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1. Primes

1.1 Divisibility
Definition 1.1 Let a and b be integers. We say that

“a divides b” or “b is divisible by a”

if there exists an integer x such that

b = ax.

We usually write a | b if a divides b. Otherwise, if a does not divide b, we write a ∤ b.

■ Example 1.1 Since 18 = 2×9, we have 2 | 18; since 35 = 7×5, we have 7 | 35. ■

Definition 1.2 If a | b, then a is called a divisor, or a factor, of b. In particular, a positive
divisor of b which is different from b is called a proper divisor.

Theorem 1.1 Assume that all variables in this theorem are integers.
(i) 1 | a, a | a and a | 0;
(ii) If a | b, then a | bc;
(iii) If a | b and b | c, then a | c;
(iv) If a | b, then ac | bc;
(v) If a | bi for i = 1, . . . ,r, then a | (m1b1 + · · ·+mrbr).

Proof. (i). Since a = 1 ·a = a ·1, we have 1 | a and a | a; since 0 = a ·0, we have a | 0.
(ii). Note that a | b implies that b = ax for a certain integer x. Thus, bc = (ax) · c =

a · (cx), implying that a | bc.
(iii). Note that a | b implies that b = ax and that b | c implies that c = by. Thus,

c = by = (ax) · y = a · (xy), implying that a | c.
(iv). Note that a | b implies that b = ax. Thus, bc = (ax) · c = (ac) · x, implying that

ac | bc.
(v). Note that a | bi implies that bi = axi. Thus,

m1b1 + · · ·+mrbr =
r

∑
i=1

mi · (axi) = a
r

∑
i=1

mixi,
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implying that a | (m1b1 + · · ·+mrbr). ■

1.2 Primes
Definition 1.3 A positive integer p is a prime if

(i) p ≥ 2;
(ii) p has no positive divisors other than 1 and p.

A positive integer greater than 1 that is not prime is a composite.

■ Example 1.2 The sequence of primes starts with

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .

The sequence of composites starts with

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, . . .

The number 1 is neither prime nor composite. ■

1.3 Infinitude of primes
Now there is a natural question:

Question 1.1 Does the sequence of primes terminate at some place? Or is it infinite?

The first answer to this question was given over 2,000 years ago by the ancient Greek
mathematician Euclid (c. 300 BCE).

Theorem 1.2 (Euclid). The number of primes is infinite.

Proof (of Euclid). Let {p1, . . . , pk} be a finite set of primes. Consider

n = p1 p2 · · · pk +1.

Then n ≥ 3. Note that n has a prime factor p. But p is not one of pi’s; otherwise, we
have p | p1 · · · pk, and since p | n, it follows that p | (n− p1 · · · pk) = 1, thereby leading to a
contradiction.

Therefore, for any finite set of primes, we are always able to generate a new prime. In
other words, a finite set of primes cannot cover all primes. ■

The idea of the above proof is very natural and one may make modifications to establish
results in a similar vein.
Theorem 1.3 The number of primes of the form 4s+3 is infinite.

Proof. Let {p1, . . . , pk} be a finite set of primes. Consider

n = 4p1 p2 · · · pk −1.

Note that n is of the form 4s+3. We claim that n has at least one prime factor p of the
form 4s+3. Otherwise, if all prime factors of n are of the form 4s+1, so is their product,
namely, n, thereby leading to a contradiction. Further, the above p is not one of 2, p1, . . .,
pk by a similar argument to that for Theorem 1.2. Thus, we arrive at a new prime of the
form 4s+ 3 from the set {p1, . . . , pk}, and hence conclude the infinitude of primes of the
form 4s+3. ■
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Theorem 1.4 The number of primes of the form 6s+5 is infinite.

Proof. Exercise. ■

R In general, let a and m be positive integers such that 1 ≤ a ≤ m and (a,m) = 1. Then
the number of primes of the form ms+a is infinite; this is known as Dirichlet’s theorem
on primes in arithmetic progressions, and we will prove it in Sect. 18.3. Furthermore,
let πa,m(x) count the number of primes not exceeding x that are of the form ms+a.
For fixed m, let a1 and a2 be such that 1 ≤ a1,a2 ≤ m and (a1,m) = (a2,m) = 1. Then

lim
x→∞

πa1,m(x)
πa2,m(x)

= 1.

1.4 Fermat numbers and the second proof of the infinitude of primes
Definition 1.4 Fermat numbers are those of the form Fn = 22n

+1 with n = 0,1,2, . . .

On December 25, 1640, the French mathematician Pierre de Fermat wrote to Marin
Mersenne:

If I can determine the basic reason why

3, 5, 17, 257, 65537, . . . ,

are prime numbers, I feel that I would find very interesting results, for I have
already found marvelous things [along these lines] which I will tell you about
later.

However, Fermat’s conjecture that all Fn are primes was unfortunately proved incorrect
as Leonhard Euler discovered in 1732 that

F5 = 4294967297 = 641×6700417.

Furthermore, the known prime Fermat numbers, also known as Fermat primes are still the
five numbers F0, . . . ,F4 examined by Fermat. As of 2014, it is known that Fn is composite
for 5 ≤ n ≤ 32. The largest Fermat number currently known to be composite is F18233954,
and its prime factor 7×218233956+1 was discovered in October 2020. It is now conjectured
that only the first 5 Fermat numbers are prime.

Theorem 1.5 For n ≥ 1,

Fn −2 =
n−1

∏
i=0

Fi.

Proof. We prove this result by induction on n. First, it is true for n= 1 since F1−2= 3=F0.
Next, we assume that it is true for n = k with k ≥ 1. Thus,

Fk −2 =
k−1

∏
i=0

Fi.

Now we have

Fk+1 −2 = (22k+1
+1)−2 = 22k+1 −1 = (22k

+1)(22k −1)
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= Fk(Fk −2) = Fk ·
k−1

∏
i=0

Fi

=
k

∏
i=0

Fi,

implying that the statement is also valid for n = k+1. ■

Corollary 1.6 Any two distinct Fermat numbers have no common divisor greater than 1.

Proof. Assume that there is a prime p dividing both Fm and Fn with 0≤m< n. Since p |Fm,
we have p | ∏n−1

i=0 Fi for pm appears as a multiplicand of this product. Now, p | Fn implies
that p |

(
Fn −∏n−1

i=0 Fi
)
, i.e. p | 2, by Theorem 1.5. Thus, p = 2. But this is impossible since

all Fermat numbers are odd. ■

Now we are in a position to present the second proof of the infinitude of primes.

Second Proof of Theorem 1.2. Note that the sequence of Fermat numbers is infinite. We
collect prime factors of these Fermat numbers, and by Corollary 1.6, they are pairwise
distinct. Therefore, there are infinitely many primes. ■

1.5 Fundamental theorem of arithmetic
Theorem 1.7 Every integer n ≥ 2 is a finite product of primes.

Proof. We prove this by induction on n. First, 2 is a prime itself, and thus the statement
is true for n = 2. Assume that the statement is true for n = 2, . . . ,k−1 with k ≥ 3. Then if
n = k is prime, there is nothing to prove. If n = k is composite, then we may write k = x ·y
such that 1 < x,y < k. By our inductive assumption, both x and y are finite products of
primes, so is their product xy = k. Hence, the statement is true for n = k. ■

Now, a natural question is how many representations are there to factorize n ≥ 2 as a
product of primes? This question is answered by the Fundamental Theorem of Arithmetic,
also known as the Unique Factorization Theorem.

Fundamental Theorem of Arithmetic Every integer n ≥ 2 has a unique (up to reordering)
representation as a finite product of primes.

This theorem, although intuitionistic, is far more than trivial. We will give its proof
in the next lecture.

1.6 Divergence of ∑p
1
p and the third proof of the infinitude of primes

We have a straightforward consequence of the Fundamental Theorem of Arithmetic. Let
n ≥ 2. Consider

∏
p prime

p≤n

(
1+

1
p
+

1
p2 + · · ·

)
.

If we expand this product, then for each i with all its prime factors no larger than n, the
fraction 1

i appears as exactly one of the terms in the expansion. In particular, such i’s
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include all integers m ≤ n. Therefore,

∏
p prime

p≤n

(
1+

1
p
+

1
p2 + · · ·

)
>

n

∑
m=1

1
m
.

It follows that

∏
p≤n

1
1− 1

p

= ∏
p≤n

(
1+

1
p
+

1
p2 + · · ·

)
>

n

∑
m=1

1
m

>
∫ n

1

dt
t
= logn.

On the other hand,

log ∏
p≤n

1
1− 1

p

= ∑
p≤n

log
1

1− 1
p

= ∑
p≤n

∞

∑
k=1

1
k · pk

= ∑
p≤n

1
p
+ ∑

p≤n

∞

∑
k=2

1
k · pk

< ∑
p≤n

1
p
+ ∑

p≤n

∞

∑
k=2

1
2p2 · pk−2

= ∑
p≤n

1
p
+ ∑

p≤n

1
2p2

∞

∑
k=0

1
·pk

= ∑
p≤n

1
p
+ ∑

p≤n

1
2p2

p
p−1

≤ ∑
p≤n

1
p
+

1
2

n

∑
m=2

1
m(m−1)

< ∑
p≤n

1
p
+

1
2
.

