude that (4.5), which can be
rewritten as

u′x+ v′y =
d

d∗
· d

∗M

dudv
,

is solvable by Bézout’s lemma. If a1, b1, a2 and b2 are chosen as in (4.6), we first
notice that

b1 = −vd
∗

ddv
= − v · gcd(u, v,M)

gcd(u, v) gcd(v,M)

and

b2 =
ud∗

ddu
=

u · gcd(u, v,M)

gcd(u, v) gcd(u,M)

are integers. Now, we examine the following by recalling that u′α+v′β = dM/(dudv):

Eq. (4.1):

u′a1 + v′a2 = u′α+ v′β = dM/(dudv) ≡ 0 (mod d∗M/(dudv)),

Eq. (4.2):

u′b1 + v′b2 = u′(−v′d∗/d) + v′(u′d∗/d) = 0 ≡ 0 (mod d∗M/(dudv)),

Eq. (4.3):

a1b2 − a2b1 = α(u′d∗/d)− β(−v′d∗/d) = d∗M/(dudv).

Further, if gcd(α, v′d∗/d) = ℓ > 1, then d∗M/(dudv) is also divisible by ℓ since
(u′d∗/d)α + (v′d∗/d)β = d∗M/(dudv). Thus, ℓ > 1 is a common divisor of v′d∗/d
and d∗M/(dudv); this violates the fact that v′ (which is a multiple of v′d∗/d as
d∗ | d) is coprime to d∗M/(dudv). Thus, gcd(α, v′d∗/d) = 1. Similarly, we have
gcd(β, u′d∗/d) = 1. □
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4.2. Inhomogeneous linear congruences. Theorem 4.1 allows us to analyze
the inhomogeneous case.

Theorem 4.2. Let M be a positive integer. Let u, v and w be integers and write
d∗ = gcd(u, v,M).

(i) Assume that d∗ ∤ w. Then

{(m,n) ∈ Z2 : um+ vn+ w ≡ 0 (mod M)} = ∅. (4.8)

(ii) Assume that d∗ | w. Let du = gcd(u,M) and dv = gcd(v,M). Also, let u′ =
u/du and v′ = v/dv. Assume that integers a1, b1, a2 and b2 with gcd(a1, b1) = 1
and gcd(a2, b2) = 1 are such that

u′a1 + v′a2 ≡ 0 (mod d∗M/(dudv)), (4.9)

u′b1 + v′b2 ≡ 0 (mod d∗M/(dudv)) (4.10)

and

a1b2 − a2b1 = ±d∗M/(dudv). (4.11)

Let (m0, n0) be a pair of integers such that

um0 + vn0 + w ≡ 0 (mod M). (4.12)

Then

{(m,n) ∈ Z2 : um+ vn+ w ≡ 0 (mod M)}
=
{(

(dv/d
∗)(a1s+ b1t) +m0, (du/d

∗)(a2s+ b2t) + n0
)
: (s, t) ∈ Z2

}
. (4.13)

In particular, we write d = gcd(u, v) and let (x, y) = (α, β) be a specific solution
of the linear Diophantine equation

udvx+ vduy = dM. (4.14)

Then

{(m,n) ∈ Z2 : um+ vn+ w ≡ 0 (mod M)}
= {(αsdv/d∗ − vt/d+m0, βsdu/d

∗ + ut/d+ n0) : (s, t) ∈ Z2}. (4.15)

Proof. For the first part, we notice that to find a solution (m,n) to um+vn+w ≡ 0
(mod M), it suffices to find integers m, n and k such that um+vn+Mk = −w. By
Bézout’s lemma, this linear Diophantine equation is solvable only if w is a multiple
of d∗ = gcd(u, v,M).

Recall that for d∗ | w, (m0, n0) is a pair of integers such that um0+ vn0+w ≡ 0
(mod M). Considering

{(m̃, ñ) ∈ Z2 : um̃+ vñ ≡ 0 (mod M)}

and

{(m,n) ∈ Z2 : um+ vn+ w ≡ 0 (mod M)},

there is a trivial correspondence between (m̃, ñ) and (m,n) given by

(m,n) = (m̃+m0, ñ+ n0).

Recalling Lemma 4.1 gives the desired result. □
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5. Dissecting theta products

5.1. Huffing operator. Recall from (1.9) that the H-operator is defined for
G(q) =

∑
n gnq

n by

HM

(
G(q)

)
=
∑
n

gMnq
Mn.

Throughout, we consider

H (q) :=
∑

m,n∈Z

(−1)κm+λnqAM(m2 )+A′Mm+BM(n2)+B′Mn+um+vn+w, (5.1)

where M ≥ 1, A ≥ 1, B ≥ 1, A′, B′, u, v, w, κ and λ are integers. Notice that by
the definition of Ramanujan’s theta series,

H (q) = qwf
(
(−1)κqu+A′M , (−1)κq−u+(A−A′)M

)
× f

(
(−1)λqv+B′M , (−1)λq−v+(B−B′)M

)
. (5.2)

Let d∗, du, dv, a1, b1, a2, b2, m0 and n0 be as in Theorem 4.2. We further require
that d∗ | w. It follows from (4.13) with the following changes of variables in (5.1):{

m = (dv/d
∗)(a1s+ b1t) +m0,

n = (du/d
∗)(a2s+ b2t) + n0,

that

HM

(
H (q)

)
= (−1)κm0+λn0qM

(
A(m0

2 )+A′m0+B(n0
2 )+B′n0

)
+(um0+vn0+w)

×
∑
s,t∈Z

(−1)(κa1dv+λa2du)(d
∗)−1s+(κb1dv+λb2du)(d

∗)−1t

× qM(Aa2
1d

2
v+Ba2

2d
2
u)(d

∗)−2(s2)+M(Ab21d
2
v+Bb22d

2
u)(d

∗)−2(t2)

× qM
(
A(a1dv(d∗)−1

2 )+B(a2du(d∗)−1

2 )
)
s+M(Aa1dvm0+A′a1dv+Ba2dun0+B′a2du)(d

∗)−1s

× qM
(
A(b1dv(d∗)−1

2 )+B(b2du(d∗)−1

2 )
)
t+M(Ab1dvm0+A′b1dv+Bb2dun0+B′b2du)(d

∗)−1t

× qM(Aa1b1d
2
v+Ba2b2d

2
u)(d

∗)−2st

× q(ua1dv+va2du)(d
∗)−1s · q(ub1dv+vb2du)(d

∗)−1t. (5.3)

Theorem 5.1. Let H (q) be as in (5.1),

H (q) =
∑

m,n∈Z

(−1)κm+λnqAM(m2 )+A′Mm+BM(n2)+B′Mn+um+vn+w

= qwf
(
(−1)κqu+A′M , (−1)κq−u+(A−A′)M

)
× f

(
(−1)λqv+B′M , (−1)λq−v+(B−B′)M

)
.

Let d∗ = gcd(u, v,M), d = gcd(u, v), du = gcd(u,M) and dv = gcd(v,M).

(i) Assume that d∗ ∤ w. Then

HM

(
H (q)

)
= 0. (5.4)
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(ii) Assume that d∗ | w. Let (m0, n0) be a pair of integers such that

um0 + vn0 + w ≡ 0 (mod M). (5.5)

Assume that {
du(Av

2 +Bu2) | Av · dM,

dv(Av
2 +Bu2) | Bu · dM.

(5.6)

Define

Ã =
ABd2M2

(d∗)2(Av2 +Bu2)
,

Ã′ =
ABd2M2

2(d∗)2(Av2 +Bu2)
− AB(u+ v)dM

2d∗(Av2 +Bu2)

+
(A′Bu+AB′v)dM

d∗(Av2 +Bu2)
+
AB(um0 + vn0)dM

d∗(Av2 +Bu2)
,

B̃ =
Av2 +Bu2

d2
,

B̃′ =
Av2 +Bu2

2d2
+
Av −Bu

2d
− A′v −B′u

d
− Avm0 −Bun0

d
.

Then

HM

(
H (q)

)
= (−1)κm0+λn0qM

(
A(m0

2 )+A′m0+B(n0
2 )+B′n0

)
+(um0+vn0+w)

×
∑
s,t∈Z

(−1)
(Buκ+Avλ)dM

d∗(Av2+Bu2)
s+−vκ+uλ

d t
qÃM(s2)+Ã′Ms+B̃M(t2)+B̃′Mn+d(d∗)−1Ms (5.7)

= (−1)κm0+λn0qM
(
A(m0

2 )+A′m0+B(n0
2 )+B′n0

)
+(um0+vn0+w)

× f
(
(−1)

(Buκ+Avλ)dM

d∗(Av2+Bu2) qd(d
∗)−1M+Ã′M , (−1)

(Buκ+Avλ)dM

d∗(Av2+Bu2) q−d(d∗)−1M+(Ã−Ã′)M
)

× f
(
(−1)

−vκ+uλ
d qB̃

′M , (−1)
−vκ+uλ

d q(B̃−B̃′)M
)
. (5.8)

Proof. The first part is a direct consequence of Theorem 4.2(i). For the second
part, we notice that the pair

(α, β) =

(
Bu · dM

dv(Av2 +Bu2)
,

Av · dM
du(Av2 +Bu2)

)
satisfies

udvα+ vduβ = dM.

By (5.6), α and β are integers. By (4.15), or (4.6), we may choose
a1 = α,

b1 = −vd∗/(ddv),
a2 = β,

b2 = ud∗/(ddu).

in (5.3). Making such substitutions gives (5.7). Furthermore, (5.8) follows by the
definition of Ramanujan’s theta series. □
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Corollary 5.2. Let H (q) be as in (5.1),

H (q) = qwf
(
(−1)κqu+A′M , (−1)κq−u+(A−A′)M

)
× f

(
(−1)λqv+B′M , (−1)λq−v+(B−B′)M

)
.

Let d∗ = gcd(u, v,M), d = gcd(u, v), du = gcd(u,M) and dv = gcd(v,M). Assume
that 

d∗ | w,
du(Av

2 +Bu2) | Av · dM,

dv(Av
2 +Bu2) | Bu · dM.

(5.9)

Assume also that

(−1)
−vκ+uλ

d = −1. (5.10)

If there exists an integer J such that
2d(Av2 +Bu2) | (2dMAv · J − 2dAvw − dAuv + dBu2

+ 2dA′uv − 2dB′u2 −Auv2 −Bu3),

2d(Av2 +Bu2) | (2dMBu · J − 2dBuw + dAv2 − dBuv

− 2dA′v2 + 2dB′uv +Av3 +Bu2v),

(5.11)

then

HM

(
H (q)

)
= 0. (5.12)

Proof. Since (5.9) satisfies the assumptions in Theorem 5.1(ii), we have

HM

(
H (q)

)
= (−1)κm0+λn0qM

(
A(m0

2 )+A′m0+B(n0
2 )+B′n0

)
+(um0+vn0+w)

× f
(
(−1)

(Buκ+Avλ)dM

d∗(Av2+Bu2) qd(d
∗)−1M+Ã′M , (−1)

(Buκ+Avλ)dM

d∗(Av2+Bu2) q−d(d∗)−1M+(Ã−Ã′)M
)

× f
(
(−1)

−vκ+uλ
d qB̃

′M , (−1)
−vκ+uλ

d q(B̃−B̃′)M
)
.

We choose

m0 =
2dMBu · J − 2dBuw + dAv2 − dBuv − 2dA′v2 + 2dB′uv +Av3 +Bu2v

2d(Av2 +Bu2)
,

n0 =
2dMAv · J − 2dAvw − dAuv + dBu2 + 2dA′uv − 2dB′u2 −Auv2 −Bu3

2d(Av2 +Bu2)
;

both are integers according to the assumptions (5.11). We also find that

um0 + vn0 + w = JM,

so (5.5) is satisfied. With such a choice of m0 and n0, as well as the assumption
(5.10), we have

f
(
(−1)

−vκ+uλ
d qB̃

′M , (−1)
−vκ+uλ

d q(B̃−B̃′)M
)
= f

(
−1,−qB̃M

)
= (1, qB̃M , qB̃M ; qB̃M )∞

= 0.

This, in consequence, implies the desired result. □
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5.2. The first cancelation. In this part, we construct a pair of products of two
theta functions such that they differ by at most a negative sign under the action of
the H-operator.

Theorem 5.3. Let H (q) be as in (5.1),

H (q) = qwf
(
(−1)κqu+A′M , (−1)κq−u+(A−A′)M

)
× f

(
(−1)λqv+B′M , (−1)λq−v+(B−B′)M

)
.

Also, define

Ĥ (q) = qŵf
(
(−1)κqu+A′M , (−1)κq−u+(A−A′)M

)
× f

(
(−1)λqv+(B−B′)M , (−1)λq−v+B′M

)
, (5.13)

where

ŵ = w +

(
1− 2B′

B

)
v,

provided that B | 2B′v.

Let d∗ = gcd(u, v,M), d = gcd(u, v), du = gcd(u,M) and dv = gcd(v,M). Then
the following hold true.

(i) If d∗B | 2B′v, then w and ŵ are simultaneously multiples of d∗, or simul-
taneously nonmultiples of d∗. In particular, if w is a nonmultiple of d∗, we
have

HM

(
H (q)

)
= HM

(
Ĥ (q)

)
= 0. (5.14)

(ii) If w is a multiple of d∗, we further let K be such that{
K ≡ 1 (mod M/d∗),

K ≡ 0 (mod d/ gcd(u, v, w)).
(5.15)

Assume that

d∗B | 2B′v,

du(Av
2 +Bu2) | Av · dM,

dv(Av
2 +Bu2) | Bu · dM,

(Av2 +Bu2) | (A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K,
B(Av2 +Bu2) | B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K.

(5.16)

Then

HM

(
H (q)

)
= (−1)ϵHM

(
Ĥ (q)

)
, (5.17)

where

ϵ = κ · (A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

− λ · B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

.

Proof. If d∗B | 2B′v, we find that

ŵ = w + v − d∗ · 2B
′v

d∗B
.
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Noticing that v and d∗ · 2B′v
d∗B are multiples of d∗ yields the first argument in the

first part. Further, if w is a nonmultiple of d∗, and so is ŵ, we deduce (5.14) by
Theorem 5.1(i).

For the second part, we know from the first part that d∗ | ŵ as we have assumed
that d∗ | w. In Theorem 5.1, we replace B′ with B −B′ and obtain

HM

(
Ĥ (q)

)
= (−1)κm̂0+λn̂0qM

(
A(m̂0

2 )+A′m̂0+B(n̂0
2 )+(B−B′)n̂0

)
+(um̂0+vn̂0+ŵ)

× f
(
(−1)

(Buκ+Avλ)dM

d∗(Av2+Bu2) qd(d
∗)−1M+ ˆ̃A′M , (−1)

(Buκ+Avλ)dM

d∗(Av2+Bu2) q−d(d∗)−1M+( ˆ̃A− ˆ̃A′)M
)

× f
(
(−1)

−vκ+uλ
d q

ˆ̃B′M , (−1)
−vκ+uλ

d q(
ˆ̃B− ˆ̃B′)M

)
, (5.18)

where

ˆ̃A =
ABd2M2

(d∗)2(Av2 +Bu2)
,

ˆ̃A′ =
ABd2M2

2(d∗)2(Av2 +Bu2)
− AB(u+ v)dM

2d∗(Av2 +Bu2)

+
(A′Bu+A(B −B′)v)dM

d∗(Av2 +Bu2)
+
AB(um̂0 + vn̂0)dM

d∗(Av2 +Bu2)
,

ˆ̃B =
Av2 +Bu2

d2
,

ˆ̃B′ =
Av2 +Bu2

2d2
+
Av −Bu

2d
− A′v − (B −B′)u

d
− Avm̂0 −Bun̂0

d
,

and m̂0 and n̂0 are such that

um̂0 + vn̂0 + ŵ ≡ 0 (mod M). (5.19)

Recalling from (5.5), m0 and n0 are such that

um0 + vn0 + w ≡ 0 (mod M).

Since w is a multiple of d∗ = gcd(u, v,M), the above is equivalent to

u

d∗
m0 +

v

d∗
n0 +

w

d∗
≡ 0 (mod M/d∗). (5.20)

The assumption in (5.15) that K is a multiple of d/ gcd(u, v, w) implies that

wK

d
=

w

gcd(u, v, w)
· K

d/ gcd(u, v, w)

is an integer. We then choose m0 and n0 such that

u

d
m0 +

v

d
n0 = −wK

d
; (5.21)

this linear Diophantine equation in m0 and n0 is solvable since u/d and v/d are co-
prime. Also, we may always find such a K sinceM/d∗ is coprime to d/ gcd(u, v, w).
This is because d/ gcd(u, v, w) is a divisor of d/d∗ by recalling that w is a multiple
of d∗, while on the other hand M/d∗ and d/d∗ are coprime. Thus, by (5.15) that
K ≡ 1 (mod M/d∗), we have

u

d∗
m0 +

v

d∗
n0 = −wK

d
· d
d∗

= −K w

d∗



General coefficient-vanishing results 29

≡ − w

d∗
(mod M/d∗),

confirming (5.20). Now, we choose

m̂0 = −m0 +
(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K

Av2 +Bu2
,

n̂0 = −n0 −
B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K

B(Av2 +Bu2)
.

By (5.16), the above two are integers. We also want to point out that the choice of
K will not affect the last two divisibility conditions in (5.16) and the value of (−1)ϵ.
This is because these K differ by a multiple of dM/(d∗ gcd(u, v, w)). Further, we
notice that

2Avw · dM
d∗ gcd(u,v,w)

Av2 +Bu2
= 2 · w

gcd(u, v, w)
· Av · dM
du(Av2 +Bu2)

· du
d∗
,

2Buw · dM
d∗ gcd(u,v,w)

Av2 +Bu2
= 2 · w

gcd(u, v, w)
· Bu · dM
dv(Av2 +Bu2)

· dv
d∗
,

so both are even integers. Next, since w is a multiple of d∗ andK ≡ 1 (mod M/d∗),
we have

um̂0 + vn̂0 = −Kw −
(
1− 2B′

B

)
v

≡ −w −
(
1− 2B′

B

)
v = −ŵ (mod M).

Thus, (5.19) is satisfied. With such a choice of m̂0 and n̂0, we find that
ˆ̃A = Ã,

ˆ̃A′ = Ã′,
and


ˆ̃B = B̃,

ˆ̃B′ = B̃ − B̃′.

Also,

A

(
m̂0

2

)
+A′m̂0 +B

(
n̂0
2

)
+ (B −B′)n̂0

= A

(
m0

2

)
+A′m0 +B

(
n0
2

)
+B′n0,

and

um̂0 + vn̂0 + ŵ = um0 + vn0 + w.

Recall that

ϵ = κ · (A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

− λ · B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

.

Substituting the above into (5.18) gives

HM

(
Ĥ (q)

)
= (−1)ϵ · (−1)κm0+λn0qM

(
A(m0

2 )+A′m0+B(n0
2 )+B′n0

)
+(um0+vn0+w)
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× f
(
(−1)

(Buκ+Avλ)dM

d∗(Av2+Bu2) qd(d
∗)−1M+Ã′M , (−1)

(Buκ+Avλ)dM

d∗(Av2+Bu2) q−d(d∗)−1M+(Ã−Ã′)M
)

× f
(
(−1)

−vκ+uλ
d q(B̃−B̃′)M , (−1)

−vκ+uλ
d qB̃

′M
)
.

Finally, it follows from (5.8) that

HM

(
Ĥ (q)

)
= (−1)ϵHM

(
H (q)

)
.

This implies our desired result. □

5.3. The second cancelation. We construct another pair of products of two
theta functions such that they differ by at most a negative sign under the action of
the H-operator.

Theorem 5.4. Let H (q) be as in (5.1),

H (q) = qwf
(
(−1)κqu+A′M , (−1)κq−u+(A−A′)M

)
× f

(
(−1)λqv+B′M , (−1)λq−v+(B−B′)M

)
.

Also, define

Ȟ (q) = qw̌f
(
(−1)κqu+(A−A′)M , (−1)κq−u+A′M

)
× f

(
(−1)λqv+(B−B′)M , (−1)λq−v+B′M

)
, (5.22)

where

w̌ = w +

(
1− 2A′

A

)
u+

(
1− 2B′

B

)
v,

provided that AB | 2(A′Bu+AB′v).

Let d∗ = gcd(u, v,M), d = gcd(u, v), du = gcd(u,M) and dv = gcd(v,M). Then
the following hold true.

(i) If d∗AB | 2(A′Bu + AB′v), then w and w̌ are simultaneously multiples of d∗,
or simultaneously nonmultiples of d∗. In particular, if w is a nonmultiple of
d∗, we have

HM

(
H (q)

)
= HM

(
Ȟ (q)

)
= 0. (5.23)

(ii) If w is a multiple of d∗, we further let K be such that{
K ≡ 1 (mod M/d∗),

K ≡ 0 (mod d/ gcd(u, v, w)).

Assume that

d∗AB | 2(A′Bu+AB′v),

du(Av
2 +Bu2) | Av · dM,

dv(Av
2 +Bu2) | Bu · dM,

A(Av2 +Bu2) | B(A− 2A′)u2 +A(B − 2B′)uv + 2ABuw ·K,
B(Av2 +Bu2) | B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K.

(5.24)

Then

HM

(
H (q)

)
= (−1)εHM

(
Ȟ (q)

)
, (5.25)
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where

ε = −κ · B(A− 2A′)u2 +A(B − 2B′)uv + 2ABuw ·K
A(Av2 +Bu2)

− λ · B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

.

Proof. The proof is almost the same as the proof of Theorem 5.3. For the first part,
we only need to notice that

w̌ = w + u+ v − d∗ · 2(A
′Bu+AB′v)

d∗AB
.

For the second part, the first difference is that we have to replace A′ with A − A′

and B′ with B −B′ in Theorem 5.1. Then

HM

(
Ȟ (q)

)
= (−1)κm̌0+λň0qM

(
A(m̌0

2 )+(A−A′)m̌0+B(ň0
2 )+(B−B′)ň0

)
+(um̌0+vň0+w̌)

× f
(
(−1)

(Buκ+Avλ)dM

d∗(Av2+Bu2) qd(d
∗)−1M+ ˇ̃A′M , (−1)

(Buκ+Avλ)dM

d∗(Av2+Bu2) q−d(d∗)−1M+( ˇ̃A− ˇ̃A′)M
)

× f
(
(−1)

−vκ+uλ
d q

ˇ̃B′M , (−1)
−vκ+uλ

d q(
ˇ̃B− ˇ̃B′)M

)
,

where

ˇ̃A =
ABd2M2

(d∗)2(Av2 +Bu2)
,

ˇ̃A′ =
ABd2M2

2(d∗)2(Av2 +Bu2)
− AB(u+ v)dM

2d∗(Av2 +Bu2)

+
((A−A′)Bu+A(B −B′)v)dM

d∗(Av2 +Bu2)
+
AB(um̌0 + vň0)dM

d∗(Av2 +Bu2)
,

ˇ̃B =
Av2 +Bu2

d2
,

ˇ̃B′ =
Av2 +Bu2

2d2
+
Av −Bu

2d
− (A−A′)v − (B −B′)u

d
− Avm̌0 −Buň0

d
,

and m̌0 and ň0 are such that

um̌0 + vň0 + w̌ ≡ 0 (mod M).

The second and major difference comes when we determine m̌0 and ň0 such that
the above congruence holds true. Let m0 and n0 be as in (5.21). This time we
choose

m̌0 = −m0 −
B(A− 2A′)u2 +A(B − 2B′)uv + 2ABuw ·K

A(Av2 +Bu2)
,

ň0 = −n0 −
B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K

B(Av2 +Bu2)
;

such a choice ensures the above congruence for m̌0 and ň0. We then find that
ˇ̃A = Ã,

ˇ̃A′ = Ã′,
and


ˇ̃B = B̃,

ˇ̃B′ = B̃ − B̃′.
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Also,

A

(
m̌0

2

)
+ (A−A′)m̌0 +B

(
ň0
2

)
+ (B −B′)ň0

= A

(
m0

2

)
+A′m0 +B

(
n0
2

)
+B′n0,

and

um̌0 + vň0 + w̌ = um0 + vn0 + w.

The desired result therefore follows. □

6. Coefficient-vanishing results

6.1. Type I — Theorem 1.1. We consider in this section the three coefficient-
vanishing results in Theorem 1.1. In principle, our proof is based on a pairing-and-
cancelation process. To begin with, the following preparation is necessary.

First, by Corollary 3.6 with certain common factors extracted and powers of
(−1) modified, we have, for ℓ ≥ 1,

f
(
(−1)κqak, (−1)κq−ak+Mµ

)ℓ
=

ℓ−1∑
s=0

AsFs,

where each F⋆ is a series in qM , and

A0 = f
(
(−1)κℓqakℓ, (−1)κℓq−akℓ+Mµℓ

)
, (6.1)

and for 1 ≤ s ≤ ℓ− 1,

As = qaksf
(
(−1)κℓqakℓ+Mµs, (−1)κℓq−akℓ+Mµ(ℓ−s)

)
+ (−1)κℓqak(ℓ−s)f

(
(−1)κℓqakℓ+Mµ(ℓ−s), (−1)κℓq−akℓ+Mµs

)
=: As,I + (−1)κℓAs,II .

More generally, we consider

AI := qaξkf
(
(−1)κℓqakℓ+Mµξ, (−1)κℓq−akℓ+Mµ(ℓ−ξ)

)
, (6.2)

AII := qa(ℓ−ξ)kf
(
(−1)κℓqakℓ+Mµ(ℓ−ξ), (−1)κℓq−akℓ+Mµξ

)
, (6.3)

for generic ξ ∈ Z.
Also, by Corollary 3.9, we have, for m ≥ 1,(

f
(
−q2k,−q−2k+Mµ

)
f
(
(−1)λqk, (−1)λq−k+Mµ

))m

= B
(0)
0 G

(0)
0 +

m−1∑
t=1

B
(0)
t,1 G

(0)
t,1 +

m−1∑
t=1

B
(0)
t,2 G

(0)
t,2 +

m−1∑
m1=1

m−1∑
t=0

B
(m1)
t G

(m1)
t ,

where each G
(⋆)
⋆ is a series in qM , and

B
(0)
0 = f

(
(−1)λmq3km+Mµm, (−1)λmq−3km+2Mµm

)
+ (−1)(λ+1)mqkmf

(
(−1)λmq3km+2Mµm, (−1)λmq−3km+Mµm

)
=: B

(0)
0,I + (−1)(λ+1)mB

(0)
0,II ,
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for 1 ≤ t ≤ m− 1,

B
(0)
t,1 = q3ktf

(
(−1)λmq3km+Mµ(m+3t), (−1)λmq−3km+Mµ(2m−3t)

)
+ (−1)(λ+1)mqkm−3ktf

(
(−1)λmq3km+Mµ(2m−3t), (−1)λmq−3km+Mµ(m+3t)

)
=: B

(0)
t,1,I + (−1)(λ+1)mB

(0)
t,1,II ,

B
(0)
t,2 = qkm−3k(m−t)f

(
(−1)λmq3km+Mµ(−m+3t), (−1)λmq−3km+Mµ(4m−3t)

)
+ (−1)(λ+1)mq3k(m−t)f

(
(−1)λmq3km+Mµ(4m−3t), (−1)λmq−3km+Mµ(−m+3t)

)
=: B

(0)
t,2,I + (−1)(λ+1)mB

(0)
t,2,II ,

and for 1 ≤ m1 ≤ m− 1 and 0 ≤ t ≤ m− 1,

B
(m1)
t = qk(m−m1)+3kt

× f
(
(−1)λmq3km+Mµ(2m−m1+3t), (−1)λmq−3km+Mµ(m+m1−3t)

)
+ (−1)(λ+1)mqkm1−3kt

× f
(
(−1)λmq3km+Mµ(m+m1−3t), (−1)λmq−3km+Mµ(2m−m1+3t)

)
=: B

(m1)
t,I + (−1)(λ+1)mB

(m1)
t,II .

We point out that these B
(⋆)
⋆,I and B

(⋆)
⋆,II are special cases of

BI := qτkf
(
(−1)λmq3km+Mµ(m+τ), (−1)λmq−3km+Mµ(2m−τ)

)
, (6.4)

BII := q(m−τ)kf
(
(−1)λmq3km+Mµ(2m−τ), (−1)λmq−3km+Mµ(m+τ)

)
, (6.5)

for generic τ ∈ Z.
With all parameters chosen in each case below, our generic target is to show the

following by Theorems 5.3 and 5.4:

HM

(
qσA0BI

)
= −(−1)(λ+1)mHM

(
qσA0BII

)
, (6.6)

and

HM

(
qσAIBI

)
= −(−1)κℓ+(λ+1)mHM

(
qσAIIBII

)
. (6.7)

Upon setting τ 7→ m− τ in (6.7), we automatically have

HM

(
qσAIBII

)
= −(−1)κℓ+(λ+1)mHM

(
qσAIIBI

)
. (6.8)

Once the above relations are established, it is safe to conclude by our pairing that

HM

(
qσf

(
(−1)κqak, (−1)κq−ak+Mµ

)ℓ( f
(
−q2k,−q−2k+Mµ

)
f
(
(−1)λqk, (−1)λq−k+Mµ

))m
)

= 0.