Thus,

∑
p≤n

1
p
+

1
2
> log ∏

p≤n

1
1− 1

p

> log logn.

Theorem 1.8 For n ≥ 2,

∑
p prime

p≤n

1
p
> log logn− 1

2
. (1.1)

In particular, ∑p prime
1
p diverges.

This result gives the third proof of the infinitude of primes.

Third Proof of Theorem 1.2. If there are finitely many primes, then ∑p
1
p is also finite,

thereby contradicting the divergence of ∑p
1
p as established in Theorem 1.8. ■

R In fact, as x → ∞,

∑
p≤x

1
p
∼ log logx,
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and more precisely,

∑
p≤x

1
p
= log logx+M+o(1),

where M ≈ 0.2614972128 . . . is the Meissel–Mertens constant, named after the German
astronomer Ernst Meissel and the Polish mathematician Franz Mertens.

1.7 Erdős’s proof of the divergence of ∑p
1
p

The previous proof of the divergence of ∑p
1
p has, more or less, an analytic flavor. What

will be provided here is an elegant elementary attack due to the Hungarian mathematician
Paul Erdős (Mathematica, Zutphen. B. 7 (1938), 1–2).

Theorem 1.9 The series ∑p prime
1
p diverges.

Proof. We argue by contradiction. That is, we assume that ∑p
1
p converges. Let {p1, p2, . . .}

be the sequence of primes in increasing order.
First, given an arbitrary positive integer n and an index K, we denote by NK(n) the

number of positive integers m ≤ n such that the prime factors of m are exclusively from
p1, . . . , pK . Note that by the Fundamental Theorem of Arithmetic, each integer a can be
uniquely written as a = s2 · t where t has no square factor other than 1. Meanwhile, the
squares no greater than n are 12, 22, . . ., ⌊

√
n⌋2 where ⌊x⌋ denotes the largest integer not

exceeding a real x. Also, there are 2K integers of the form ∏K
i=1 pεi

i with εi ∈ {0,1}. Now, if
we write integers m counted by NK(n) as m = s2 · t, then s2 comes from the above squares
and t comes from the above ∏K

i=1 pεi
i . Hence, NK(n)≤ 2K√n.

On the other hand, the assumption of the convergence of ∑p
1
p means that the index

K may be chosen so that 1
pK+1

+ 1
pK+2

+ · · ·< 1
2 . Now we observe that the number N′

K(n) of
integers m′ ≤ n with at least one prime factor among pK+1, pK+2, . . . is bounded by

N′
K(n)≤

n
pK+1

+
n

pK+2
+ · · ·< n

2
.

Noting that NK(n) +N′
K(n) = n, we obtain that the following holds for any positive

integer n:
n < 2K√n+

n
2
.

However, it fails when n = 22K+2, thereby giving a contradiction. Hence, ∑p
1
p diverges. ■



2. Fundamental theorem of arithmetic

2.1 Greatest common divisor and Euclidean algorithm
Theorem 2.1 Given integers a and b, not both 0. There exists a unique positive integer
d such that

(i) d | a and d | b;
(ii) If δ | a and δ | b, then δ | d.

Definition 2.1 The integer d in Theorem 2.1 is called the greatest common divisor of a
and b, written as d = gcd(a,b) = (a,b).

R We may understand (a,b) as the largest positive integer that is a divisor of both a
and b.

Definition 2.2 If (a,b) = 1, we say that a and b are relatively prime, or coprime.

The proof of Theorem 2.1 is based on the so-called Euclidean Algorithm.

Proof (Euclidean Algorithm). Without loss of generality, we assume that a ≥ b > 0. We
also put r−1 = a and r0 = b. Now let us iteratively write

r−1 = q1r0 + r1, 0 < r1 < r0; (2.1a)
r0 = q2r1 + r2, 0 < r2 < r1; (2.1b)
r1 = q3r2 + r3, 0 < r3 < r2; (2.1c)

· · ·
rk−2 = qkrk−1 + rk, 0 < rk < rk−1; (2.1d)
rk−1 = qk+1rk +0. (2.1e)

We claim that d = rk > 0.
(i). By (2.1e), we have rk | rk−1. Then by (2.1d), rk | rk−2. Continuing this process, we

have rk | r0 = b and rk | r−1 = a.
(ii). If δ | a = r−1 and δ | b = r0, we know from (2.1a) that δ | r1, and then by (2.1b),

δ | r2. Continuing this process, we have δ | rk = d. ■
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We may use the Euclidean Algorithm to calculate the greatest common divisor.
■ Example 2.1 Consider (1071,462):

1071 = 2×462+147;

462 = 3×147+21;

147 = 7×21+0.

Thus, (1071,462) = 21. ■

Definition 2.3 The greatest common divisor of n1, . . . ,nk is the largest positive integer
that divides all of n1, . . . ,nk.

2.2 Modular systems
Definition 2.4 A modular system S is a subset of integers such that

(i) If n ∈ S, then −n ∈ S;
(ii) If m,n ∈ S, then m+n ∈ S.

R Modular systems are instances of additive groups under the “+” operation.

■ Example 2.2 The set of integers {. . . ,−2,−1,0,1,2, . . .} is a modular system. The set of
multiples of 3, namely, {. . . ,−6,−3,0,3,6, . . .}, is a modular system. Further, the set {0}
is also a modular system. ■

Theorem 2.2 Let S be a modular system such that S ̸= /0. Then
(i) 0 ∈ S;
(ii) If n ∈ S and x is an integer, then xn ∈ S.

Proof. (i). Let m ∈ S since S is nonempty. Then by definition, −m ∈ S. Finally, 0 =
m+(−m) ∈ S.

(ii). Without loss of generality, we assume that x is a nonnegative integer. Otherwise,
we write xn = (−x)(−n). Note that the statement is true for x = 0 by Part (i). Assume
that it is true for x = 0, . . . ,k with k ≥ 0, i.e. xn ∈ S for x = 0, . . . ,k. Then for x = k+1, we
have (k+ 1)n = n+ kn ∈ S since both n and kn are in S. The statement then follows by
induction. ■

Theorem 2.3 Let a and b be integers. Then S = {ax+by : x,y ∈ Z} is a modular system.

Proof. (i). Given any n ∈ S, it is of the form n = ax+by for some integers x and y. Now,
−n =−(ax+by) = a · (−x)+b · (−y) ∈ S.

(ii). Given any m,n ∈ S, then they are of the form m = ax1 + by1 and n = ax2 + by2.
Now, m+n = a(x1 + x2)+b(y1 + y2) ∈ S. ■

Theorem 2.4 Let S be a modular system such that S is neither /0 nor {0}. Let δ be the
smallest positive integer in S. Then S = {kδ : k ∈ Z}.

Proof. We first note that kδ ∈ S for all integers k by Theorem 2.2(ii). Now assume that
there exists an integer n ∈ S such that n is not a multiple of δ . Then we may write

n = qδ + r, 0 < r < δ .
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This implies that r = n−qδ ∈ S. But it contradicts the assumption that δ is the smallest
positive integer in S. ■

We close this section with a relation named after the French mathematician Étienne
Bézout.
Theorem 2.5 (Bézout’s Identity). Let a and b be integers, not both 0. Let d = (a,b).
Then

{ax+by : x,y ∈ Z}= {kd : k ∈ Z}.

In other words, an integer n can be written as

n = ax+by, x,y ∈ Z,

if and only if n is a multiple of (a,b).

Proof. We write

S1 := {ax+by : x,y ∈ Z} and S2 := {kd : k ∈ Z}.

(i). Show S1 ⊂ S2. That is, if n = ax+by, then n ∈ S2. This is obvious since both a and
b are multiples of d = (a,b), so is ax+by.

(ii). Show S2 ⊂ S1. That is, there exist integers x and y such that kd = ax+ by for
any k ∈ Z. Note that it suffices to prove the case k = 1, i.e. d = ax+ by or d ∈ S1. We
will require the process in the Euclidean Algorithm. Note that S1 is a modular system by
Theorem 2.3 and a,b ∈ S1. By (2.1a), r1 ∈ S1, and then by (2.1b), r2 ∈ S1. Continuing this
process, we find that d = rk ∈ S1, as desired.

We conclude that S1 = S2 since they are subsets of one another. ■

2.3 Proof of the fundamental theorem of arithmetic
Let us begin with a crucial implication of Bézout’s identity.

Theorem 2.6 If a | bc and (a,b) = 1, then a | c.

Proof. By Theorem 2.5, we may find integers x and y such that 1 = ax+by. Now,

c = c ·1 = c · (ax+by) = a · (cx)+(bc) · y.

Since bc is a multiple of a, we have a | c. ■

Corollary 2.7 If a prime p | ab, then at least one of p | a and p | b is true.

Proof. If p | a, then we are done. If p ∤ a, then (p,a) = 1 since p is a prime. Hence, p | b
by Theorem 2.6. ■

Corollary 2.8 If a prime p | p1 p2 · · · pk with p1, . . . , pk primes, then p = p j for at least one
j.