(6.9)

6.1.1. Equation (1.11). Recall that (ℓ,m) 7→ (2ℓ, 2m + 1) and a = 1. Also, M =
2ℓ+6m+3 and σ = −(2ℓ+4m+2)k. Further, κ ∈ {0, 1}, λ ∈ {0, 1} and k is such
that gcd(k,M) = 1.

Notice that the ℓ = 0 case is shown by Corollary 3.10. Below, we assume that
ℓ ≥ 1.
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In Theorems 5.3 and 5.4, we set

κ 7→ (2ℓ)κ λ 7→ (2m+ 1)λ
u 7→ (2ℓ)k v 7→ 3(2m+ 1)k
A 7→ (2ℓ)µ B 7→ 3(2m+ 1)µ
M 7→ 2ℓ+ 6m+ 3

Let

d0 = gcd
(
2ℓ, 3(2m+ 1)

)
.

Then

d = gcd(u, v) = d0k.

Also, noticing that M = (2ℓ) + 3(2m+ 1) and that k is coprime to M , we have

d∗ = gcd(u, v,M) = d0,

du = gcd(u,M) = d0,

dv = gcd(v,M) = d0.

We compute that

Av · dM
du(Av2 +Bu2)

= 1,

Bu · dM
dv(Av2 +Bu2)

= 1.

Thus, the second and third assumptions in (5.16) and (5.24) are satisfied.

▶ Examining (6.6). Let us keep in mind that we have made the substitutions in
(6.1), (6.4) and (6.5): (ℓ,m) 7→ (2ℓ, 2m+1) and a = 1. Also, σ = −(2ℓ+4m+2)k.
Then (6.6) becomes

HM

(
qσA0BI

)
= −(−1)λ+1HM

(
qσA0BII

)
. (6.10)

In Theorem 5.3, we further set

A′ 7→ 0 B′ 7→ (2m+ 1 + τ)µ
w 7→ −(2ℓ+ 4m+ 2)k + τk

Then

ŵ = −(2ℓ+ 4m+ 2)k + (2m+ 1− τ)k.

So,

H (q) = qσA0BI ,

Ĥ (q) = qσA0BII .

Now we compute that

2B′v

d∗B
=

2(2m+ 1 + τ)k

d∗
.

If d∗ ∤ 2(2m + 1 + τ)k, then d0 ∤ (2m + 1 + τ)k. By noticing that d0 | (2ℓ) and
d0 | 3(2m+ 1), we have

w ≡ (2m+ 1 + τ)k ̸≡ 0 (mod d0),

ŵ ≡ −(2m+ 1 + τ)k ̸≡ 0 (mod d0).
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So w and ŵ are nonmultiples of d0 = d∗. In this case we know from Theorem
5.1(i) that

HM

(
H (q)

)
= HM

(
Ĥ (q)

)
= 0,

which gives

HM

(
qσA0BI

)
= −(−1)λ+1HM

(
qσA0BII

)
= 0.

Below, we assume that d∗ | 2(2m+ 1 + τ)k. Then the first assumption in (5.16)
is satisfied. We may also assume that w is a multiple of d∗ = d0 according to
Theorem 5.3(i). It is easily seen that d∗k is a divisor of gcd(u, v, w). Thus, we
solve the following stronger system{

K ≡ 1 (mod M/d∗),

K ≡ 0 (mod d/(d∗k)),

and choose K = 1. Finally, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 2,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −1.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (4ℓ)κ+ (2m+ 1)λ.

Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= (−1)λHM

(
Ĥ (q)

)
.

It follows that

HM

(
qσA0BI

)
+ (−1)λ+1HM

(
qσA0BII

)
= HM

(
H (q)

)
+ (−1)λ+1HM

(
Ĥ (q)

)
= 0.

Thus, (6.10) is established.
▶ Examining (6.7). Let us keep in mind that we have made the substitutions
in (6.2), (6.3), (6.4) and (6.5): (ℓ,m) 7→ (2ℓ, 2m + 1) and a = 1. Also, σ =
−(2ℓ+ 4m+ 2)k. Then (6.7) becomes

HM

(
qσAIBI

)
= −(−1)λ+1HM

(
qσAIIBII

)
. (6.11)

In Theorem 5.4, we further set

A′ 7→ ξµ B′ 7→ (2m+ 1 + τ)µ
w 7→ −(2ℓ+ 4m+ 2)k + ξk + τk

Then

w̌ = −(2ℓ+ 4m+ 2)k + (2ℓ− ξ)k + (2m+ 1− τ)k.

So,

H (q) = qσAIBI ,

Ȟ (q) = qσAIIBII .

Now we compute that

2(A′Bu+AB′v)

d∗AB
=

2(2m+ 1 + ξ + τ)k

d∗
.
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If d∗ ∤ 2(2m+ 1 + ξ + τ)k, then d0 ∤ (2m+ 1 + ξ + τ)k, and thus,

w ≡ (2m+ 1 + ξ + τ)k ̸≡ 0 (mod d0),

w̌ ≡ −(2m+ 1 + ξ + τ)k ̸≡ 0 (mod d0),

implying from Theorem 5.1(i) that

HM

(
qσAIBI

)
= −(−1)λ+1HM

(
qσAIIBII

)
= 0.

Below, we assume that d∗ | 2(2m + 1 + ξ + τ)k. Then the first assumption in
(5.24) is satisfied. We may also assume that w is a multiple of d∗ = d0 according
to Theorem 5.4(i). With the choice of K = 1, we compute that

B(A− 2A′)u2 +A(B − 2B′)uv + 2ABuw ·K
A(Av2 +Bu2)

= −1,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −1.

So the remaining assumptions in (5.24) are satisfied. Finally, we compute that

ε = (2ℓ)κ+ (2m+ 1)λ.

Thus, by Theorem 5.4(ii),

HM

(
H (q)

)
= (−1)λHM

(
Ȟ (q)

)
.

It follows that

HM

(
qσAIBI

)
+ (−1)λ+1HM

(
qσAIIBII

)
= HM

(
H (q)

)
+ (−1)λ+1HM

(
Ȟ (q)

)
= 0.

Thus, (6.11) is established.

6.1.2. Equation (1.12). Recall that (ℓ,m) 7→ (2ℓ, 2m + 1) and a = 2. Also, M =
8ℓ+6m+3 and σ = −(6ℓ+4m+2)k. Further, κ ∈ {0, 1}, λ ∈ {0, 1} and k is such
that gcd(k,M) = 1.

Notice that the ℓ = 0 case is shown by Corollary 3.10. Below, we assume that
ℓ ≥ 1.

In Theorems 5.3 and 5.4, we set

κ 7→ (2ℓ)κ λ 7→ (2m+ 1)λ
u 7→ 2(2ℓ)k v 7→ 3(2m+ 1)k
A 7→ (2ℓ)µ B 7→ 3(2m+ 1)µ
M 7→ 8ℓ+ 6m+ 3

Let

d0 = gcd
(
2(2ℓ), 3(2m+ 1)

)
.

Then

d = gcd(u, v) = d0k.

Also, we observe that d0 must be odd since d0 | 3(2m + 1). This implies that
d0 | (2ℓ). Finally, noticing that M = 2 · 2(2ℓ) + 3(2m+ 1) and that k is coprime to
M , we have

d∗ = gcd(u, v,M) = d0,

du = gcd(u,M) = d0,
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dv = gcd(v,M) = d0.

We compute that

Av · dM
du(Av2 +Bu2)

= 1,

Bu · dM
dv(Av2 +Bu2)

= 2.

Thus, the second and third assumptions in (5.16) and (5.24) are satisfied.

▶ Examining (6.6). Let us keep in mind that we have made the substitutions in
(6.1), (6.4) and (6.5): (ℓ,m) 7→ (2ℓ, 2m+1) and a = 2. Also, σ = −(6ℓ+4m+2)k.
Then (6.6) becomes

HM

(
qσA0BI

)
= −(−1)λ+1HM

(
qσA0BII

)
. (6.12)

In Theorem 5.3, we further set

A′ 7→ 0 B′ 7→ (2m+ 1 + τ)µ
w 7→ −(6ℓ+ 4m+ 2)k + τk

Then

ŵ = −(6ℓ+ 4m+ 2)k + (2m+ 1− τ)k.

So,

H (q) = qσA0BI ,

Ĥ (q) = qσA0BII .

Now we compute that

2B′v

d∗B
=

2(2m+ 1 + τ)k

d∗
.

If d∗ ∤ 2(2m + 1 + τ)k, then d0 ∤ (2m + 1 + τ)k. By noticing that d0 | (2ℓ) and
d0 | 3(2m+ 1), we have

w ≡ (2m+ 1 + τ)k ̸≡ 0 (mod d0),

ŵ ≡ −(2m+ 1 + τ)k ̸≡ 0 (mod d0).

So w and ŵ are nonmultiples of d0 = d∗. In this case we know from Theorem
5.1(i) that

HM

(
H (q)

)
= HM

(
Ĥ (q)

)
= 0,

which gives

HM

(
qσA0BI

)
= −(−1)λ+1HM

(
qσA0BII

)
= 0.

Below, we assume that d∗ | 2(2m+ 1 + τ)k. Then the first assumption in (5.16)
is satisfied. We may also assume that w is a multiple of d∗ = d0 according to
Theorem 5.3(i). It is easily seen that d∗k is a divisor of gcd(u, v, w). Thus, we
solve the following stronger system{

K ≡ 1 (mod M/d∗),

K ≡ 0 (mod d/(d∗k)),
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and choose K = 1. Finally, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 3,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −1.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (6ℓ)κ+ (2m+ 1)λ.

Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= (−1)λHM

(
Ĥ (q)

)
.

It follows that

HM

(
qσA0BI

)
+ (−1)λ+1HM

(
qσA0BII

)
= HM

(
H (q)

)
+ (−1)λ+1HM

(
Ĥ (q)

)
= 0.

Thus, (6.12) is established.
▶ Examining (6.7). Let us keep in mind that we have made the substitutions
in (6.2), (6.3), (6.4) and (6.5): (ℓ,m) 7→ (2ℓ, 2m + 1) and a = 2. Also, σ =
−(6ℓ+ 4m+ 2)k. Then (6.7) becomes

HM

(
qσAIBI

)
= −(−1)λ+1HM

(
qσAIIBII

)
. (6.13)

In Theorem 5.4, we further set

A′ 7→ ξµ B′ 7→ (2m+ 1 + τ)µ
w 7→ −(6ℓ+ 4m+ 2)k + 2ξk + τk

Then

w̌ = −(6ℓ+ 4m+ 2)k + 2(2ℓ− ξ)k + (2m+ 1− τ)k.

So,

H (q) = qσAIBI ,

Ȟ (q) = qσAIIBII .

Now we compute that

2(A′Bu+AB′v)

d∗AB
=

2(2m+ 1 + 2ξ + τ)k

d∗
.

If d∗ ∤ 2(2m+ 1 + 2ξ + τ)k, then d0 ∤ (2m+ 1 + 2ξ + τ)k, and thus,

w ≡ (2m+ 1 + 2ξ + τ)k ̸≡ 0 (mod d0),

w̌ ≡ −(2m+ 1 + 2ξ + τ)k ̸≡ 0 (mod d0),

implying from Theorem 5.1(i) that

HM

(
qσAIBI

)
= −(−1)λ+1HM

(
qσAIIBII

)
= 0.

Below, we assume that d∗ | 2(2m + 1 + 2ξ + τ)k. Then the first assumption in
(5.24) is satisfied. We may also assume that w is a multiple of d∗ = d0 according
to Theorem 5.4(i). With the choice of K = 1, we compute that

B(A− 2A′)u2 +A(B − 2B′)uv + 2ABuw ·K
A(Av2 +Bu2)

= −2,
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B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −1.

So the remaining assumptions in (5.24) are satisfied. Finally, we compute that

ε = (4ℓ)κ+ (2m+ 1)λ.

Thus, by Theorem 5.4(ii),

HM

(
H (q)

)
= (−1)λHM

(
Ȟ (q)

)
.

It follows that

HM

(
qσAIBI

)
+ (−1)λ+1HM

(
qσAIIBII

)
= HM

(
H (q)

)
+ (−1)λ+1HM

(
Ȟ (q)

)
= 0.

Thus, (6.13) is established.

6.1.3. Equation (1.13). Recall that (ℓ,m) 7→ (2ℓ + 1, 4m + 2) and a = 2. Also,
M = 4ℓ+ 6m+ 5 and σ = −(2ℓ+ 2m+ 2)k. Further, κ ∈ {1}, λ ∈ {0, 1} and k is
such that gcd(k,M) = 1.

In Theorems 5.3 and 5.4, we set

κ 7→ (2ℓ+ 1)κ λ 7→ (4m+ 2)λ
u 7→ 2(2ℓ+ 1)k v 7→ 3(4m+ 2)k
A 7→ (2ℓ+ 1)µ B 7→ 3(4m+ 2)µ
M 7→ 4ℓ+ 6m+ 5

Let

d0 = gcd
(
2(2ℓ+ 1), 3(4m+ 2)

)
.

We observe that d0 is of the form

d0 = 2δ0

with δ0 odd. Also,

d = gcd(u, v) = d0k = 2δ0k.

Noticing that M = 2(2ℓ + 1) + 1
2 · 3(4m + 2) is odd, and that k is coprime to M ,

we have

d∗ = gcd(u, v,M) = δ0,

du = gcd(u,M) = δ0,

dv = gcd(v,M) = δ0.

We compute that

Av · dM
du(Av2 +Bu2)

= 1,

Bu · dM
dv(Av2 +Bu2)

= 2.

Thus, the second and third assumptions in (5.16) and (5.24) are satisfied.
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▶ Examining (6.6). Let us keep in mind that we have made the substitutions
in (6.1), (6.4) and (6.5): (ℓ,m) 7→ (2ℓ + 1, 4m + 2) and a = 2. Also, σ =
−(2ℓ+ 2m+ 2)k. Then (6.6) becomes

HM

(
qσA0BI

)
= −HM

(
qσA0BII

)
. (6.14)

In Theorem 5.3, we further set

A′ 7→ 0 B′ 7→ (4m+ 2 + τ)µ
w 7→ −(2ℓ+ 2m+ 2)k + τk

Then

ŵ = −(2ℓ+ 2m+ 2)k + (4m+ 2− τ)k.

So,

H (q) = qσA0BI ,

Ĥ (q) = qσA0BII .

Now we compute that

2B′v

d∗B
=

2(4m+ 2 + τ)k

d∗
.

Assume that d∗ ∤ 2(4m + 2 + τ)k. Recall that d∗ = δ0 with δ0 odd. Then,
δ0 ∤ (4m + 2 + τ)k. Also, by noticing that d0 | 2(2ℓ + 1) and d0 | 3(4m + 2), we
have δ0 | (2ℓ+ 1) and δ0 | 3(2m+ 1) since d0 = 2δ0. Thus,

w ≡ (4m+ 2 + τ)k ̸≡ 0 (mod δ0),

ŵ ≡ −(4m+ 2 + τ)k ̸≡ 0 (mod δ0).