Proof. Since p | p1(p2 · · · pk), we have either p | p1, which implies p = p1, or p | p2 · · · pk by
Corollary 2.7. We may then repeat this process for the latter case. ■

Now we are ready to complete the proof of the Fundamental Theorem of Arithmetic.
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Theorem 2.9 (Fundamental Theorem of Arithmetic). Every integer n ≥ 2 has a unique (up
to reordering) representation as a finite product of primes.

Proof. In Theorem 1.7, we have shown that every integer n ≥ 2 is a finite product of
primes. It suffices to establish uniqueness. Assume that n has prime factorizations

n = p1 p2 · · · pk = q1q2 · · ·qℓ.

Then p1 | q1q2 · · ·qℓ, and thus by renumbering the q’s, we have p1 = q1 by Corollary 2.8.
Dividing by p1 on both sides, we have

p2 · · · pk = q2 · · ·qℓ.

Repeating this process gives the desired result. ■

Definition 2.5 The canonical form of an integer n ≥ 2 is given by its factorization

n =
k

∏
j=1

pα j
j

with p j the distinct prime factors of n and α j > 0. Also, the canonical form of the
integer n = 1 is simply 1 = 1.

Theorem 2.10 If
a =

r

∏
j=1

pα j
j and b =

r

∏
j=1

pβ j
j ,

where p j’s are distinct prime factors of either a or b and α j,β j ≥ 0, then

(a,b) =
r

∏
j=1

pmin(α j,β j)
j .

Proof. We write

(a,b) =
r

∏
j=1

pδ j
j .

Then δ j ≤ α j and δ j ≤ β j but δ j should not be smaller than both α j and β j. ■

2.4 Least common multiple
Definition 2.6 Let a and b be integers with a,b ̸= 0. Then the least common multiple of
a and b is the unique positive integer m such that

(i) a | m and b | m;
(ii) If a | µ and b | µ, then m | µ.

We write m = lcm(a,b) = [a,b].

R The least common multiple of a and b is the smallest positive integer that is a
multiple of both a and b.

Definition 2.7 The least common multiple of n1, . . . ,nk is the smallest positive integer
that is divisible by all of n1, . . . ,nk.
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Theorem 2.11 If
a =

r

∏
j=1

pα j
j and b =

r

∏
j=1

pβ j
j ,

where p j’s are distinct prime factors of either a or b and α j,β j ≥ 0, then

[a,b] =
r

∏
j=1

pmax(α j,β j)
j .

Proof. This is a direct consequence of the definition of the least common multiple. ■

Theorem 2.12 Let a and b be positive integers. Then

[a,b] =
ab

(a,b)
.

Proof. If we write a = ∏r
j=1 pα j

j and b = ∏r
j=1 pβ j

j , then

[a,b] · (a,b) =
r

∏
j=1

pmax(α j,β j)
j ·

r

∏
j=1

pmin(α j,β j)
j

=
r

∏
j=1

pmax(α j,β j)+min(α j,β j)
j

=
r

∏
j=1

pα j+β j
j

=
r

∏
j=1

pα j
j ·

r

∏
j=1

pβ j
j

= ab,

where we make use of the fact that max(α,β )+min(α,β ) = α +β . ■





3. Linear congruences

3.1 Congruences
Definition 3.1 Let m be a positive integer. Let a and b be integers. We say that a is
congruent to b modulo m if

m | (a−b).

We write
a ≡ b (mod m).

If m ∤ (a−b), we write
a ̸≡ b (mod m).

Theorem 3.1 Let m be a positive integer.
(i) a ≡ a (mod m);
(ii) If a ≡ b (mod m), then b ≡ a (mod m);
(iii) If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

Proof. (i). We have a−a = 0 and m | 0.
(ii). Since a≡ b (mod m), we have m | (a−b). Consequently, m divides −(a−b) = b−a,

thereby implying that b ≡ a (mod m).
(iii). Since a ≡ b (mod m) and b ≡ c (mod m), we have m | (a−b) and m | (b− c), and

thus m |
(
(a−b)+(b− c)

)
= (a− c), which yields a ≡ c (mod m). ■

R A relation “∼” between the elements of a set is called an equivalence relation if it
satisfies the conditions:

(i) a ∼ a (reflexivity);
(ii) If a ∼ b, then b ∼ a (symmetry);
(iii) If a ∼ b and b ∼ c, then a ∼ c (transitivity).
Congruence modulo a fixed positive integer m is an equivalence relation.

Theorem 3.2 We have
(i) a ≡ b (mod m) if and only if a−b ≡ 0 (mod m);
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(ii) If a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m), then

a1 +a2 ≡ b1 +b2 (mod m),

a1a2 ≡ b1b2 (mod m);

(iii) If a ≡ b (mod m), then for any positive integer k,

ak ≡ bk (mod m);

(iv) If f (x1,x2, . . .) is a multivariate polynomial with integer coefficients, and a1 ≡ b1
(mod m), a2 ≡ b2 (mod m), ..., then

f (a1,a2, . . .)≡ f (b1,b2, . . .) (mod m).

Proof. Exercise. ■

Theorem 3.3 If a ≡ b (mod m) and a ≡ b (mod n), then

a ≡ b (mod [m,n]).

R If (m,n) = 1, then by Theorem 2.12, we have [m,n] = mn
(m,n) = mn. Thus in this case

a ≡ b (mod mn).

Proof. Since a ≡ b (mod m) and a ≡ b (mod n), we have m | (a−b) and n | (a−b). In other
words, a−b is a common multiple of m and n, and thus a multiple of [m,n]. ■

Note that if ka ≡ ka′ (mod m), it is not always true that a ≡ a′ (mod m).
■ Example 3.1 We have 10×1 ≡ 10×4 (mod 15), but 1 ̸≡ 4 (mod 15). However, it is true
that 1 ≡ 4 (mod 3) where 3 = 15

(10,15) =
15
5 . ■

Theorem 3.4 If (k,m) = d, then ka ≡ ka′ (mod m) if and only if a ≡ a′ (mod m
d ).

Proof. We write k = k1d and m = m1d so that (k1,m1) = 1. Thus,

ka− ka′

m
=

k(a−a′)
m

=
k1(a−a′)

m1
.

Since (k1,m1) = 1, the left-hand side is an integer if and only if m1 | (a−a′), namely, a ≡ a′

(mod m1) while we also note that m1 =
m
d . ■

Now we can determine on which occasion one may carry out “division” for congruences.

Corollary 3.5 If (k,m) = 1, then ka ≡ ka′ (mod m) if and only if a ≡ a′ (mod m).

3.2 Residue classes
Definition 3.2 A set {a1,a2, . . . ,am} is called a complete residue system modulo m, or a
complete system modulo m, if

(i) ai ̸≡ a j (mod m) for any i ̸= j;
(ii) For any integer a, there exists an index i such that a ≡ ai (mod m).
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■ Example 3.2 (i). {0,7,2,−3,−8,5} is a complete system modulo 6; (ii). {0,1,2, . . . ,n−1}
is a complete system modulo n. ■

R Given a set of m integers, to verify whether it forms a complete system modulo m, it
suffices to check if the m integers are pairwise incongruent modulo m.

Theorem 3.6 Let {a1, . . . ,am} be a complete system modulo m and let k be an integer
with (k,m) = 1. Then {ka1, . . . ,kam} is also a complete system modulo m.

Proof. (i). Show kai ̸≡ ka j (mod m) for i ̸= j. Otherwise, if kai ≡ ka j (mod m), then since
(k,m) = 1, we have ai ≡ a j (mod m) by Corollary 3.5, yielding a contradiction to the as-
sumption that {a1, . . . ,am} is a complete system modulo m.

(ii). Show a ≡ kai (mod m) for some i. Since (k,m) = 1, we may find integers k′ and
m′ such that kk′+mm′ = 1 by Theorem 2.5. It follows that kk′ ≡ 1 (mod m). Choose the
index i such that ai ≡ ak′ (mod m). Then kai ≡ k(ak′) = a(kk′)≡ a (mod m). ■

Theorem 3.7 Let m and m′ be such that (m,m′) = 1. Suppose that a runs through a
complete system modulo m and a′ runs through a complete system modulo m′. Then
a′m+am′ runs through a complete system modulo mm′.

Proof. There are mm′ numbers a′m+am′. Thus, it suffices to verify that they are pairwise
incongruent modulo mm′. Note that if

a′1m+a1m′ ≡ a′2m+a2m′ (mod mm′),

then since (m,m′) = 1, it follows from Corollary 3.5 that

a1m′ ≡ a2m′ (mod m) ⇒ a1 ≡ a2 (mod m)

and

a′1m ≡ a′2m (mod m′) ⇒ a′1 ≡ a′2 (mod m′).

thereby leading to the same choice of a′m+ am′ as a runs through a complete system
modulo m and a′ runs through a complete system modulo m′. ■

3.3 Linear congruences
Theorem 3.8 The linear congruence

ax ≡ b (mod m) (3.1)

is solvable if and only if (a,m) | b. In this case, there is a unique solution modulo m
(a,m) .

Proof. The congruence ax ≡ b (mod m) is equivalent to b−ax = my for some y. That is

ax+my = b. (3.2)

By Theorem 2.5, it has integer solutions (x,y) if and only if b is a multiple of (a,m).
For the second part, assume that (x0,y0) is a solution to (3.2). Then we parameterize

its solutions as follows. First, note that

ax+my = b = ax0 +my0.
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Thus, a(x− x0) = m(y0 − y), or if we put d = (a,m),

a
d
(x− x0) =

m
d
(y0 − y).

Since ( a
d ,

m
d ) = 1, we obtain that for k ∈ Z,{

x− x0 = k · m
d ,

y0 − y = k · a
d ,

⇒

{
x = x0 + k · m

d ,

y = y0 − k · a
d .

It turns out that x has only one possibility modulo m
d . ■

Now one may wonder if there is a way to construct an explicit expression of the solution
to ax ≡ b (mod m).

Definition 3.3 Let a and m be such that (a,m) = 1. We say that a is a modular inverse
of a modulo m if

aa ≡ 1 (mod m).

Theorem 3.9 Let a, b and m be such that d | b where d = (a,m). Then the solution to
ax ≡ b (mod m) is given by

x ≡ a′ · b
d

(mod
m
d
),

where a′ is the modular inverse of a
d modulo m

d .

Proof. Note that we may rewrite ax ≡ b (mod m) as

d · a
d

x ≡ d · b
d

(mod m),

which is equivalent to
a
d

x ≡ b
d

(mod
m
d
)

by Theorem 3.4 as (d,m) = d. Note also that a′ · a
d ≡ 1 (mod m

d ). Thus,

x ≡ a′ · b
d

(mod
m
d
),

which is our desired result. ■

■ Example 3.3 Consider 10x≡ 15 (mod 35): We have d =(10,35)= 5. Meanwhile, 10
5 ×4≡ 1

(mod 35
5 ). Therefore, x ≡ 4× 15

5 = 12 (mod 35
5 ), i.e. x ≡ 5 (mod 7). ■

3.4 Chinese remainder theorem
We have seen that linear congruences are essentially equivalent to x ≡ c (mod m).

Theorem 3.10 The system

x ≡ c1 (mod m1), (3.3a)
x ≡ c2 (mod m2), (3.3b)

has a solution if and only if (m1,m2) | (c2 − c1). The solution, if it exists, is unique
modulo [m1,m2].
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Proof. From (3.3a), we may write x = m1y+ c1 for some indeterminate y. Substituting it
into (3.3b), we have

m1y+ c1 ≡ c2 (mod m2),

or
m1y ≡ c2 − c1 (mod m2).

By Theorem 3.8, it is solvable if and only if (m1,m2) | (c2 − c1). Further, the solution y is
unique modulo m2

(m1,m2)
, and thus the solution x is unique modulo m1 · m2

(m1,m2)
= [m1,m2] by

Theorem 2.12. ■

Corollary 3.11 Let m1 and m2 be such that (m1,m2) = 1. Then the system in Theorem
3.10 is solvable, and its solution is unique modulo m1m2.

In general, we may consider an analogous system with multiple linear congruences.
Along this line, we have the Chinese Remainder Theorem, which first appeared in the
writings of Sun Tzu (孙武: 孙子兵法), an ancient Chinese philosopher who lived during
the Eastern Zhou period, and was further developed by the Chinese mathematician Qin
Jiushao (秦九韶).

Theorem 3.12 (Chinese Remainder Theorem). Let m1, . . . ,mr be such that (mi,m j) = 1
for i ̸= j. Then the system x ≡ ci (mod mi) for 1 ≤ i ≤ r has a unique solution modulo
m1 · · ·mr.

Proof. This result follows from an iterative application of Corollary 3.11. ■





4. Fermat–Euler Theorem

4.1 Reduced residue systems
Definition 4.1 A set {a1,a2, . . . ,ah} is called a reduced residue system modulo m, or a
reduced system modulo m, if

(i) ai ̸≡ a j (mod m) for any i ̸= j;
(ii) (ai,m) = 1 for 1 ≤ i ≤ h;
(iii) For any integer a with (a,m) = 1, there exists an index i such that a ≡ ai (mod m).

■ Example 4.1 (i). {1,5} is a reduced system modulo 6; (ii). {1,2, . . . , p−1} is a reduced
system modulo p for p a prime. ■

Theorem 4.1 Let {a1, . . . ,ah} be a reduced system modulo m and let k be an integer with
(k,m) = 1. Then {ka1, . . . ,kah} is also a reduced system modulo m.

Proof. Our proof is similar to that for Theorem 3.6.
(i). The same as Part (i) in the proof of Theorem 3.6.
(ii). Show (kai,m) = 1 for 1 ≤ i ≤ h. Since k and ai have no common divisors greater

than 1 with m, so does their product kai.
(iii). Show a ≡ kai (mod m) for a certain index i for any a with (a,m) = 1. Since

(k,m) = 1, we may find an integer k′ with kk′ ≡ 1 (mod m). Note that (k′,m) = 1 for if d is
a common divisor of k′ and m, then d | (kk′−mx)= 1 where x is such that kk′−1=mx. Thus,
(ak′,m) = 1. Choose the index i such that ai ≡ ak′ (mod m). Then kai ≡ k(ak′) = a(kk′)≡ a
(mod m). ■

4.2 Euler’s totient function
Note that a reduced system modulo m is a subset of a complete system modulo m. In
particular, the size h of any reduced system modulo m equals the number of integers
among {1,2, . . . ,m} that are coprime to m.

Definition 4.2 Let n be a positive integer. Euler’s totient function ϕ(n) denotes the
number of integers among {1,2, . . . ,n} that are coprime to n.

R The totient function was introduced by the Swiss mathematician Leonhard Euler
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(Novi commentarii academiae scientiarum imperialis Petropolitanae 8 (1763), 74–
104).

■ Example 4.2 (i). ϕ(1)= 1 for 1 is the only integer in {1} that is coprime to 1; (ii). ϕ(3)= 2
for 1 and 2 are the integers in {1,2,3} that are coprime to 3; (iii). ϕ(6) = 2 for 1 and 5
are the integers in {1,2,3,4,5,6} that are coprime to 6. ■

R We may replace {1,2, . . . ,n} in the definition of Euler’s totient function by any com-
plete system modulo n.

Theorem 4.2 Let p be a prime and k be a positive integer. Then

ϕ(pk) = pk − pk−1. (4.1)

Proof. Recall that ϕ(pk) equals the number of integers in {1, . . . , pk} that are coprime to
pk, or in other words, that are not divisible by p. Since there are exactly pk−1 integers
among {1, . . . , pk} that are multiples of p, namely, p ·1, p ·2, . . ., p · pk−1, we have ϕ(pk) =
pk − pk−1. ■

How to determine ϕ(n) if n is not a prime power?

Theorem 4.3 Let m and n be such that (m,n) = 1. Then

ϕ(mn) = ϕ(m)ϕ(n). (4.2)

Proof. We have shown in Theorem 3.7 that {bm+an : 1 ≤ a ≤ m,1 ≤ b ≤ n} is a complete
system modulo mn. Thus, to compute ϕ(mn), it suffices to count the number of bm+ an
such that (bm+an,mn) = 1. Note that

(bm+an,mn) = 1 ⇔ (bm+an,m) = 1 & (bm+an,n) = 1

⇔ (an,m) = 1 & (bm,n) = 1

⇔ (a,m) = 1 & (b,n) = 1.

Hence, there are ϕ(m) possibilities of a and ϕ(n) possibilities of b, and therefore ϕ(m)ϕ(n)
possibilities of admissible bm+an. It follows that ϕ(mn) = ϕ(m)ϕ(n). ■

R Given a function f : Z>0 → C, we say that it is multiplicative if f (1) = 1 and for any
m and n with (m,n) = 1,

f (mn) = f (m) f (n).

Corollary 4.4 For n ≥ 2,

ϕ(n) = n ·∏
p|n

(
1− 1

p

)
, (4.3)

where the product runs over all prime divisors of n.

Proof. We write n in its canonical form n = ∏r
i=1 pαi

i . Then by Theorem 4.3,

ϕ(n) =
r

∏
i=1

ϕ(pαi
i ).
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Further, making use of Theorem 4.2 gives
r

∏
i=1

ϕ(pαi
i ) =

r

∏
i=1

(
pαi

i − pαi−1
i

)
=

r

∏
i=1

pαi
i

(
1− 1

pi

)
=

r

∏
i=1

pαi
i ·

r

∏
i=1

(
1− 1

pi

)
= n ·

r

∏
i=1

(
1− 1

pi

)
,

thereby implying the desired result. ■

Theorem 4.5 For n ≥ 1,

∑
d|n

ϕ(d) = n, (4.4)

where the sum runs over all positive divisors of n.

Proof. The formula is trivial when n = 1. For n > 1, we write n in the canonical form
n = pα1

1 · · · pαr
r . Then all divisors of n are of the form pβ1

1 · · · pβr
r with 0 ≤ βk ≤ αk for each k.