So w and ŵ are nonmultiples of δ0 = d∗. Now, we know from Theorem 5.1(i)
that

HM

(
H (q)

)
= HM

(
Ĥ (q)

)
= 0,

which gives

HM

(
qσA0BI

)
= −HM

(
qσA0BII

)
= 0.

Below, we assume that d∗ | 2(4m+ 2 + τ)k. Then the first assumption in (5.16)
is satisfied. We may also assume that w is a multiple of d∗ = δ0 according to
Theorem 5.3(i). It is easily seen that d∗k is a divisor of gcd(u, v, w). Thus, we
solve the following stronger system{

K ≡ 1 (mod M/d∗),

K ≡ 0 (mod d/(d∗k)),

and choose K =M + 1 by recalling that M is odd. Finally, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 4ℓ+ 4m+ 5− 2τ,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −2ℓ− 2m− 2 + τ.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (2ℓ+ 1)(4ℓ+ 4m+ 5− 2τ)κ+ (4m+ 2)(2ℓ+ 2m+ 2− τ)λ.
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Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= (−1)κHM

(
Ĥ (q)

)
.

It follows by κ ∈ {1} that

HM

(
qσA0BI

)
+HM

(
qσA0BII

)
= HM

(
H (q)

)
+HM

(
Ĥ (q)

)
= 0.

Thus, (6.14) is established.
▶ Examining (6.7). Let us keep in mind that we have made the substitutions
in (6.2), (6.3), (6.4) and (6.5): (ℓ,m) 7→ (2ℓ + 1, 4m + 2) and a = 2. Also,
σ = −(2ℓ+ 2m+ 2)k. Then (6.7) becomes

HM

(
qσAIBI

)
= −(−1)κHM

(
qσAIIBII

)
. (6.15)

In Theorem 5.4, we further set

A′ 7→ ξµ B′ 7→ (4m+ 2 + τ)µ
w 7→ −(2ℓ+ 2m+ 2)k + 2ξk + τk

Then

w̌ = −(2ℓ+ 2m+ 2)k + 2(2ℓ+ 1− ξ)k + (4m+ 2− τ)k.

So,

H (q) = qσAIBI ,

Ȟ (q) = qσAIIBII .

Now we compute that

2(A′Bu+AB′v)

d∗AB
=

2(4m+ 2 + 2ξ + τ)k

d∗
.

If d∗ ∤ 2(4m+ 2 + 2ξ + τ)k, then δ0 ∤ (4m+ 2 + 2ξ + τ)k, and thus,

w ≡ (4m+ 2 + 2ξ + τ)k ̸≡ 0 (mod δ0),

w̌ ≡ −(4m+ 2 + 2ξ + τ)k ̸≡ 0 (mod δ0),

implying from Theorem 5.1(i) that

HM

(
qσAIBI

)
= −(−1)κHM

(
qσAIIBII

)
= 0.

Below, we assume that d∗ | 2(4m + 2 + 2ξ + τ)k. Then the first assumption in
(5.24) is satisfied. We may also assume that w is a multiple of d∗ = δ0 according
to Theorem 5.4(i). With the choice of K =M + 1, we compute that

B(A− 2A′)u2 +A(B − 2B′)uv + 2ABuw ·K
A(Av2 +Bu2)

= −4ℓ− 4m− 4 + 4ξ + 2τ,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −2ℓ− 2m− 2 + 2ξ + τ.

So the remaining assumptions in (5.24) are satisfied. Finally, we compute that

ε = 2(2ℓ+ 1)(2ℓ+ 2m+ 2− 2ξ − τ)κ+ 2(2m+ 1)(2ℓ+ 2m+ 2− 2ξ − τ)λ.

Thus, by Theorem 5.4(iii),

HM

(
H (q)

)
= HM

(
Ȟ (q)

)
.
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It follows by κ ∈ {1} that

HM

(
qσAIBI

)
+ (−1)κHM

(
qσAIIBII

)
= HM

(
H (q)

)
+ (−1)κHM

(
Ȟ (q)

)
= 0.

Thus, (6.15) is established.

6.2. Type I — Theorem 1.2. This section concerns the coefficient-vanishing
results in Theorem 1.2. Our proof still relies on the pairing-and-cancelation process
but we also need to show that one particular term reduces to zero after applying
the H-operator.

We first deduce from Corollary 3.6 with certain common factors extracted and
powers of (−1) modified that, for ℓ ≥ 1,

f
(
(−1)κqak, (−1)κq−ak+Mµ

)ℓ
=

ℓ−1∑
s=0

AsFs,

where each F⋆ is a series in qM , and

A0 = f
(
(−1)κℓqakℓ, (−1)κℓq−akℓ+Mµℓ

)
, (6.16)

and for 1 ≤ s ≤ ℓ− 1,

As = qaksf
(
(−1)κℓqakℓ+Mµs, (−1)κℓq−akℓ+Mµ(ℓ−s)

)
+ (−1)κℓqak(ℓ−s)f

(
(−1)κℓqakℓ+Mµ(ℓ−s), (−1)κℓq−akℓ+Mµs

)
=: As,I + (−1)κℓAs,II .

More generally, we consider

AI := qaξkf
(
(−1)κℓqakℓ+Mµξ, (−1)κℓq−akℓ+Mµ(ℓ−ξ)

)
, (6.17)

AII := qa(ℓ−ξ)kf
(
(−1)κℓqakℓ+Mµ(ℓ−ξ), (−1)κℓq−akℓ+Mµξ

)
, (6.18)

for generic ξ ∈ Z.
Also, by Corollary 3.7, we write for m ≥ 1,

f
(
(−1)λqbk+Mµ, (−1)λq−bk+Mµ

)m
= B0G0 +

m−1∑
t=1

Bt,1Gt,1 +

m−1∑
t=1

Bt,2Gt,2,

where each G⋆ is a series in qM , and

B0 = f
(
(−1)λmqbkm+Mµm, (−1)λmq−bkm+Mµm

)
, (6.19)

and for 1 ≤ t ≤ m− 1,

Bt,1 = qbktf
(
(−1)λmqbkm+Mµ(m+2t), (−1)λmq−bkm+Mµ(m−2t)

)
+ q−bktf

(
(−1)λmqbkm+Mµ(m−2t), (−1)λmq−bkm+Mµ(m+2t)

)
=: Bt,1,I + Bt,1,II ,

Bt,2 = qbk(m−t)f
(
(−1)λmqbkm+Mµ(3m−2t), (−1)λmq−bkm+Mµ(−m+2t)

)
+ q−bk(m−t)f

(
(−1)λmqbkm+Mµ(−m+2t), (−1)λmq−bkm+Mµ(3m−2t)

)
=: Bt,2,I + Bt,2,II .

We point out that these B⋆,I and B⋆,II are special cases of

BI := qbτkf
(
(−1)λmqbkm+Mµ(m+2τ), (−1)λmq−bkm+Mµ(m−2τ)

)
, (6.20)
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BII := q−bτkf
(
(−1)λmqbkm+Mµ(m−2τ), (−1)λmq−bkm+Mµ(m+2τ)

)
, (6.21)

for generic τ ∈ Z.
With all parameters chosen in each case below, our generic target is to show the

following by Corollary 5.2 and Theorems 5.3 and 5.4:

HM

(
qσA0B0

)
= 0, (6.22)

HM

(
qσA0BI

)
= −HM

(
qσA0BII

)
, (6.23)

HM

(
qσB0AI

)
= −(−1)κℓHM

(
qσB0AII

)
, (6.24)

and

HM

(
qσAIBI

)
= −(−1)κℓHM

(
qσAIIBII

)
. (6.25)

Upon setting τ 7→ −τ in (6.25), we automatically have

HM

(
qσAIBII

)
= −(−1)κℓHM

(
qσAIIBI

)
. (6.26)

Once the above relations are established, it is safe to conclude by our pairing that

HM

(
qσf

(
(−1)κqak, (−1)κq−ak+Mµ

)ℓ
f
(
(−1)λqbk+Mµ, (−1)λq−bk+Mµ

)m)
= 0.

(6.27)

6.2.1. Equation (1.14). Recall that (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 1.
Also, M = 4ℓ + 2m + 3 and σ = −(3ℓ +m + 2)k. Further, (κ, λ) ∈ {(0, 1), (1, 0)}
and k is such that gcd(k,M) = 1.

In Corollary 5.2 and Theorems 5.3 and 5.4, we set

κ 7→ (2ℓ+ 1)κ λ 7→ (2m+ 1)λ
u 7→ (2ℓ+ 1)k v 7→ (2m+ 1)k
A 7→ (2ℓ+ 1)µ B 7→ 2(2m+ 1)µ
M 7→ 4ℓ+ 2m+ 3

Let

d0 = gcd
(
2ℓ+ 1, 2m+ 1

)
.

Then

d = gcd(u, v) = d0k.

Noticing that M = 2(2ℓ+ 1) + (2m+ 1), and that k is coprime to M , we have

d∗ = gcd(u, v,M) = d0,

du = gcd(u,M) = d0,

dv = gcd(v,M) = d0.

We compute that

Av · dM
du(Av2 +Bu2)

= 1,

Bu · dM
dv(Av2 +Bu2)

= 2.

Thus, the second and third assumptions in (5.9), (5.16) and (5.24) are satisfied.
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▶ Examining (6.22). Let us keep in mind that we have made the substitutions
in (6.16) and (6.19): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 1. Also, σ =
−(3ℓ+m+ 2)k. We want to show (6.22),

HM

(
qσA0B0

)
= 0. (6.28)

In Corollary 5.2, we further set

A′ 7→ 0 B′ 7→ (2m+ 1)µ
w 7→ −(3ℓ+m+ 2)k

So,

H (q) = qσA0B0.

We may further assume that w is a multiple of d∗. Otherwise, we know from
Theorem 5.1(i) that

HM

(
H (q)

)
= 0,

which gives

HM

(
qσA0B0

)
= 0.

We further compute that

−vκ+ uλ

d
= − (2ℓ+ 1)(2m+ 1)

d0
(κ− λ).

The fact that d0 = gcd(2ℓ+ 1, 2m+ 1) then implies that (2ℓ+ 1)(2m+ 1)/d0 is
an odd integer. Thus, (5.9) is satisfied since (κ, λ) ∈ {(0, 1), (1, 0)}. Finally, we
choose J = 0 in (5.11). Then

2dMAv · J − 2dAvw − dAuv + dBu2 + 2dA′uv − 2dB′u2 −Auv2 −Bu3

2d(Av2 +Bu2)
=
d0 − (2ℓ+ 1)

2d0
,

2dMBu · J − 2dBuw + dAv2 − dBuv − 2dA′v2 + 2dB′uv +Av3 +Bu2v

2d(Av2 +Bu2)
=

3d0 + (2m+ 1)

2d0
.

Recall that 2ℓ + 1 ≡ 2m + 1 ≡ d0 (mod 2d0) since d0 = gcd(2ℓ + 1, 2m + 1) is
odd. So (5.11) is also satisfied. We conclude by Corollary 5.2 that

HM

(
H (q)

)
= 0.

Thus, (6.28) is established.
▶ Examining (6.23). Let us keep in mind that we have made the substitutions in

(6.16), (6.20) and (6.21): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 1. Also,
σ = −(3ℓ+m+ 2)k. We want to show (6.23),

HM

(
qσA0BI

)
= −HM

(
qσA0BII

)
. (6.29)

In Theorem 5.3, we further set

A′ 7→ 0 B′ 7→ (2m+ 1 + 2τ)µ
w 7→ −(3ℓ+m+ 2)k + τk

Then

ŵ = −(3ℓ+m+ 2)k − τk.

So,

H (q) = qσA0BI ,

Ĥ (q) = qσA0BII .
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Now we compute that

2B′v

d∗B
=

(2m+ 1 + 2τ)k

d∗
.

If d∗ ∤ (2m+ 1 + 2τ)k, then τk ̸≡ 0 (mod d0), and thus,

w = −3

2
(2ℓ+ 1)k − 1

2
(2m+ 1)k + τk ≡ τk ̸≡ 0 (mod d0),

ŵ = −3

2
(2ℓ+ 1)k − 1

2
(2m+ 1)k − τk ≡ −τk ̸≡ 0 (mod d0).

So w and ŵ are nonmultiples of d0 = d∗. In this case we know from Theorem
5.1(i) that

HM

(
H (q)

)
= HM

(
Ĥ (q)

)
= 0,

which gives

HM

(
qσA0BI

)
= −HM

(
qσA0BII

)
= 0.

Below, we assume that d∗ | (2m+ 1 + 2τ)k. Then the first assumption in (5.16)
is satisfied. We may also assume that w is a multiple of d∗ = d0 according to
Theorem 5.3(i). It is easily seen that d∗k is a divisor of gcd(u, v, w). Thus, we
solve the following stronger system{

K ≡ 1 (mod M/d∗),

K ≡ 0 (mod d/(d∗k)),

and choose K = 1. Finally, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 3,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −1.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (6ℓ+ 3)κ+ (2m+ 1)λ.

Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= (−1)κ+λHM

(
Ĥ (q)

)
.

It follows by (κ, λ) ∈ {(0, 1), (1, 0)} that

HM

(
qσA0BI

)
+HM

(
qσA0BII

)
= HM

(
H (q)

)
+HM

(
Ĥ (q)

)
= 0.

Thus, (6.29) is established.
▶ Examining (6.24). Let us keep in mind that we have made the substitutions in

(6.17), (6.18) and (6.19): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 1. Also,
σ = −(3ℓ+m+ 2)k. Then (6.24) becomes

HM

(
qσB0AI

)
= −(−1)κHM

(
qσB0AII

)
. (6.30)
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To make use of Theorem 5.3, we need to swap the choice of (κ, u,A) and (λ, v,B)
in our initial setting. In other words, in Theorem 5.3, we set

κ 7→ (2m+ 1)λ λ 7→ (2ℓ+ 1)κ
u 7→ (2m+ 1)k v 7→ (2ℓ+ 1)k
A 7→ 2(2m+ 1)µ B 7→ (2ℓ+ 1)µ
A′ 7→ (2m+ 1)µ B′ 7→ ξµ
M 7→ 4ℓ+ 2m+ 3
w 7→ −(3ℓ+m+ 2)k + ξk

Then

ŵ = −(3ℓ+m+ 2)k + (2ℓ+ 1− ξ)k.

So,

H (q) = qσB0AI ,

Ĥ (q) = qσB0AII .

Now we compute that

2B′v

d∗B
=

2ξk

d∗
.

If d∗ ∤ 2ξk, then ξk ̸≡ 0 (mod d0), and thus,

w ≡ ξk ̸≡ 0 (mod d0),

ŵ ≡ −ξk ̸≡ 0 (mod d0),

implying from Theorem 5.1(i) that

HM

(
qσB0AI

)
= −(−1)κHM

(
qσB0AII

)
= 0.

Below, we assume that d∗ | 2ξk. Then the first assumption in (5.16) is satisfied.
We may also assume that w is a multiple of d∗ = d0 according to Theorem 5.3(i).
With the choice of K = 1, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 1,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −2.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (4ℓ+ 2)κ+ (2m+ 1)λ.

Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= (−1)λHM

(
Ĥ (q)

)
.

It follows by (κ, λ) ∈ {(0, 1), (1, 0)} that

HM

(
qσB0AI

)
+ (−1)κHM

(
qσB0AII

)
= HM

(
H (q)

)
+ (−1)κHM

(
Ĥ (q)

)
= 0.

Thus, (6.30) is established.
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▶ Examining (6.25). Let us keep in mind that we have made the substitutions in
(6.17), (6.18), (6.20) and (6.21): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 1.
Also, σ = −(3ℓ+m+ 2)k. Then (6.25) becomes

HM

(
qσAIBI

)
= −(−1)κHM

(
qσAIIBII

)
. (6.31)

In Theorem 5.4, we further set

A′ 7→ ξµ B′ 7→ (2m+ 1 + 2τ)µ
w 7→ −(3ℓ+m+ 2)k + ξk + τk

Then

w̌ = −(3ℓ+m+ 2)k + (2ℓ+ 1− ξ)k − τk.

So,

H (q) = qσAIBI ,

Ȟ (q) = qσAIIBII .

Now we compute that

2(A′Bu+AB′v)

d∗AB
=

(2m+ 1 + 2ξ + 2τ)k

d∗
.

Similarly, if d∗ ∤ (2m+ 1 + 2ξ + 2τ)k, then (ξ + τ)k ̸≡ 0 (mod d0), and thus,

w ≡ (ξ + τ)k ̸≡ 0 (mod d0),

w̌ ≡ −(ξ + τ)k ̸≡ 0 (mod d0),

implying from Theorem 5.1(i) that

HM

(
qσAIBI

)
= −(−1)κHM

(
qσAIIBII

)
= 0.

Below, we assume that d∗ | (2m + 1 + 2ξ + 2τ)k. Then the first assumption in
(5.24) is satisfied. We may also assume that w is a multiple of d∗ = d0 according
to Theorem 5.4(i). With the choice of K = 1, we compute that

B(A− 2A′)u2 +A(B − 2B′)uv + 2ABuw ·K
A(Av2 +Bu2)

= −2,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −1.

So the remaining assumptions in (5.24) are satisfied. Finally, we compute that

ε = (4ℓ+ 2)κ+ (2m+ 1)λ.

Thus, by Theorem 5.4(ii),

HM

(
H (q)

)
= (−1)λHM

(
Ȟ (q)

)
.

It follows by (κ, λ) ∈ {(0, 1), (1, 0)} that

HM

(
qσAIBI

)
+ (−1)κHM

(
qσAIIBII

)
= HM

(
H (q)

)
+ (−1)κHM

(
Ȟ (q)

)
= 0.

Thus, (6.31) is established.
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6.2.2. Equation (1.15). Recall that (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 2.
Also, M = 2ℓ+ 4m+ 3 and σ = −(2ℓ+ 2m+ 2)k. Further, (κ, λ) ∈ {(0, 1), (1, 1)}
and k is such that gcd(k,M) = 1.

In Corollary 5.2 and Theorems 5.3 and 5.4, we set

κ 7→ (2ℓ+ 1)κ λ 7→ (2m+ 1)λ
u 7→ (2ℓ+ 1)k v 7→ 2(2m+ 1)k
A 7→ (2ℓ+ 1)µ B 7→ 2(2m+ 1)µ
M 7→ 2ℓ+ 4m+ 3

Let

d0 = gcd
(
2ℓ+ 1, 2(2m+ 1)

)
= gcd

(
2ℓ+ 1, 2m+ 1

)
.

Then

d = gcd(u, v) = d0k.

Noticing that M = (2ℓ+ 1) + 2(2m+ 1), and that k is coprime to M , we have

d∗ = gcd(u, v,M) = d0,

du = gcd(u,M) = d0,

dv = gcd(v,M) = d0.

We compute that

Av · dM
du(Av2 +Bu2)

= 1,

Bu · dM
dv(Av2 +Bu2)

= 1.

Thus, the second and third assumptions in (5.9), (5.16) and (5.24) are satisfied.

▶ Examining (6.22). Let us keep in mind that we have made the substitutions
in (6.16) and (6.19): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 2. Also, σ =
−(2ℓ+ 2m+ 2)k. We want to show (6.22),

HM

(
qσA0B0

)
= 0. (6.32)

In Corollary 5.2, we further set

A′ 7→ 0 B′ 7→ (2m+ 1)µ
w 7→ −(2ℓ+ 2m+ 2)k

So,

H (q) = qσA0B0.

We may further assume that w is a multiple of d∗. Otherwise, we know from
Theorem 5.1(i) that

HM

(
H (q)

)
= 0,

which gives

HM

(
qσA0B0

)
= 0.

We further compute that

−vκ+ uλ

d
= − (2ℓ+ 1)(2m+ 1)

d0
(2κ− λ).
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The fact that d0 = gcd(2ℓ+ 1, 2m+ 1) then implies that (2ℓ+ 1)(2m+ 1)/d0 is
an odd integer. Thus, (5.9) is satisfied since (κ, λ) ∈ {(0, 1), (1, 1)}. Finally, we
choose J = 0 in (5.11). Then

2dMAv · J − 2dAvw − dAuv + dBu2 + 2dA′uv − 2dB′u2 −Auv2 −Bu3

2d(Av2 +Bu2)
=
d0 − (2ℓ+ 1)

2d0
,

2dMBu · J − 2dBuw + dAv2 − dBuv − 2dA′v2 + 2dB′uv +Av3 +Bu2v

2d(Av2 +Bu2)
=
d0 + (2m+ 1)

d0
.

Recall that 2ℓ + 1 ≡ 2m + 1 ≡ d0 (mod 2d0) since d0 = gcd(2ℓ + 1, 2m + 1) is
odd. So (5.11) is also satisfied. We conclude by Corollary 5.2 that

HM

(
H (q)

)
= 0.

Thus, (6.32) is established.
▶ Examining (6.23). Let us keep in mind that we have made the substitutions in

(6.16), (6.20) and (6.21): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 2. Also,
σ = −(2ℓ+ 2m+ 2)k. We want to show (6.23),

HM

(
qσA0BI

)
= −HM

(
qσA0BII

)
. (6.33)

In Theorem 5.3, we further set

A′ 7→ 0 B′ 7→ (2m+ 1 + 2τ)µ
w 7→ −(2ℓ+ 2m+ 2)k + 2τk

Then

ŵ = −(2ℓ+ 2m+ 2)k − 2τk.

So,

H (q) = qσA0BI ,

Ĥ (q) = qσA0BII .

Now we compute that

2B′v

d∗B
=

2(2m+ 1 + 2τ)k

d∗
.

If d∗ ∤ 2(2m+ 1 + 2τ)k, then 2τk ̸≡ 0 (mod d0), and thus,

w = −(2ℓ+ 1)k − (2m+ 1)k + 2τk ≡ 2τk ̸≡ 0 (mod d0),

ŵ = −(2ℓ+ 1)k − (2m+ 1)k − 2τk ≡ −2τk ̸≡ 0 (mod d0).

So w and ŵ are nonmultiples of d0 = d∗. In this case we know from Theorem
5.1(i) that

HM

(
H (q)

)
= HM

(
Ĥ (q)

)
= 0,

which gives

HM

(
qσA0BI

)
= −HM

(
qσA0BII

)
= 0.

Below, we assume that d∗ | 2(2m+1+2τ)k. Then the first assumption in (5.16)
is satisfied. We may also assume that w is a multiple of d∗ = d0 according to
Theorem 5.3(i). It is easily seen that d∗k is a divisor of gcd(u, v, w). Thus, we
solve the following stronger system{

K ≡ 1 (mod M/d∗),

K ≡ 0 (mod d/(d∗k)),
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and choose K = 1. Finally, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 2,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −1.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (4ℓ+ 2)κ+ (2m+ 1)λ.

Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= (−1)λHM

(
Ĥ (q)

)
.

It follows by (κ, λ) ∈ {(0, 1), (1, 1)} that

HM

(
qσA0BI

)
+HM

(
qσA0BII

)
= HM

(
H (q)

)
+HM

(
Ĥ (q)

)
= 0.

Thus, (6.33) is established.
▶ Examining (6.24). Let us keep in mind that we have made the substitutions in

(6.17), (6.18) and (6.19): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 2. Also,
σ = −(2ℓ+ 2m+ 2)k. Then (6.24) becomes

HM

(
qσB0AI

)
= −(−1)κHM

(
qσB0AII

)
. (6.34)

To make use of Theorem 5.3, we need to swap the choice of (κ, u,A) and (λ, v,B)
in our initial setting. In other words, in Theorem 5.3, we set

κ 7→ (2m+ 1)λ λ 7→ (2ℓ+ 1)κ
u 7→ 2(2m+ 1)k v 7→ (2ℓ+ 1)k
A 7→ 2(2m+ 1)µ B 7→ (2ℓ+ 1)µ
A′ 7→ (2m+ 1)µ B′ 7→ ξµ
M 7→ 2ℓ+ 4m+ 3
w 7→ −(2ℓ+ 2m+ 2)k + ξk

Then

ŵ = −(2ℓ+ 2m+ 2)k + (2ℓ+ 1− ξ)k.

So,

H (q) = qσB0AI ,

Ĥ (q) = qσB0AII .

Now we compute that

2B′v

d∗B
=

2ξk

d∗
.

If d∗ ∤ 2ξk, then ξk ̸≡ 0 (mod d0), and thus,

w ≡ ξk ̸≡ 0 (mod d0),

ŵ ≡ −ξk ̸≡ 0 (mod d0),

implying from Theorem 5.1(i) that

HM

(
qσB0AI

)
= −(−1)κHM

(
qσB0AII

)
= 0.
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Below, we assume that d∗ | 2ξk. Then the first assumption in (5.16) is satisfied.
We may also assume that w is a multiple of d∗ = d0 according to Theorem 5.3(i).
With the choice of K = 1, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 1,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −1.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (2ℓ+ 1)κ+ (2m+ 1)λ.

Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= (−1)κ+λHM

(
Ĥ (q)

)
.

It follows by (κ, λ) ∈ {(0, 1), (1, 1)} that

HM

(
qσB0AI

)
+ (−1)κHM

(
qσB0AII

)
= HM

(
H (q)

)
+ (−1)κHM

(
Ĥ (q)

)
= 0.

Thus, (6.34) is established.
▶ Examining (6.25). Let us keep in mind that we have made the substitutions in

(6.17), (6.18), (6.20) and (6.21): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 2.
Also, σ = −(2ℓ+ 2m+ 2)k. Then (6.25) becomes

HM

(
qσAIBI

)
= −(−1)κHM

(
qσAIIBII

)
. (6.35)

In Theorem 5.4, we further set

A′ 7→ ξµ B′ 7→ (2m+ 1 + 2τ)µ
w 7→ −(2ℓ+ 2m+ 2)k + ξk + 2τk

Then

w̌ = −(2ℓ+ 2m+ 2)k + (2ℓ+ 1− ξ)k − 2τk.

So,

H (q) = qσAIBI ,

Ȟ (q) = qσAIIBII .

Now we compute that

2(A′Bu+AB′v)

d∗AB
=

2(2m+ 1 + ξ + 2τ)k

d∗
.

Similarly, if d∗ ∤ 2(2m+ 1 + ξ + 2τ)k, then (ξ + 2τ)k ̸≡ 0 (mod d0), and thus,

w ≡ (ξ + 2τ)k ̸≡ 0 (mod d0),

w̌ ≡ −(ξ + 2τ)k ̸≡ 0 (mod d0),

implying from Theorem 5.1(i) that

HM

(
qσAIBI

)
= −(−1)κHM

(
qσAIIBII

)
= 0.
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Below, we assume that d∗ | 2(2m + 1 + ξ + 2τ)k. Then the first assumption in
(5.24) is satisfied. We may also assume that w is a multiple of d∗ = d0 according
to Theorem 5.4(i). With the choice of K = 1, we compute that

B(A− 2A′)u2 +A(B − 2B′)uv + 2ABuw ·K
A(Av2 +Bu2)

= −1,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −1.

So the remaining assumptions in (5.24) are satisfied. Finally, we compute that

ε = (2ℓ+ 1)κ+ (2m+ 1)λ.

Thus, by Theorem 5.4(ii),

HM

(
H (q)

)
= (−1)κ+λHM

(
Ȟ (q)

)
.

It follows by (κ, λ) ∈ {(0, 1), (1, 0)} that

HM

(
qσAIBI

)
+ (−1)κHM

(
qσAIIBII

)
= HM

(
H (q)

)
+ (−1)κHM

(
Ȟ (q)

)
= 0.

Thus, (6.35) is established.

6.3. Type I — Theorem 1.3. In this section, we treat the coefficient-vanishing
results in Theorem 1.3. The basic idea is similar to that for Theorem 1.2.

We still deduce from Corollary 3.6 with certain common factors extracted and
powers of (−1) modified that, for ℓ ≥ 1,

f
(
(−1)κqak, (−1)κq−ak+Mµ

)ℓ
=

ℓ−1∑
s=0

AsFs,

where each F⋆ is a series in qM , and

A0 = f
(
(−1)κℓqakℓ, (−1)κℓq−akℓ+Mµℓ

)
, (6.36)

and for 1 ≤ s ≤ ℓ− 1,

As = qaksf
(
(−1)κℓqakℓ+Mµs, (−1)κℓq−akℓ+Mµ(ℓ−s)

)
+ (−1)κℓqak(ℓ−s)f

(
(−1)κℓqakℓ+Mµ(ℓ−s), (−1)κℓq−akℓ+Mµs

)
=: As,I + (−1)κℓAs,II .

More generally, we consider

AI := qaξkf
(
(−1)κℓqakℓ+Mµξ, (−1)κℓq−akℓ+Mµ(ℓ−ξ)

)
, (6.37)

AII := qa(ℓ−ξ)kf
(
(−1)κℓqakℓ+Mµ(ℓ−ξ), (−1)κℓq−akℓ+Mµξ

)
, (6.38)

for generic ξ ∈ Z.
Now in this occasion, by Corollary 3.6, we write for m ≥ 1,

f
(
(−1)λqbk, (−1)λq−bk+2Mµ

)m
=

m−1∑
t=0

BtGt,

where each G⋆ is a series in qM , and

B0 = f
(
(−1)λmqbkm, (−1)λmq−bkm+2Mµm

)
, (6.39)
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and for 1 ≤ t ≤ m− 1,

Bt = qbktf
(
(−1)λmqbkm+2Mµt, (−1)λmq−bkm+2Mµ(m−t)

)
+ (−1)λmqbk(m−t)f

(
(−1)λmqbkm+2Mµ(m−t), (−1)λmq−bkm+2Mµt

)
=: Bt,I + (−1)λmBt,II .