Thus,

∑
d|n

ϕ(d) =
α1

∑
β1=0

· · ·
αr

∑
βr=0

ϕ(pβ1
1 · · · pβr

r ) =
α1

∑
β1=0

· · ·
αr

∑
βr=0

ϕ(pβ1
1 ) · · ·ϕ(pβr

r )

=
r

∏
k=1

(
ϕ(1)+ϕ(pk)+ · · ·+ϕ(pαk

k )
)

=
r

∏
k=1

(
1+(pk −1)+(p2

k − pk)+ · · ·+(pαk
k − pαk−1

k )
)

=
r

∏
k=1

pαk
k = n,

as required. ■

R This relation can also be understood as follows. Consider the n fractions 1
n , 2

n , . . .,
n
n . For each k

n , we may uniquely write it in the irreducible expression k
n = a

d with
(a,d)= 1. Note that d | n. Also, since 1≤ k≤ n, we have 1≤ a≤ d. As there are exactly
ϕ(d) such a

d , and they correspond to exactly ϕ(d) fractions among { k
n : 1 ≤ k ≤ n}, it

follows that n = ∑d|n ϕ(d).

4.3 Fermat–Euler Theorem
Theorem 4.6 (Fermat–Euler Theorem). If (a,m) = 1, then

aϕ(m) ≡ 1 (mod m). (4.5)

Proof. Let {x1, . . . ,xϕ(m)} be a reduced system modulo m. Thus, (xi,m) = 1 for each i.
Since (a,m) = 1, we know from Theorem 4.1 that {ax1, . . . ,axϕ(m)} is also a reduced system
modulo m. Thus,

ϕ(m)

∏
i=1

xi ≡
ϕ(m)

∏
i=1

(axi) = aϕ(m)
ϕ(m)

∏
i=1

xi (mod m).

Since (xi,m) = 1 for each i, we have (∏i xi,m) = 1. Therefore, by Corollary 3.5, aϕ(m) ≡ 1
(mod m). ■

The case where m = p is a prime is also known as Fermat’s Theorem.
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Corollary 4.7 (Fermat’s Theorem). If p is a prime and p ∤ a, then

ap−1 ≡ 1 (mod p). (4.6)

4.4 Binomial coefficients
Definition 4.3 For integers m ≥ n ≥ 0, the binomial coefficients are defined by(

m
n

)
=

m!
n!(m−n)!

=
m(m−1) · · ·(m−n+1)

n(n−1) · · ·1
.

In particular,
(m

0

)
= 1.

Theorem 4.8 (Pascal’s Identity). For integers m ≥ n > 0,(
m+1

n

)
=

(
m
n

)
+

(
m

n−1

)
. (4.7)

Proof. We have(
m
n

)
+

(
m

n−1

)
=

m!
n!(m−n)!

+
m!

(n−1)!(m−n+1)!

=
m!

(n−1)!(m−n)!
· 1

n
+

m!
(n−1)!(m−n)!

· 1
m−n+1

=
m!

(n−1)!(m−n)!
· m+1

n(m−n+1)

=
(m+1)!

(n)!(m−n+1)!
,

which is exactly
(m+1

n

)
. ■

Theorem 4.9 (Binomial Theorem). For n ≥ 0,

(x+ y)n =
n

∑
r=0

(
n
r

)
xryn−r. (4.8)

Proof. We argue by induction on n. When n = 0, both sides of (4.8) are 1, and when n = 1,
both sides of (4.8) are x+ y. Assuming that (4.8) is true for some n ≥ 1, we want to show
that it is also true for n+1. Note that

(x+ y)n+1 = (x+ y)(x+ y)n

= (x+ y)

(
n

∑
r=0

(
n
r

)
xryn−r

)

=
n

∑
r=0

(
n
r

)
xr+1yn−r +

n

∑
r=0

(
n
r

)
xryn−r+1

=

(
xn+1 +

n−1

∑
r=0

(
n
r

)
xr+1yn−r

)
+

(
yn+1 +

n

∑
r=1

(
n
r

)
xryn−r+1

)

=

(
xn+1 +

n

∑
r=1

(
n

r−1

)
xryn−r+1

)
+

(
yn+1 +

n

∑
r=1

(
n
r

)
xryn−r+1

)
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= xn+1 + yn+1 +
n

∑
r=1

((
n

r−1

)
+

(
n
r

))
xryn−r+1

= xn+1 + yn+1 +
n

∑
r=1

(
n+1

r

)
xryn−r+1

=
n+1

∑
r=0

(
n+1

r

)
xryn−r+1,

which is exactly the n+1 case of (4.8). ■

Corollary 4.10 The binomial coefficients
(m

n

)
are integers.

Theorem 4.11 Let p be a prime. Given any nonzero integer n, we denote by νp(n) the
unique nonnegative integer k such that pk | n and pk+1 ∤ n, namely, νp(n) is the power of
p in the canonical form of n. Let α be a positive integer. For 1 ≤ r ≤ pα ,

νp

((
pα

r

))
= α −νp(r). (4.9)

In particular, for any r with 1 ≤ r ≤ p−1, we have p |
(p

r

)
.

Proof. Recall that
(pα

r

)
= pα (pα−1)···(pα−r+1)

r(r−1)···1 . For each s with 1 ≤ s ≤ r−1 < pα , we observe
the simple fact that νp(s) = νp(pα − s). Hence, νp(

(pα

r

)
) = νp(pα)−νp(r) = α −νp(r). ■

Theorem 4.11 has two important consequences.

Theorem 4.12 For α ≥ 1 and p prime, if

m ≡ 1 (mod pα),

then
mp ≡ 1 (mod pα+1).

Proof. We write m = kpα +1 for a certain integer k. Then

mp = (kpα +1)p =
p

∑
r=0

(
p
r

)
(kpα)r = 1+

p

∑
r=1

(
p
r

)
(kpα)r.

Now, for 1 ≤ r ≤ p,
(p

r

)
· (pα)r is always divisible by pα+1. ■

Theorem 4.13 For k ≥ 1 and p prime,

(x1 + x2 + · · ·+ xk)
p ≡ xp

1 + xp
2 + · · ·+ xp

k (mod p). (4.10)

Proof. We apply induction on k. The k = 1 case is trivial. Assume that the statement is
true for some k ≥ 1. Then we prove the k+1 case:

(x1 + x2 + · · ·+ xk+1)
p =

(
x1 +(x2 + · · ·+ xk+1)

)p

=
p

∑
r=0

(
p
r

)
xr

1(x2 + · · ·+ xk+1)
p−r

≡ xp
1 +(x2 + · · ·+ xk+1)

p
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≡ xp
1 + xp

2 + · · ·+ xp
k+1 (mod p),

by our inductive assumption. ■

4.5 Euler’s proof of the Fermat–Euler Theorem
Let us close this lecture with Euler’s proof of the Fermat–Euler Theorem. Note that the
case where m = 1 is trivial. We start by showing that for α ≥ 1 and p prime, if a is such
that (a, p) = 1,

aϕ(pα ) ≡ 1 (mod pα). (4.11)

For its proof, we first choose k = a in Theorem 4.13 and then put x1 = · · ·= xa = 1. Thus,
ap ≡ a (mod p). Since (a, p) = 1, we have ap−1 ≡ 1 (mod p). Now, by an iterative appli-
cation of Theorem 4.12, we have a(p−1)p ≡ 1 (mod p2), ..., and a(p−1)pα−1 ≡ 1 (mod pα),
which is exactly (4.11).

Now, for integers m ≥ 2, we write m = ∏i pαi
i . Assume that a is such that (a,m) = 1,

and hence that (a, pi) = 1 for each i. We also write for convenience m = pαi
i mi. Since ϕ is

multiplicative, ϕ(m) = ϕ(pαi
i )ϕ(mi). Thus, by (4.11),

aϕ(m) =
(
aϕ(pαi

i )
)ϕ(mi) ≡ 1ϕ(mi) = 1 (mod pαi

i ).

Since these pαi
i are pairwise coprime while m=∏i pαi

i , we know from the Chinese Remainder
Theorem that

aϕ(m) ≡ 1 (mod m),

as desired.



5. Primitive roots

5.1 Powers of integers
Let m be a positive integer and a be an integer with (a,m) = 1. Let k ≥ 0 be a nonnegative
integer.

(i) For nonnegative powers of a, we know that ak is an integer, and hence we may
directly determine the residue class of ak modulo m.

(ii) For negative powers of a, we recall from Definition 3.3 that there exists an integer a
such that aa ≡ 1 (mod m). Thus, we may use a−1 to represent the residue class of a
modulo m. In particular, we have aa−1 ≡ 1 (mod m), which is a natural analogy to
the usual inverse of integers; this explains why we call a−1 the modular inverse of a
in Definition 3.3. Now we may naturally define negative powers of a modulo m by
a−k ≡ (a−1)k (mod m).

R Note that if a is such that (a,m) > 1, then there is no integer a such that aa ≡ 1
(mod m), since by Theorem 2.5, ax−1=my has no integer solutions x and y. Thus, we
cannot define the negative powers of a modulo m in this case. However, nonnegative
powers of a can still be defined as normal powers.

From the above definition, we have the following trivial fact.

Theorem 5.1 Let m be a positive integer and a,b be integers with (a,m) = (b,m) = 1 and
a ≡ b (mod m). Then for any integer x,

ax ≡ bx (mod m). (5.1)

The next two results show that integer powers in the modular sense have similar
properties to normal powers of integers.

Theorem 5.2 Let m be a positive integer and a,b be integers with (a,m) = (b,m) = 1.
Then for any integer x,

(ab)x ≡ axbx (mod m). (5.2)

Proof. If x ≥ 0, then (ab)x = axbx as normal integer powers, and hence they are congruent
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modulo m. If x < 0, we first note that (ab)−1 ≡ a−1b−1 (mod m) for

(ab) · (a−1b−1) = (aa−1) · (bb−1)≡ 1 ·1 = 1 (mod m).

Thus,
(ab)x ≡

(
(ab)−1)−x ≡ (a−1b−1)−x = (a−1)−x(b−1)−x ≡ axbx (mod m),

as desired. ■

Theorem 5.3 Let m be a positive integer and a be an integer with (a,m) = 1. Then
(i) 1−1 ≡ 1 (mod m);
(ii) (a−1)−1 ≡ a (mod m);
(iii) For any integers x and y, we have ax+y ≡ axay (mod m);
(iv) For any integers x and y, we have axy ≡ (ax)y (mod m).

Proof. (i). Note that 1 ·1 ≡ 1 (mod m), and hence that 1−1 ≡ 1 (mod m).
(ii). Note that a−1 is the modular inverse of a modulo m and vice versa by definition.

This means that (a−1)−1 ≡ a (mod m).
(iii). This relation is trivial if x and y are simultaneously nonnegative, or simultaneously

nonpositive. Without loss of generality, we assume that x > 0 > y. In particular, we may
further assume that x+ y ≥ 0, for if x+ y < 0, we only need to rewrite the congruence as
(a−1)−(x+y) ≡ (a−1)−x(a−1)−y (mod m). Now, we note that ax = ax+y−y = ax+ya−y for both
x+ y and −y are nonnegative integers. Hence,

ax ·ay = (ax+ya−y) ·ay ≡ (ax+ya−y) · (a−1)−y = ax+y · (a ·a−1)−y ≡ ax+y ·1−y = ax+y (mod m).

(iv). We require three basic facts. Firstly, for x and y nonnegative integers,

(ax)y = axy; (5.3)

this is a property of normal integer powers. Secondly, for x a nonnegative integer,

(a−1)x ≡ a−x (mod m); (5.4)

this follows from the definition of negative powers in the modular sense. Thirdly, for x an
integer,

(ax)−1 ≡ a−x (mod m); (5.5)

this follows from Part (iii) as axa−x ≡ ax+(−x) = a0 = 1 (mod m), namely, a−x is the modular
inverse of ax. Now, we prove Part (iv) according to the following four cases. (a). If x,y≥ 0,
then by (5.3) axy = (ax)y and thus they are congruent modulo m. (b). If x ≥ 0 > y, then

(ax)y (5.4)
≡
(
(ax)−1)−y (5.5)

≡ (a−x)−y (5.4)
≡
(
(a−1)x)−y (5.3)

= (a−1)−xy (5.4)
≡ axy (mod m).

(c). If y ≥ 0 > x, then

(ax)y (5.4)
≡
(
(a−1)−x)y (5.3)

= (a−1)−xy (5.4)
≡ axy (mod m).

(d). If x,y < 0, then

(ax)y (5.4)
≡
(
(ax)−1)−y (5.5)

≡ (a−x)−y (5.3)
= axy (mod m).

The desired result hence holds. ■
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5.2 Orders
By the Fermat–Euler Theorem (Theorem 4.6), we have aϕ(m) ≡ 1 (mod m), indicating that
there exists at least one positive integer x such that ax ≡ 1 (mod m).

Definition 5.1 Let m be a positive integer and a be an integer with (a,m) = 1. The
smallest positive integer d such that

ad ≡ 1 (mod m) (5.6)

is called the order of a modulo m, denoted by ordm a.

■ Example 5.1 (i). We have ord5 2= 4 for 21 ≡ 2, 22 ≡ 4, 23 ≡ 3 and 24 ≡ 1 (mod 5). (ii). We
have ord7 2 = 3 for 21 ≡ 2, 22 ≡ 4 and 23 ≡ 1 (mod 7). ■

R By definition, it is immediate that if a and b are such that (a,m) = (b,m) = 1 and
that a ≡ b (mod m), then ordm a = ordm b.

Theorem 5.4 Let m be a positive integer and a be an integer with (a,m) = 1. Then an
integer x satisfies ax ≡ 1 (mod m) if and only if ordm a | x. In particular, ordm a | ϕ(m).

Proof. Let d = ordm a. Then ad ≡ 1 (mod m) by definition. If d | x, then we may write
x = q ·d and thus,

ax = aqd ≡ (ad)q ≡ 1q ≡ 1 (mod m).

Assume that there exists an x with d ∤ x such that ax ≡ 1 (mod m). Thus, we may write
x = q ·d + r for q and r integers with 0 < r < d. It follows that

1 ≡ ax = aqd+r ≡ aqd ·ar ≡ (ad)q ·ar ≡ 1 ·ar = ar (mod m).

But this violates the assumption that d is the smallest positive integer such that ad ≡ 1
(mod m). Finally, ordm a | ϕ(m) since aϕ(m) ≡ 1 (mod m) by the Fermat–Euler Theorem. ■

Theorem 5.5 Let m be a positive integer and a be an integer with (a,m) = 1. If we write
d = ordm a, then for any integer k,

ordm ak =
d

(d,k)
. (5.7)

In particular, for any positive d∗ with d∗ | d, we have ordm a
d

d∗ = d∗.

Proof. We write d′ = ordm ak and δ = (d,k). First, noting that (ak)
d
δ ≡ (ad)

k
δ ≡ 1

k
δ ≡ 1

(mod m), we have d′ | d
δ by Theorem 5.4. Also, akd′ ≡ (ak)d′ ≡ 1 (mod m), and therefore

d | kd′ by Theorem 5.4, thereby implying that d
δ | k

δ d′. Further, we have ( d
δ ,

k
δ ) = 1 since

δ = (d,k). Hence, d
δ | d′. It follows that d′ = d

δ . Finally, we choose k = d
d∗ and note that

(d, d
d∗ ) =

d
d∗ , thereby getting the last part. ■

Theorem 5.6 Let m be a positive integer and a,b be integers with (a,m) = (b,m) = 1.
Let da = ordm a and db = ordm b. If (da,db) = 1, then ordm(ab) = dadb.

Proof. Let d = ordm(ab). First, noting that (ab)dadb ≡ (ada)db ·(bdb)da ≡ 1db ·1da ≡ 1 (mod m),
we have d | dadb. Also, addb ≡ addb ·1d ≡ addb ·(bdb)d ≡ (ab)ddb ≡

(
(ab)d

)db ≡ 1db ≡ 1 (mod m),
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and thus da | ddb. Noting further that (da,db) = 1, we have da | d. Similarly, db | d and thus
dadb | d since (da,db) = 1. It follows that d = dadb. ■

Theorem 5.7 Let m be a positive integer and a,b be integers with (a,m) = (b,m) = 1.
Let da = ordm a and db = ordm b. There exists an integer c with (c,m) = 1 such that
ordm c = lcm(da,db).

Proof. We write in the canonical form da = ∏i pαi
i and db = ∏i pβi

i with αi,βi ≥ 0. Define

d1 = ∏
k:αk>βk

pαk
k and d2 = ∏

ℓ:βℓ≥αℓ

pβℓ

ℓ .

Then d1 | da, d2 | db, (d1,d2) = 1 and d1d2 = lcm(da,db). By Theorem 5.5, we have

ordm a
da
d1 = d1 and ordm b

db
d2 = d2.

Now if we choose
c = a

da
d1 b

db
d2 ,

then Theorem 5.6 tells us that ordm c = d1d2 = lcm(da,db). ■

Theorem 5.8 Let m be a positive integer and {a1,a2, . . . ,aϕ(m)} be a reduced residue
system modulo m. Let di = ordm ai for 1 ≤ i ≤ ϕ(m) and define D = max1≤i≤ϕ(m){di}.
Then D | ϕ(m), and di | D for each 1 ≤ i ≤ ϕ(m).

Proof. First, D | ϕ(m) follows from Theorem 5.4 and the fact that D is the order of a
certain ai. For the second part, we argue by contradiction. Assume that there exists a
certain a j of order d = ordm a j such that d ∤ D. Note that for this d, we have lcm(d,D)> D.
Then by Theorem 5.7, we get an integer of order lcm(d,D)> D. But this violates the fact
that D is the maximum among the orders. ■

5.3 Primitive roots
Recall that the orders modulo m are always divisors of ϕ(m). We now focus on the case
where the order equals ϕ(m).

Definition 5.2 An integer g is called a primitive root of m if ordm g = ϕ(m).

Theorem 5.9 If m has a primitive root g, then {g,g2, . . . ,gϕ(m)} gives a reduced residue
system modulo m.