More generally, we consider

BI := qbτkf
(
(−1)λmqbkm+2Mµτ , (−1)λmq−bkm+2Mµ(m−τ)

)
, (6.40)

BII := qb(m−τ)kf
(
(−1)λmqbkm+2Mµ(m−τ), (−1)λmq−bkm+2Mµτ

)
, (6.41)

for generic τ ∈ Z.
With all parameters chosen in each case below, our generic target is to show the

following:

HM

(
qσA0B0

)
= 0, (6.42)

HM

(
qσA0BI

)
= −(−1)λmHM

(
qσA0BII

)
, (6.43)

HM

(
qσB0AI

)
= −(−1)κℓHM

(
qσB0AII

)
, (6.44)

and

HM

(
qσAIBI

)
= −(−1)κℓ+λmHM

(
qσAIIBII

)
. (6.45)

Upon setting τ 7→ m− τ in (6.45), we automatically have

HM

(
qσAIBII

)
= −(−1)κℓ+λmHM

(
qσAIIBI

)
. (6.46)

Once the above relations are established, it is safe to conclude by our pairing that

HM

(
qσf

(
(−1)κqak, (−1)κq−ak+Mµ

)ℓ
f
(
(−1)λqbk, (−1)λq−bk+2Mµ

)m)
= 0. (6.47)

6.3.1. Equation (1.16). Recall that (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 1.
Also, M = 4ℓ + 2m + 3 and σ = −(ℓ +m + 1)k. Further, (κ, λ) ∈ {(0, 1), (1, 0)}
and k is such that gcd(k,M) = 1.

In Corollary 5.2 and Theorems 5.3 and 5.4, we set

κ 7→ (2ℓ+ 1)κ λ 7→ (2m+ 1)λ
u 7→ (2ℓ+ 1)k v 7→ (2m+ 1)k
A 7→ (2ℓ+ 1)µ B 7→ 2(2m+ 1)µ
M 7→ 4ℓ+ 2m+ 3

Let

d0 = gcd
(
2ℓ+ 1, 2m+ 1

)
.

Then

d = gcd(u, v) = d0k.

Noticing that M = 2(2ℓ+ 1) + (2m+ 1), and that k is coprime to M , we have

d∗ = gcd(u, v,M) = d0,

du = gcd(u,M) = d0,

dv = gcd(v,M) = d0.
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We compute that

Av · dM
du(Av2 +Bu2)

= 1,

Bu · dM
dv(Av2 +Bu2)

= 2.

Thus, the second and third assumptions in (5.9), (5.16) and (5.24) are satisfied.

▶ Examining (6.42). Let us keep in mind that we have made the substitutions
in (6.36) and (6.39): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 1. Also, σ =
−(ℓ+m+ 1)k. We want to show (6.42),

HM

(
qσA0B0

)
= 0. (6.48)

In Corollary 5.2, we further set

A′ 7→ 0 B′ 7→ 0
w 7→ −(ℓ+m+ 1)k

So,

H (q) = qσA0B0.

We may further assume that w is a multiple of d∗. Otherwise, we know from
Theorem 5.1(i) that

HM

(
H (q)

)
= 0,

which gives

HM

(
qσA0B0

)
= 0.

We further compute that

−vκ+ uλ

d
= − (2ℓ+ 1)(2m+ 1)

d0
(κ− λ).

The fact that d0 = gcd(2ℓ+ 1, 2m+ 1) then implies that (2ℓ+ 1)(2m+ 1)/d0 is
an odd integer. Thus, (5.9) is satisfied since (κ, λ) ∈ {(0, 1), (1, 0)}. Finally, we
choose J = 0 in (5.11). Then

2dMAv · J − 2dAvw − dAuv + dBu2 + 2dA′uv − 2dB′u2 −Auv2 −Bu3

2d(Av2 +Bu2)
=
d0 − (2ℓ+ 1)

2d0
,

2dMBu · J − 2dBuw + dAv2 − dBuv − 2dA′v2 + 2dB′uv +Av3 +Bu2v

2d(Av2 +Bu2)
=
d0 + (2m+ 1)

2d0
.

Recall that 2ℓ + 1 ≡ 2m + 1 ≡ d0 (mod 2d0) since d0 = gcd(2ℓ + 1, 2m + 1) is
odd. So (5.11) is also satisfied. We conclude by Corollary 5.2 that

HM

(
H (q)

)
= 0.

Thus, (6.48) is established.
▶ Examining (6.43). Let us keep in mind that we have made the substitutions in

(6.36), (6.40) and (6.41): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 1. Also,
σ = −(ℓ+m+ 1)k. Then (6.43) becomes

HM

(
qσA0BI

)
= −(−1)λHM

(
qσA0BII

)
. (6.49)

In Theorem 5.3, we further set

A′ 7→ 0 B′ 7→ 2τµ
w 7→ −(ℓ+m+ 1)k + τk
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Then

ŵ = −(ℓ+m+ 1)k + (2m+ 1− τ)k.

So,

H (q) = qσA0BI ,

Ĥ (q) = qσA0BII .

Now we compute that

2B′v

d∗B
=

2τk

d∗
.

If d∗ ∤ 2τk, then τk ̸≡ 0 (mod d0), and thus,

w = −1

2
(2ℓ+ 1)k − 1

2
(2m+ 1)k + τk ≡ τk ̸≡ 0 (mod d0),

ŵ = −1

2
(2ℓ+ 1)k +

1

2
(2m+ 1)k − τk ≡ −τk ̸≡ 0 (mod d0).

So w and ŵ are nonmultiples of d0 = d∗. In this case we know from Theorem
5.1(i) that

HM

(
H (q)

)
= HM

(
Ĥ (q)

)
= 0,

which gives

HM

(
qσA0BI

)
= −(−1)λHM

(
qσA0BII

)
= 0.

Below, we assume that d∗ | 2τk. Then the first assumption in (5.16) is satisfied.
We may also assume that w is a multiple of d∗ = d0 according to Theorem 5.3(i).
It is easily seen that d∗k is a divisor of gcd(u, v, w). Thus, we solve the following
stronger system {

K ≡ 1 (mod M/d∗),

K ≡ 0 (mod d/(d∗k)),

and choose K = 1. Finally, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 1,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= 0.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (2ℓ+ 1)κ.

Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= (−1)κHM

(
Ĥ (q)

)
.

It follows by (κ, λ) ∈ {(0, 1), (1, 0)} that

HM

(
qσA0BI

)
+ (−1)λHM

(
qσA0BII

)
= HM

(
H (q)

)
+ (−1)λHM

(
Ĥ (q)

)
= 0.

Thus, (6.49) is established.
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▶ Examining (6.44). Let us keep in mind that we have made the substitutions in
(6.37), (6.38) and (6.39): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 1. Also,
σ = −(ℓ+m+ 1)k. Then (6.44) becomes

HM

(
qσB0AI

)
= −(−1)κHM

(
qσB0AII

)
. (6.50)

To make use of Theorem 5.3, we need to swap the choice of (κ, u,A) and (λ, v,B)
in our initial setting. In other words, in Theorem 5.3, we set

κ 7→ (2m+ 1)λ λ 7→ (2ℓ+ 1)κ
u 7→ (2m+ 1)k v 7→ (2ℓ+ 1)k
A 7→ 2(2m+ 1)µ B 7→ (2ℓ+ 1)µ
A′ 7→ 0 B′ 7→ ξµ
M 7→ 4ℓ+ 2m+ 3
w 7→ −(ℓ+m+ 1)k + ξk

Then

ŵ = −(ℓ+m+ 1)k + (2ℓ+ 1− ξ)k.

So,

H (q) = qσB0AI ,

Ĥ (q) = qσB0AII .

Now we compute that

2B′v

d∗B
=

2ξk

d∗
.

If d∗ ∤ 2ξk, then ξk ̸≡ 0 (mod d0), and thus,

w ≡ ξk ̸≡ 0 (mod d0),

ŵ ≡ −ξk ̸≡ 0 (mod d0),

implying from Theorem 5.1(i) that

HM

(
qσB0AI

)
= −(−1)κHM

(
qσB0AII

)
= 0.

Below, we assume that d∗ | 2ξk. Then the first assumption in (5.16) is satisfied.
We may also assume that w is a multiple of d∗ = d0 according to Theorem 5.3(i).
With the choice of K = 1, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 1,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= 0.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (2m+ 1)λ.

Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= (−1)λHM

(
Ĥ (q)

)
.

It follows by (κ, λ) ∈ {(0, 1), (1, 0)} that

HM

(
qσB0AI

)
+ (−1)κHM

(
qσB0AII

)
= HM

(
H (q)

)
+ (−1)κHM

(
Ĥ (q)

)
= 0.
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Thus, (6.50) is established.
▶ Examining (6.45). Let us keep in mind that we have made the substitutions in

(6.37), (6.38), (6.40) and (6.41): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 1.
Also, σ = −(ℓ+m+ 1)k. Then (6.45) becomes

HM

(
qσAIBI

)
= −(−1)κ+λHM

(
qσAIIBII

)
. (6.51)

In Theorem 5.4, we further set

A′ 7→ ξµ B′ 7→ 2τµ
w 7→ −(ℓ+m+ 1)k + ξk + τk

Then

w̌ = −(ℓ+m+ 1)k + (2ℓ+ 1− ξ)k + (2m+ 1− τ)k.

So,

H (q) = qσAIBI ,

Ȟ (q) = qσAIIBII .

Now we compute that

2(A′Bu+AB′v)

d∗AB
=

2(ξ + τ)k

d∗
.

Similarly, if d∗ ∤ 2(ξ + τ)k, then (ξ + τ)k ̸≡ 0 (mod d0), and thus,

w ≡ (ξ + τ)k ̸≡ 0 (mod d0),

w̌ ≡ −(ξ + τ)k ̸≡ 0 (mod d0),

implying from Theorem 5.1(i) that

HM

(
qσAIBI

)
= −(−1)κ+λHM

(
qσAIIBII

)
= 0.

Below, we assume that d∗ | 2(ξ + τ)k. Then the first assumption in (5.24) is
satisfied. We may also assume that w is a multiple of d∗ = d0 according to
Theorem 5.4(i). With the choice of K = 1, we compute that

B(A− 2A′)u2 +A(B − 2B′)uv + 2ABuw ·K
A(Av2 +Bu2)

= 0,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= 0.

So the remaining assumptions in (5.24) are satisfied. Finally, we compute that

ε = 0.

Thus, by Theorem 5.4(ii),

HM

(
H (q)

)
= HM

(
Ȟ (q)

)
.

It follows by (κ, λ) ∈ {(0, 1), (1, 0)} that

HM

(
qσAIBI

)
+ (−1)κ+λHM

(
qσAIIBII

)
= HM

(
H (q)

)
+ (−1)κ+λHM

(
Ȟ (q)

)
= 0.

Thus, (6.51) is established.
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6.3.2. Equation (1.17). Recall that (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 4.
Also, M = 2ℓ+16m+9 and σ = −(2ℓ+12m+7)k. Further, (κ, λ) ∈ {(0, 1), (1, 1)}
and k is such that gcd(k,M) = 1.

In Corollary 5.2 and Theorems 5.3 and 5.4, we set

κ 7→ (2ℓ+ 1)κ λ 7→ (2m+ 1)λ
u 7→ (2ℓ+ 1)k v 7→ 4(2m+ 1)k
A 7→ (2ℓ+ 1)µ B 7→ 2(2m+ 1)µ
M 7→ 2ℓ+ 16m+ 9

Let

d0 = gcd
(
2ℓ+ 1, 4(2m+ 1)

)
= gcd

(
2ℓ+ 1, 2m+ 1

)
.

Then

d = gcd(u, v) = d0k.

Noticing that M = (2ℓ+ 1) + 8(2m+ 1), and that k is coprime to M , we have

d∗ = gcd(u, v,M) = d0,

du = gcd(u,M) = d0,

dv = gcd(v,M) = d0.

We compute that

Av · dM
du(Av2 +Bu2)

= 2,

Bu · dM
dv(Av2 +Bu2)

= 1.

Thus, the second and third assumptions in (5.9), (5.16) and (5.24) are satisfied.

▶ Examining (6.42). Let us keep in mind that we have made the substitutions
in (6.36) and (6.39): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 4. Also, σ =
−(2ℓ+ 12m+ 7)k. We want to show (6.42),

HM

(
qσA0B0

)
= 0. (6.52)

In Corollary 5.2, we further set

A′ 7→ 0 B′ 7→ 0
w 7→ −(2ℓ+ 12m+ 7)k

So,

H (q) = qσA0B0.

We may further assume that w is a multiple of d∗. Otherwise, we know from
Theorem 5.1(i) that

HM

(
H (q)

)
= 0,

which gives

HM

(
qσA0B0

)
= 0.

We further compute that

−vκ+ uλ

d
= − (2ℓ+ 1)(2m+ 1)

d0
(4κ− λ).
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The fact that d0 = gcd(2ℓ+ 1, 2m+ 1) then implies that (2ℓ+ 1)(2m+ 1)/d0 is
an odd integer. Thus, (5.9) is satisfied since (κ, λ) ∈ {(0, 1), (1, 1)}. Finally, we
choose J = 0 in (5.11). Then

2dMAv · J − 2dAvw − dAuv + dBu2 + 2dA′uv − 2dB′u2 −Auv2 −Bu3

2d(Av2 +Bu2)
=

3d0 − (2ℓ+ 1)

2d0
,

2dMBu · J − 2dBuw + dAv2 − dBuv − 2dA′v2 + 2dB′uv +Av3 +Bu2v

2d(Av2 +Bu2)
=
d0 + 2(2m+ 1)

d0
.

Recall that 2ℓ + 1 ≡ 2m + 1 ≡ d0 (mod 2d0) since d0 = gcd(2ℓ + 1, 2m + 1) is
odd. So (5.11) is also satisfied. We conclude by Corollary 5.2 that

HM

(
H (q)

)
= 0.

Thus, (6.52) is established.
▶ Examining (6.43). Let us keep in mind that we have made the substitutions in

(6.36), (6.40) and (6.41): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 4. Also,
σ = −(2ℓ+ 12m+ 7)k. Then (6.43) becomes

HM

(
qσA0BI

)
= −(−1)λHM

(
qσA0BII

)
. (6.53)

In Theorem 5.3, we further set

A′ 7→ 0 B′ 7→ 2τµ
w 7→ −(2ℓ+ 12m+ 7)k + 4τk

Then

ŵ = −(2ℓ+ 12m+ 7)k + 4(2m+ 1− τ)k.

So,

H (q) = qσA0BI ,

Ĥ (q) = qσA0BII .