R If m has a primitive root, then the multiplicative group (Z/mZ)× is cyclic.

Proof. Note that the ϕ(m) integers g, ..., gϕ(m) are coprime to m since (g,m) = 1. Hence,
it suffices to show that they are pairwise incongruent modulo m. Assume not; then there
are integers i and j with 1 ≤ i < j ≤ ϕ(m) such that gi ≡ g j (mod m), or g j−i ≡ 1 (mod m).
But g is a primitive root of m, and thus ordm g = ϕ(m). By Theorem 5.4, ϕ(m) | ( j− i),
which is absurd. ■
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Theorem 5.10 If m has a primitive root, then there are ϕ(ϕ(m)) primitive roots among
1,2, . . . ,m.

Proof. Let g be a primitive root of m and hence ordm g = ϕ(m). Then Theorem 5.9 tells us
that the reduced system modulo m can be represented by {g, . . . ,gϕ(m)}. Thus, it suffices
to determine the number of i with 1 ≤ i ≤ ϕ(m) such that ordm gi = ϕ(m). On the other
hand, we know from Theorem 5.5 that ordm gi = ϕ(m)

(i,ϕ(m)) . So we only need to count the
number of i such that (i,ϕ(m)) = 1 and there are ϕ(ϕ(m)) such i among 1, . . . ,ϕ(m). ■

5.4 Lagrange’s polynomial congruence theorem
Here, we present a theorem of the Italian mathematician Joseph-Louis Lagrange, which
will be a key for confirming the existence of primitive roots of an odd prime.

Theorem 5.11 (Lagrange’s Polynomial Congruence Theorem). Let p be a prime. Let f (x)=
anxn + · · ·+a1x+a0 be a polynomial with integer coefficients such that p ∤ an. Then the
congruence

f (x)≡ 0 (mod p)

has at most n solutions modulo p.

Proof. We argue by induction on the degree n of f (x). When n = 1, f (x) is linear and the
statement is trivial. Now we assume that the statement is true for 1, . . . ,n with n ≥ 1. Let
f (x) be of degree n+1. If f (x)≡ 0 (mod p) has no solutions, then there is nothing to prove.
If there is one solution, say x ≡ x0 (mod p), then f (x0) ≡ 0 (mod p). Now, we consider
g(x) = f (x)− f (x0) = (x−x0)q(x) where q(x) is a polynomial with integer coefficients whose
degree is n. Note that f (x) ≡ 0 (mod p) is equivalent to g(x) ≡ 0 (mod p). Since p is a
prime, we either have x− x0 ≡ 0 (mod p) which has one solution modulo p, or q(x) ≡ 0
(mod p) which has at most n solutions modulo p by our inductive assumption. It follows
that there are at most n+1 solutions to f (x)≡ 0 (mod p), as desired. ■

5.5 Existence of primitive roots
Now we are in a position to characterize which integers have primitive roots.

Theorem 5.12 Every odd prime p has a primitive root.

Proof. As in Theorem 5.8, we write dk = ordp k for 1≤ k ≤ p−1, and define D=maxk{dk} so
that D | ϕ(p) = p−1. Since dk | D, we have kD ≡ 1 (mod p) for each k. It turns out that the
congruence xD −1 ≡ 0 (mod p) has p−1 solutions modulo p. By Lagrange’s Polynomial
Congruence Theorem (Theorem 5.11), we have D ≥ p−1. Combining with the fact that
D | p−1, we have D = p−1. Therefore, there exists an integer g of order D = p−1 = ϕ(p),
thereby giving our desired primitive root. ■

Lemma 5.13 For any odd prime p, there exists a primitive root g such that p | (gp−1−1)
and p2 ∤ (gp−1 −1).

Proof. Let g be an arbitrary primitive root of p. Then gp−1 ≡ 1 (mod p), namely, p |
(gp−1 − 1). If we also have p2 ∤ (gp−1 − 1), there is nothing to prove. If p2 | (gp−1 − 1),
namely, gp−1 −1 ≡ 0 (mod p2), then we note that g∗ = p+g is also a primitive root of p.
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Meanwhile,

gp−1
∗ −1 = (p+g)p−1 −1 =

p−1

∑
r=0

(
p−1

r

)
prgp−1−r −1

≡ gp−1 + p(p−1)gp−2 −1 ≡−pgp−2 ̸≡ 0 (mod p2).

Hence, in this case g∗ is the desired primitive root. ■

Theorem 5.14 For any odd prime p, let g be a primitive root as in Lemma 5.13. Then
for any positive integer α, g is also a primitive root of pα . In particular, pα always has
an odd primitive root.

Proof. Since g is a primitive root of p as in Lemma 5.13, we have ordp g = ϕ(p) = p− 1
and g is such that

gp−1 = px+1

with p ∤ x. Let ordpα g = d. Then gd ≡ 1 (mod pα), and thus gd ≡ 1 (mod p). Hence,
(p−1) | d. On the other hand, d | ϕ(pα) = (p−1)pα−1. Hence, d is of the form d = (p−1)ps

for some 0 ≤ s ≤ α −1. Now, recalling that p ∤ x, we have, with an application of Theorem
4.11,

gd = g(p−1)ps
= (px+1)ps

=
ps

∑
r=0

(
ps

r

)
(px)r ≡ 1+ ps+1x ̸≡ 1 (mod ps+2).

However, gd ≡ 1 (mod pα). Hence, α < s+2. It follows that the only possibility is s=α−1,
implying that ordpα g = d = (p − 1)pα−1 = ϕ(pα), namely, g is a primitive root of pα .
Finally, we observe that both g and g+ pα are primitive roots of pα , and they are of
different parities, thereby concluding the last part. ■

Theorem 5.15 For any odd prime p and positive integer α, let g be an odd primitive
root of pα . Then g is also a primitive root of 2pα .

Proof. Note that g being an odd primitive root of pα implies that (g,2pα) = 1. Let
d = ord2pα g and we have d | ϕ(2pα). Then gd ≡ 1 (mod 2pα), and hence, gd ≡ 1 (mod pα).
Since g is a primitive root of pα , we have ϕ(pα) = ordpα g | d. However, ϕ(2pα) = ϕ(pα) =
(p−1)pα−1. It follows that d = ϕ(2pα), namely, g is a primitive root of 2pα . ■

Theorem 5.16 A positive integer m has a primitive root if and only if m is of the form
1, 2, 4, pα or 2pα where p is an odd prime and α is a positive integer.

Proof. Note that 1 has a primitive root 1, that 2 has a primitive root 1, and that 4 has a
primitive root 3. It remains to show that no other positive integers have primitive roots.

We first exclude integers m that can be written as m = st with s, t ≥ 3 and (s, t) = 1.
Recall that Euler’s totient function ϕ is multiplicative, namely, ϕ(m) = ϕ(s)ϕ(t). Also,
ϕ(s) and ϕ(t) are even by using Theorem 4.2. Thus, ϕ(m)

2 is a integer. We shall prove that
for any a with (a,m) = 1, a

ϕ(m)
2 ≡ 1 (mod m). To see this, we have

a
ϕ(m)

2 =
(
aϕ(s)) ϕ(t)

2 ≡ 1
ϕ(t)

2 = 1 (mod s),
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and similarly,

a
ϕ(m)

2 ≡ 1 (mod t).

Note that (s, t) = 1 and st = m. By the Chinese Remainder Theorem, we have a
ϕ(m)

2 ≡ 1
(mod m). Hence, m has no primitive roots.

Finally, we exclude integers of the form 2α with α ≥ 3. Note that if a is such that
(a,2α) = 1, then a is odd and we write a= 2b+1. We prove that a

ϕ(2α )
2 = a2α−2 ≡ 1 (mod 2α)

always holds. To see this, we have, with Theorem 4.11 applied,

a
ϕ(2α )

2 = (2b+1)2α−2
=

2α−2

∑
r=0

(
2α−2

r

)
(2b)r

≡ 1+2α−2(2b)+(2α−2 −1)2α−3(2b)2

≡ 1+2α−1(b−b2)

≡ 1 (mod 2α).

Hence 2α has no primitive roots when α ≥ 3. ■
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6.1 Quadratic residues
Assume that p is a prime and that x is such that 1 ≤ x ≤ p−1. Recall from Theorem 4.1
that {xy : 1 ≤ y ≤ p−1} forms a reduced system modulo p. Hence, for any integer a with
(a, p) = 1, there exists a unique x′ with 1 ≤ x′ ≤ p−1 such that xx′ ≡ a (mod p).

Definition 6.1 We call x′ the associate of x with respect to a modulo p if

xx′ ≡ a (mod p)

with 1 ≤ x′ ≤ p−1.

We are in particular interested in the case where the associate of x is itself.
Definition 6.2 Let p be a prime and a be such that (a, p) = 1. We say that a is a
quadratic residue modulo p if there exists an x such that

x2 ≡ a (mod p).

If such x does not exist, we say that a is a quadratic non-residue modulo p.