Now we compute that

2B′v

d∗B
=

8τk

d∗
.

If d∗ ∤ 8τk, then 4τk ̸≡ 0 (mod d0), and thus,

w = −(2ℓ+ 1)k − 6(2m+ 1)k + 4τk ≡ 4τk ̸≡ 0 (mod d0),

ŵ = −(2ℓ+ 1)k − 2(2m+ 1)k − 4τk ≡ −4τk ̸≡ 0 (mod d0).

So w and ŵ are nonmultiples of d0 = d∗. In this case we know from Theorem
5.1(i) that

HM

(
H (q)

)
= HM

(
Ĥ (q)

)
= 0,

which gives

HM

(
qσA0BI

)
= −(−1)λHM

(
qσA0BII

)
= 0.

Below, we assume that d∗ | 8τk. Then the first assumption in (5.16) is satisfied.
We may also assume that w is a multiple of d∗ = d0 according to Theorem 5.3(i).
It is easily seen that d∗k is a divisor of gcd(u, v, w). Thus, we solve the following
stronger system {

K ≡ 1 (mod M/d∗),

K ≡ 0 (mod d/(d∗k)),
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and choose K = 1. Finally, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 2,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −2.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (4ℓ+ 2)κ+ (4m+ 2)λ.

Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= HM

(
Ĥ (q)

)
.

It follows by (κ, λ) ∈ {(0, 1), (1, 1)} that

HM

(
qσA0BI

)
+ (−1)λHM

(
qσA0BII

)
= HM

(
H (q)

)
+ (−1)λHM

(
Ĥ (q)

)
= 0.

Thus, (6.53) is established.
▶ Examining (6.44). Let us keep in mind that we have made the substitutions in

(6.37), (6.38) and (6.39): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 4. Also,
σ = −(2ℓ+ 12m+ 7)k. Then (6.44) becomes

HM

(
qσB0AI

)
= −(−1)κHM

(
qσB0AII

)
. (6.54)

To make use of Theorem 5.3, we need to swap the choice of (κ, u,A) and (λ, v,B)
in our initial setting. In other words, in Theorem 5.3, we set

κ 7→ (2m+ 1)λ λ 7→ (2ℓ+ 1)κ
u 7→ 4(2m+ 1)k v 7→ (2ℓ+ 1)k
A 7→ 2(2m+ 1)µ B 7→ (2ℓ+ 1)µ
A′ 7→ 0 B′ 7→ ξµ
M 7→ 2ℓ+ 16m+ 9
w 7→ −(2ℓ+ 12m+ 7)k + ξk

Then

ŵ = −(2ℓ+ 12m+ 7)k + (2ℓ+ 1− ξ)k.

So,

H (q) = qσB0AI ,

Ĥ (q) = qσB0AII .

Now we compute that

2B′v

d∗B
=

2ξk

d∗
.

If d∗ ∤ 2ξk, then ξk ̸≡ 0 (mod d0), and thus,

w ≡ ξk ̸≡ 0 (mod d0),

ŵ ≡ −ξk ̸≡ 0 (mod d0),

implying from Theorem 5.1(i) that

HM

(
qσB0AI

)
= −(−1)κHM

(
qσB0AII

)
= 0.
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Below, we assume that d∗ | 2ξk. Then the first assumption in (5.16) is satisfied.
We may also assume that w is a multiple of d∗ = d0 according to Theorem 5.3(i).
With the choice of K = 1, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 3,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −1.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (2ℓ+ 1)κ+ (6m+ 3)λ.

Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= (−1)κ+λHM

(
Ĥ (q)

)
.

It follows by (κ, λ) ∈ {(0, 1), (1, 1)} that

HM

(
qσB0AI

)
+ (−1)κHM

(
qσB0AII

)
= HM

(
H (q)

)
+ (−1)κHM

(
Ĥ (q)

)
= 0.

Thus, (6.54) is established.
▶ Examining (6.45). Let us keep in mind that we have made the substitutions in

(6.37), (6.38), (6.40) and (6.41): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 1 and b = 4.
Also, σ = −(2ℓ+ 12m+ 7)k. Then (6.45) becomes

HM

(
qσAIBI

)
= −(−1)κ+λHM

(
qσAIIBII

)
. (6.55)

In Theorem 5.4, we further set

A′ 7→ ξµ B′ 7→ 2τµ
w 7→ −(2ℓ+ 12m+ 7)k + ξk + 4τk

Then

w̌ = −(2ℓ+ 12m+ 7)k + (2ℓ+ 1− ξ)k + 4(2m+ 1− τ)k.

So,

H (q) = qσAIBI ,

Ȟ (q) = qσAIIBII .

Now we compute that

2(A′Bu+AB′v)

d∗AB
=

2(ξ + 4τ)k

d∗
.

Similarly, if d∗ ∤ 2(ξ + 4τ)k, then (ξ + 4τ)k ̸≡ 0 (mod d0), and thus,

w ≡ (ξ + 4τ)k ̸≡ 0 (mod d0),

w̌ ≡ −(ξ + 4τ)k ̸≡ 0 (mod d0),

implying from Theorem 5.1(i) that

HM

(
qσAIBI

)
= −(−1)κ+λHM

(
qσAIIBII

)
= 0.
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Below, we assume that d∗ | 2(ξ + 4τ)k. Then the first assumption in (5.24) is
satisfied. We may also assume that w is a multiple of d∗ = d0 according to
Theorem 5.4(i). With the choice of K = 1, we compute that

B(A− 2A′)u2 +A(B − 2B′)uv + 2ABuw ·K
A(Av2 +Bu2)

= −1,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −2.

So the remaining assumptions in (5.24) are satisfied. Finally, we compute that

ε = (2ℓ+ 1)κ+ (4m+ 2)λ.

Thus, by Theorem 5.4(ii),

HM

(
H (q)

)
= (−1)κHM

(
Ȟ (q)

)
.

It follows by (κ, λ) ∈ {(0, 1), (1, 1)} that

HM

(
qσAIBI

)
+ (−1)κ+λHM

(
qσAIIBII

)
= HM

(
H (q)

)
+ (−1)κ+λHM

(
Ȟ (q)

)
= 0.

Thus, (6.55) is established.

6.3.3. Equation (1.18). Recall that (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 2 and b = 1.
Also, M = 16ℓ+2m+9 and σ = −(10ℓ+2m+6)k. Further, (κ, λ) ∈ {(1, 0), (1, 1)}
and k is such that gcd(k,M) = 1.

In Corollary 5.2 and Theorems 5.3 and 5.4, we set

κ 7→ (2ℓ+ 1)κ λ 7→ (2m+ 1)λ
u 7→ 2(2ℓ+ 1)k v 7→ (2m+ 1)k
A 7→ (2ℓ+ 1)µ B 7→ 2(2m+ 1)µ
M 7→ 16ℓ+ 2m+ 9

Let

d0 = gcd
(
2(2ℓ+ 1), 2m+ 1

)
= gcd

(
2ℓ+ 1, 2m+ 1

)
.

Then

d = gcd(u, v) = d0k.

Noticing that M = 8(2ℓ+ 1) + (2m+ 1), and that k is coprime to M , we have

d∗ = gcd(u, v,M) = d0,

du = gcd(u,M) = d0,

dv = gcd(v,M) = d0.

We compute that

Av · dM
du(Av2 +Bu2)

= 1,

Bu · dM
dv(Av2 +Bu2)

= 4.

Thus, the second and third assumptions in (5.9), (5.16) and (5.24) are satisfied.
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▶ Examining (6.42). Let us keep in mind that we have made the substitutions
in (6.36) and (6.39): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 2 and b = 1. Also, σ =
−(10ℓ+ 2m+ 6)k. We want to show (6.42),

HM

(
qσA0B0

)
= 0. (6.56)

In Corollary 5.2, we further set

A′ 7→ 0 B′ 7→ 0
w 7→ −(10ℓ+ 2m+ 6)k

So,

H (q) = qσA0B0.

We may further assume that w is a multiple of d∗. Otherwise, we know from
Theorem 5.1(i) that

HM

(
H (q)

)
= 0,

which gives

HM

(
qσA0B0

)
= 0.

We further compute that

−vκ+ uλ

d
= − (2ℓ+ 1)(2m+ 1)

d0
(κ− 2λ).

The fact that d0 = gcd(2ℓ+ 1, 2m+ 1) then implies that (2ℓ+ 1)(2m+ 1)/d0 is
an odd integer. Thus, (5.9) is satisfied since (κ, λ) ∈ {(1, 0), (1, 1)}. Finally, we
choose J = 0 in (5.11). Then

2dMAv · J − 2dAvw − dAuv + dBu2 + 2dA′uv − 2dB′u2 −Auv2 −Bu3

2d(Av2 +Bu2)
=
d0 − (2ℓ+ 1)

d0
,

2dMBu · J − 2dBuw + dAv2 − dBuv − 2dA′v2 + 2dB′uv +Av3 +Bu2v

2d(Av2 +Bu2)
=

5d0 + (2m+ 1)

2d0
.

Recall that 2ℓ + 1 ≡ 2m + 1 ≡ d0 (mod 2d0) since d0 = gcd(2ℓ + 1, 2m + 1) is
odd. So (5.11) is also satisfied. We conclude by Corollary 5.2 that

HM

(
H (q)

)
= 0.

Thus, (6.56) is established.
▶ Examining (6.43). Let us keep in mind that we have made the substitutions in

(6.36), (6.40) and (6.41): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 2 and b = 1. Also,
σ = −(10ℓ+ 2m+ 6)k. Then (6.43) becomes

HM

(
qσA0BI

)
= −(−1)λHM

(
qσA0BII

)
. (6.57)

In Theorem 5.3, we further set

A′ 7→ 0 B′ 7→ 2τµ
w 7→ −(10ℓ+ 2m+ 6)k + τk

Then

ŵ = −(10ℓ+ 2m+ 6)k + (2m+ 1− τ)k.

So,

H (q) = qσA0BI ,

Ĥ (q) = qσA0BII .
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Now we compute that

2B′v

d∗B
=

2τk

d∗
.

If d∗ ∤ 2τk, then τk ̸≡ 0 (mod d0), and thus,

w = −5(2ℓ+ 1)k − (2m+ 1)k + τk ≡ τk ̸≡ 0 (mod d0),

ŵ = −5(2ℓ+ 1)k − τk ≡ −τk ̸≡ 0 (mod d0).

So w and ŵ are nonmultiples of d0 = d∗. In this case we know from Theorem
5.1(i) that

HM

(
H (q)

)
= HM

(
Ĥ (q)

)
= 0,

which gives

HM

(
qσA0BI

)
= −(−1)λHM

(
qσA0BII

)
= 0.

Below, we assume that d∗ | 2τk. Then the first assumption in (5.16) is satisfied.
We may also assume that w is a multiple of d∗ = d0 according to Theorem 5.3(i).
It is easily seen that d∗k is a divisor of gcd(u, v, w). Thus, we solve the following
stronger system {

K ≡ 1 (mod M/d∗),

K ≡ 0 (mod d/(d∗k)),

and choose K = 1. Finally, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 5,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −1.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (10ℓ+ 5)κ+ (2m+ 1)λ.

Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= (−1)κ+λHM

(
Ĥ (q)

)
.

It follows by (κ, λ) ∈ {(1, 0), (1, 1)} that

HM

(
qσA0BI

)
+ (−1)λHM

(
qσA0BII

)
= HM

(
H (q)

)
+ (−1)λHM

(
Ĥ (q)

)
= 0.

Thus, (6.57) is established.
▶ Examining (6.44). Let us keep in mind that we have made the substitutions in

(6.37), (6.38) and (6.39): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 2 and b = 1. Also,
σ = −(10ℓ+ 2m+ 6)k. Then (6.44) becomes

HM

(
qσB0AI

)
= −(−1)κHM

(
qσB0AII

)
. (6.58)
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To make use of Theorem 5.3, we need to swap the choice of (κ, u,A) and (λ, v,B)
in our initial setting. In other words, in Theorem 5.3, we set

κ 7→ (2m+ 1)λ λ 7→ (2ℓ+ 1)κ
u 7→ (2m+ 1)k v 7→ 2(2ℓ+ 1)k
A 7→ 2(2m+ 1)µ B 7→ (2ℓ+ 1)µ
A′ 7→ 0 B′ 7→ ξµ
M 7→ 16ℓ+ 2m+ 9
w 7→ −(10ℓ+ 2m+ 6)k + 2ξk

Then

ŵ = −(10ℓ+ 2m+ 6)k + 2(2ℓ+ 1− ξ)k.

So,

H (q) = qσB0AI ,

Ĥ (q) = qσB0AII .

Now we compute that

2B′v

d∗B
=

4ξk

d∗
.

If d∗ ∤ 4ξk, then 2ξk ̸≡ 0 (mod d0), and thus,

w ≡ 2ξk ̸≡ 0 (mod d0),

ŵ ≡ −2ξk ̸≡ 0 (mod d0),

implying from Theorem 5.1(i) that

HM

(
qσB0AI

)
= −(−1)κHM

(
qσB0AII

)
= 0.

Below, we assume that d∗ | 4ξk. Then the first assumption in (5.16) is satisfied.
We may also assume that w is a multiple of d∗ = d0 according to Theorem 5.3(i).
With the choice of K = 1, we compute that

(A− 2A′)v2 − (B − 2B′)uv − 2Buw ·K
Av2 +Bu2

= 2,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −4.

So the remaining assumptions in (5.16) are satisfied. Finally, we compute that

ϵ = (8ℓ+ 4)κ+ (4m+ 2)λ.

Thus, by Theorem 5.3(ii),

HM

(
H (q)

)
= HM

(
Ĥ (q)

)
.

It follows by (κ, λ) ∈ {(1, 0), (1, 1)} that

HM

(
qσB0AI

)
+ (−1)κHM

(
qσB0AII

)
= HM

(
H (q)

)
+ (−1)κHM

(
Ĥ (q)

)
= 0.

Thus, (6.58) is established.
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▶ Examining (6.45). Let us keep in mind that we have made the substitutions in
(6.37), (6.38), (6.40) and (6.41): (ℓ,m) 7→ (2ℓ + 1, 2m + 1), a = 2 and b = 1.
Also, σ = −(10ℓ+ 2m+ 6)k. Then (6.45) becomes

HM

(
qσAIBI

)
= −(−1)κ+λHM

(
qσAIIBII

)
. (6.59)

In Theorem 5.4, we further set

A′ 7→ ξµ B′ 7→ 2τµ
w 7→ −(10ℓ+ 2m+ 6)k + 2ξk + τk

Then

w̌ = −(10ℓ+ 2m+ 6)k + 2(2ℓ+ 1− ξ)k + (2m+ 1− τ)k.

So,

H (q) = qσAIBI ,

Ȟ (q) = qσAIIBII .

Now we compute that

2(A′Bu+AB′v)

d∗AB
=

2(2ξ + τ)k

d∗
.

Similarly, if d∗ ∤ 2(2ξ + τ)k, then (2ξ + τ)k ̸≡ 0 (mod d0), and thus,

w ≡ (2ξ + τ)k ̸≡ 0 (mod d0),

w̌ ≡ −(2ξ + τ)k ̸≡ 0 (mod d0),

implying from Theorem 5.1(i) that

HM

(
qσAIBI

)
= −(−1)κ+λHM

(
qσAIIBII

)
= 0.

Below, we assume that d∗ | 2(2ξ + τ)k. Then the first assumption in (5.24) is
satisfied. We may also assume that w is a multiple of d∗ = d0 according to
Theorem 5.4(i). With the choice of K = 1, we compute that

B(A− 2A′)u2 +A(B − 2B′)uv + 2ABuw ·K
A(Av2 +Bu2)

= −4,

B(A− 2A′)uv +A(B − 2B′)v2 + 2ABvw ·K
B(Av2 +Bu2)

= −1.

So the remaining assumptions in (5.24) are satisfied. Finally, we compute that

ε = (8ℓ+ 4)κ+ (2m+ 1)λ.

Thus, by Theorem 5.4(ii),

HM

(
H (q)

)
= (−1)λHM

(
Ȟ (q)

)
.

It follows by (κ, λ) ∈ {(1, 0), (1, 1)} that

HM

(
qσAIBI

)
+ (−1)κ+λHM

(
qσAIIBII

)
= HM

(
H (q)

)
+ (−1)κ+λHM

(
Ȟ (q)

)
= 0.

Thus, (6.59) is established.
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6.4. Type II — Theorem 1.4. This section is devoted to the three coefficient-
vanishing results in Theorem 1.4. Here we will use a different strategy in comparison
to how we treat Type I. We summarize the basic idea as follows.

We deduce from Theorem 3.5 with certain common factors extracted and powers
of (−1) modified that, for ℓ ≥ 1,

f
(
(−1)κqak, (−1)κq−ak+Mµ

)ℓ
=

ℓ−1∑
s=0

AsFs,

where each F⋆ is a series in qM , and for 0 ≤ s ≤ ℓ− 1,

As = qaksf
(
(−1)κℓqakℓ+Mµs, (−1)κℓq−akℓ+Mµ(ℓ−s)

)
.

More generally, we consider

A := qaξkf
(
(−1)κℓqakℓ+Mµξ, (−1)κℓq−akℓ+Mµ(ℓ−ξ)

)
, (6.60)

for generic ξ ∈ Z.
Similarly, by Theorem 3.5, we write for m ≥ 1,

f
(
(−1)λqbk, (−1)λq−bk+2Mµ

)m
=

m−1∑
t=0

BtGt,

where each G⋆ is a series in qM , and for 0 ≤ t ≤ m− 1,

Bt = qbktf
(
(−1)λmqbkm+2Mµt, (−1)λmq−bkm+2Mµ(m−t)

)
.

More generally, we consider

B := qbτkf
(
(−1)λmqbkm+2Mµτ , (−1)λmq−bkm+2Mµ(m−τ)

)
, (6.61)

for generic τ ∈ Z.
With all parameters chosen in each case below, our generic target is to show the

following by Corollary 5.2:

HM

(
qσA B

)
= 0. (6.62)

Once the above relation is established, it is safe to conclude that

HM

(
qσf

(
(−1)κqak, (−1)κq−ak+Mµ

)ℓ
f
(
(−1)λqbk, (−1)λq−bk+2Mµ

)m)
= 0. (6.63)

6.4.1. Equation (1.19). Recall that (ℓ,m) 7→ (2ℓ+1, 2m+1) with gcd(2ℓ+1, 2m+
1) = 1, a = 2m+ 1 and b = 2ℓ+ 1. Also, M = 2ℓ+ 4m+ 3 and σ = 2(2m+ 1)2k.
Further, (κ, λ) ∈ {(0, 1), (1, 0)} and k is such that gcd(k,M) = 1.

In Corollary 5.2, we set

κ 7→ (2ℓ+ 1)κ λ 7→ (2m+ 1)λ
u 7→ (2m+ 1)(2ℓ+ 1)k v 7→ (2ℓ+ 1)(2m+ 1)k
A 7→ (2ℓ+ 1)µ B 7→ 2(2m+ 1)µ
A′ 7→ ξµ B′ 7→ 2τµ
M 7→ 2ℓ+ 4m+ 3
w 7→ 2(2m+ 1)2k + (2m+ 1)ξk + (2ℓ+ 1)τk

So,

H (q) = qσA B.
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We find that

d = gcd(u, v) = (2ℓ+ 1)(2m+ 1)k.

Also, noticing that M = (2ℓ + 1) + 2(2m + 1) with gcd(2ℓ + 1, 2m + 1) = 1, and
that k is coprime to M , we have

d∗ = gcd(u, v,M) = 1,

du = gcd(u,M) = 1,

dv = gcd(v,M) = 1.

Then d∗ | w. We further compute that

Av · dM
du(Av2 +Bu2)

= 2ℓ+ 1,

Bu · dM
dv(Av2 +Bu2)

= 4m+ 2,

−vκ+ uλ

d
= −(2ℓ+ 1)κ+ (2m+ 1)λ.

Thus, (5.9) and (5.10) are satisfied by recalling that (κ, λ) ∈ {(0, 1), (1, 0)}. Finally,
we choose J = J0k in (5.11). Then

2dMAv · J − 2dAvw − dAuv + dBu2 + 2dA′uv − 2dB′u2 −Auv2 −Bu3

2d(Av2 +Bu2)
=
J0 − 2m− 1− τ

2m+ 1
,

2dMBu · J − 2dBuw + dAv2 − dBuv − 2dA′v2 + 2dB′uv +Av3 +Bu2v

2d(Av2 +Bu2)
=

2J0 + 2ℓ− 4m− 1− ξ

2ℓ+ 1
.

We may further choose J0 so that{
J0 − 2m− 1− τ ≡ 0 (mod 2m+ 1),

2J0 + 2ℓ− 4m− 1− ξ ≡ 0 (mod 2ℓ+ 1).

Since gcd(2ℓ+1, 2m+1) = 1, we know that the above system is solvable. So (5.11)
is also satisfied. We conclude by Corollary 5.2 that

HM

(
H (q)

)
= 0,

and therefore confirm (6.62).

6.4.2. Equation (1.20). Recall that (ℓ,m) 7→ (2ℓ+1, 2m+2) with gcd(2ℓ+1, 2m+
2) = 1, a = 2m+ 2 and b = 2ℓ+ 1. Also, M = 2ℓ+ 4m+ 5 and σ = 2(2m+ 2)2k.
Further, (κ, λ) ∈ {(1, 0), (1, 1)} and k is such that gcd(k,M) = 1.

In Corollary 5.2, we set

κ 7→ (2ℓ+ 1)κ λ 7→ (2m+ 2)λ
u 7→ (2m+ 2)(2ℓ+ 1)k v 7→ (2ℓ+ 1)(2m+ 2)k
A 7→ (2ℓ+ 1)µ B 7→ 2(2m+ 2)µ
A′ 7→ ξµ B′ 7→ 2τµ
M 7→ 2ℓ+ 4m+ 5
w 7→ 2(2m+ 2)2k + (2m+ 2)ξk + (2ℓ+ 1)τk

So,

H (q) = qσA B.

We find that

d = gcd(u, v) = (2ℓ+ 1)(2m+ 2)k.
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Also, noticing that M = (2ℓ + 1) + 2(2m + 2) with gcd(2ℓ + 1, 2m + 2) = 1, and
that k is coprime to M , we have

d∗ = gcd(u, v,M) = 1,

du = gcd(u,M) = 1,

dv = gcd(v,M) = 1.

Then d∗ | w. We further compute that

Av · dM
du(Av2 +Bu2)

= 2ℓ+ 1,

Bu · dM
dv(Av2 +Bu2)

= 4m+ 4,

−vκ+ uλ

d
= −(2ℓ+ 1)κ+ (2m+ 2)λ.

Thus, (5.9) and (5.10) are satisfied by recalling that (κ, λ) ∈ {(1, 0), (1, 1)}. Finally,
we choose J = J0k in (5.11). Then

2dMAv · J − 2dAvw − dAuv + dBu2 + 2dA′uv − 2dB′u2 −Auv2 −Bu3

2d(Av2 +Bu2)
=
J0 − 2m− 2− τ

2m+ 2
,

2dMBu · J − 2dBuw + dAv2 − dBuv − 2dA′v2 + 2dB′uv +Av3 +Bu2v

2d(Av2 +Bu2)
=

2J0 + 2ℓ− 4m− 3− ξ

2ℓ+ 1
.

We may further choose J0 so that{
J0 − 2m− 2− τ ≡ 0 (mod 2m+ 2),

2J0 + 2ℓ− 4m− 3− ξ ≡ 0 (mod 2ℓ+ 1).

Since gcd(2ℓ+1, 2m+2) = 1, we know that the above system is solvable. So (5.11)
is also satisfied. We conclude by Corollary 5.2 that

HM

(
H (q)

)
= 0,

and therefore confirm (6.62).

6.4.3. Equation (1.21). Recall that (ℓ,m) 7→ (2ℓ+2, 2m+1) with gcd(2ℓ+2, 2m+
1) = 1, a = 2m + 1 and b = 4ℓ + 4. Also, M = 4ℓ + 2m + 5 and σ = 3(2ℓ + 2)2k.
Further, (κ, λ) ∈ {(0, 1), (1, 1)} and k is such that gcd(k,M) = 1.

In Corollary 5.2, we set

κ 7→ (2ℓ+ 2)κ λ 7→ (2m+ 1)λ
u 7→ (2m+ 1)(2ℓ+ 2)k v 7→ (4ℓ+ 4)(2m+ 1)k
A 7→ (2ℓ+ 2)µ B 7→ 2(2m+ 1)µ
A′ 7→ ξµ B′ 7→ 2τµ
M 7→ 4ℓ+ 2m+ 5
w 7→ 3(2ℓ+ 2)2k + (2m+ 1)ξk + (4ℓ+ 4)τk

So,

H (q) = qσA B.

We find that

d = gcd(u, v) = (2ℓ+ 2)(2m+ 1)k.
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Also, noticing that M = 2(2ℓ + 2) + (2m + 1) with gcd(2ℓ + 2, 2m + 1) = 1, and
that k is coprime to M , we have

d∗ = gcd(u, v,M) = 1,

du = gcd(u,M) = 1,

dv = gcd(v,M) = 1.

Then d∗ | w. We further compute that

Av · dM
du(Av2 +Bu2)

= 2ℓ+ 2,

Bu · dM
dv(Av2 +Bu2)

= 2m+ 1,

−vκ+ uλ

d
= −(4ℓ+ 4)κ+ (2m+ 1)λ.

Thus, (5.9) and (5.10) are satisfied by recalling that (κ, λ) ∈ {(0, 1), (1, 1)}. Finally,
we choose J = J0k in (5.11). Then

2dMAv · J − 2dAvw − dAuv + dBu2 + 2dA′uv − 2dB′u2 −Auv2 −Bu3

2d(Av2 +Bu2)
=
J0 − 3ℓ− 3− τ

2m+ 1
,

2dMBu · J − 2dBuw + dAv2 − dBuv − 2dA′v2 + 2dB′uv +Av3 +Bu2v

2d(Av2 +Bu2)
=
J0 − ξ

2ℓ+ 2
.

We may further choose J0 so that{
J0 − 3ℓ− 3− τ ≡ 0 (mod 2m+ 1),

J0 − ξ ≡ 0 (mod 2ℓ+ 2).

Since gcd(2ℓ+2, 2m+1) = 1, we know that the above system is solvable. So (5.11)
is also satisfied. We conclude by Corollary 5.2 that

HM

(
H (q)

)
= 0,

and therefore confirm (6.62).

6.5. Seven families of coefficient functions. All results in Corollary 1.5 are
direct consequences of Theorems 1.1–1.4 as long as we notice that HM

(
G(q)

)
= 0

provided that HM

(
G(q) · F (qM )

)
= 0 for any given series F in qM .

7. Conclusion

The entire project began in an attempt to understand the underlying patterns in
the coefficient-vanishing phenomena associated with theta series. It turns out that
most of the known results on this topic can be covered by several general relations.

Also of significance is the unified strategy presented in Section 2, which contains
two aspects:

(7.1) It provides an automatic way to verify if a coefficient-vanishing result, with
or without free parameters, holds true. In fact, if such a result is discovered
experimentally, one may try to fit it into the four models discussed in Section
6, or other models of a similar nature. The remaining task then becomes
verifying some relations in connection with products of two theta series under
the action of the H-operator. Finally, such a verification relies on checking



General coefficient-vanishing results 71

certain divisibility criteria presented in Corollary 5.2 and Theorems 5.3 and
5.4.

(7.2) It allows us to manually construct specific or generic coefficient-vanishing
results. For instance, the discovery of Theorem 1.4 relies only on one example
or two presented in [30]. Roughly speaking, one may fix some of the free
parameters in a generic model, and then use the divisibility conditions in
Section 5 to constrain the choice of other parameters so that these conditions
remain valid.

The divisibility criteria in Corollary 5.2 and Theorems 5.3 and 5.4 look very
sharp, but they work effectively in practice, at least for most coefficient-vanishing
results we had encountered. So we expect that our approach may light up a general
theory. However, it should be pointed out that two “clouds” need to be taken into
serious consideration.

First, what if one or more of the divisibility conditions fail to hold? For instance,
we observe that (1.13) is still valid even if the latter power 4m + 2 is replaced by
a multiple of 4. Namely, for M = 4ℓ + 6m + 8, σ = −(2ℓ + 2m + 3)k, κ ∈ {1},
λ ∈ {0, 1} and any k such that gcd(k,M) = 1,

HM

(
qσ · f

(
(−1)κq2k, (−1)κqµM−2k

)2ℓ+1

×
(

f
(
−q2k,−qµM−2k

)
f
(
(−1)λqk, (−1)λqµM−k

))4m+4
)

?
= 0. (7.1)

For this relation, we find that the corresponding criteria in (5.6) are no longer true.
Thus, a subtle refinement of the results in Sections 4 and 5 is necessary.

Second, it is easily seen that the original result of Richmond and Szekeres [23]
related to (1.3) cannot be fit into our framework. Although one may transform
(1.3) and its generalization to the summation form by Ramanujan’s 1ψ1 formula
as Andrews and Bressoud [2] had done, an obstacle occurs due to the lack of an
expansion formula for the reciprocal of a generic theta power such as those in
Section 3. Also, the coefficient-vanishing phenomenon appears in series associated
with other classical summations such as the Appell–Lerch sum [10]. These examples
suggest one extend the glimmer of our theory to the endless Galaxy.
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