R By definition, it is straightforward to see that for p a prime, if a and b are such
that (a, p) = (b, p) = 1 and a ≡ b (mod p), then a and b are simultaneously quadratic
residues modulo p, or simultaneously quadratic non-residues modulo p. In this case,
we shall say that a and b are in the same quadratic residue or non-residue class
modulo p.

Note that when p = 2, for any a with (a,2) = 1 so that a is an odd integer, we always
have a ≡ 1 = 12 (mod 2). Thus, all odd integers are quadratic residues modulo 2. Below,
we only focus on the case where p ≥ 3.

Lemma 6.1 Let p ≥ 3 be a prime and x0 be such that (x0, p) = 1. Then

x2 ≡ x2
0 (mod p) (6.1)
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has exactly two solutions

x+ ≡ x0 (mod p) and x− ≡−x0 (mod p),

and in particular x+ ̸≡ x− (mod p).

Proof. We rewite (6.1) as

(x− x0)(x+ x0)≡ 0 (mod p).

Since p is a prime, it follows that p | (x− x0) or p | (x+ x0), thereby leading to the two
solutions x±. Also, x+ ̸≡ x− (mod p); otherwise, we have x0 ≡ −x0 (mod p), or p | 2x0, or
p | x0 since p ≥ 3 is a prime. But this violates the assumption that (x0, p) = 1. ■

Theorem 6.2 Let p ≥ 3 be a prime.
(i) If a is a quadratic residue modulo p, then there are exactly two distinct residue

classes x ≡ x1,x2 modulo p with x2 ≡−x1 (mod p) such that x2 ≡ a (mod p).
(ii) There are exactly p−1

2 quadratic residue classes modulo p, and p−1
2 quadratic

non-residue classes modulo p. In particular, the quadratic residue classes can be
represented by {12,22, . . . ,( p−1

2 )2} modulo p.

Proof. (i). Since a is a quadratic residue, we may always find an x1 such that x2
1 ≡ a

(mod p). Thus, by Lemma 6.1, the only two solutions to x2 ≡ a ≡ x2
1 (mod p) are x ≡±x1

(mod p) and they are distinct.
(ii). First, Part (i) implies that there are at most p−1

2 quadratic residue classes modulo
p. Otherwise, if there are at least p+1

2 quadratic residue classes, then there are at least 2 ·
p+1

2 = p+1 residue classes modulo p, which is impossible. Next, we show that 12, . . . ,( p−1
2 )2

are pairwise distinct residue classes modulo p. To see this, we choose 1 ≤ i, j ≤ p−1
2 with

i ̸= j. We claim that i2 ̸≡ j2 (mod p). Otherwise, if i2 ≡ j2 (mod p), then p | (i− j)(i+ j).
But since 1 ≤ i, j ≤ p−1

2 and i ̸= j, both i− j and i+ j are not multiples of p, thereby
leading to a contradiction. Thus, there are exactly p−1

2 quadratic residue classes modulo
p, characterized by {12, . . . ,( p−1

2 )2} modulo p, and as a consequence, there are exactly
(p−1)− p−1

2 = p−1
2 quadratic non-residue classes modulo p. ■

Theorem 6.3 Let p ≥ 3 be a prime.
(i) If a is a quadratic residue modulo p, then

(p−1)! ≡−a
p−1

2 (mod p). (6.2)

(ii) If a is a quadratic non-residue modulo p, then

(p−1)! ≡ a
p−1

2 (mod p). (6.3)

Proof. Recall that for each a with (a, p) = 1, every integer x with 1 ≤ x ≤ p−1 has a unique
associate x′ (with respect to a modulo p) of one another with 1 ≤ x′ ≤ p−1.

For quadratic residues a, we know from Theorem 6.2(i) that there are exactly two x’s,
say x = x1 and x = p− x1, whose associate is itself. Therefore, we may group {1, . . . , p−1}
into {x1}, {p− x1} and p−3

2 distinct unordered pairs {x,x′} with

x2
1 ≡ (p− x1)

2 ≡ a (mod p)
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and
xx′ ≡ a (mod p).

Thus,

(p−1)! = x1 · (p− x1) ·∏(xx′)≡−x2
1 ·∏(xx′)≡−a ·a

p−3
2 =−a

p−1
2 (mod p).

For quadratic non-residues a, we cannot find any x such that x2 ≡ a (mod p). Therefore,
we group {1, . . . , p−1} into p−1

2 distinct unordered pairs {x,x′} with

xx′ ≡ a (mod p).

Thus,

(p−1)! = ∏(xx′)≡ a
p−1

2 (mod p).

The proof is therefore complete. ■

6.2 Wilson’s Theorem
Let us take a look at the special case a = 1 of Theorem 6.3, which is known as Wilson’s
Theorem, named after the English mathematician John Wilson.

Theorem 6.4 (Wilson’s Theorem). Let p be a prime. Then

(p−1)! ≡−1 (mod p). (6.4)

Proof. If p = 2, we simply have 1 ≡ −1 (mod 2), which is trivial. If p is an odd prime,
then we note that 1 is a quadratic residue modulo p, for 1 ≡ 12 (mod p). Therefore, taking
a = 1 in (6.2) yields (6.4). ■

Note that (6.4) is always false if the prime p is replaced with a composite.

Theorem 6.5 For m ≥ 2, we have (m−1)! ≡−1 (mod m) if and only if m is prime.

Proof. The “if” part is exactly Wilson’s Theorem. For the “only if” part, we assume that m
is composite. Then m has a divisor d with 1< d <m. Thus, this d is among 2, . . . ,m−1, and
thus d | (m−1)!. This then implies that d ∤

(
(m−1)!+1

)
. But if (m−1)! ≡−1 (mod m),

or equivalently, m |
(
(m−1)!+1

)
, then all the divisors of m also divide (m−1)!+1, thereby

leading to a contradiction. ■

6.3 Legendre symbol
We usually use the Legendre symbol, which was introduced by the French mathematician
Adrien-Marie Legendre in 1798, to characterize whether an integer a is a quadratic residue
modulo an odd prime p.

Definition 6.3 Let p ≥ 3 be a prime and a be an integer. The Legendre symbol
( a

p

)
is

defined by

(
a
p

)
=


0, if p | a,
1, if a is a quadratic residue modulo p,
−1, if a is a quadratic non-residue modulo p.
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Theorem 6.6 Let p ≥ 3 be a prime, and a and b be such that a ≡ b (mod p). Then(
a
p

)
=

(
b
p

)
. (6.5)

Proof. If a ≡ b ≡ 0 (mod p), we have
( a

p

)
=
( b

p

)
= 0 by definition. If a ≡ b ̸≡ 0 (mod p) and

hence (a, p) = (b, p) = 1, the equality
( a

p

)
=
( b

p

)
follows by noting that in this case, a and b

are simultaneously quadratic residues modulo p, or simultaneously quadratic non-residues
modulo p. ■

Theorem 6.7 Let p ≥ 3 be a prime. Then

p−1

∑
a=1

(
a
p

)
= 0. (6.6)

In general, if {a1, . . . ,ap−1} is a reduced system modulo p, then

p−1

∑
k=1

(
ak

p

)
= 0. (6.7)

Proof. We simply make use of the fact from Theorem 6.2(ii) that there are exactly p−1
2

quadratic residue classes modulo p, and p−1
2 quadratic non-residue classes modulo p. ■

Theorem 6.8 Let p ≥ 3 be a prime and a be such that (a, p) = 1. Then(
a
p

)
≡ a

p−1
2 (mod p). (6.8)

Proof. Note that Theorem 6.3 can be understood as

(p−1)! ≡−
(

a
p

)
·a

p−1
2 (mod p).

On the other hand, Wilson’s Theorem asserts that

(p−1)! ≡−1 (mod p).

The desired result therefore follows. ■

Theorem 6.9 Let p ≥ 3 be a prime, and m and n be integers. Then(
mn
p

)
=

(
m
p

)(
n
p

)
. (6.9)

Proof. If one of m and n is a multiple of p, so is mn. Thus, in this case,(
mn
p

)
=

(
m
p

)(
n
p

)
= 0.

Now we assume that (m, p) = (n, p) = 1 and thus (mn, p) = 1. Then by Theorem 6.8,(
mn
p

)
≡ (mn)

p−1
2 = m

p−1
2 n

p−1
2 ≡

(
m
p

)(
n
p

)
(mod p),
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that is, p |
∣∣(mn

p

)
−
(m

p

)( n
p

)∣∣. However, the values of
(m

p

)
,
( n

p

)
and

(mn
p

)
are taken from

{−1,1}. It follows that
∣∣(mn

p

)
−
(m

p

)( n
p

)∣∣≤ 2, thereby implying that
(mn

p

)
−
(m

p

)( n
p

)
= 0, as

desired. ■

R Given a function f : Z>0 → C, we say that it is completely multiplicative if f (1) = 1
and for any m and n,

f (mn) = f (m) f (n).

“Multiplicative” vs “Completely multiplicative”: For completely multiplica-
tive functions, the above relation holds even if (m,n)> 1.

6.4 When is −1 a quadratic residue modulo p?
Theorem 6.10 Let p ≥ 3 be a prime. Then(

−1
p

)
= (−1)

p−1
2 . (6.10)

In particular, −1 is a quadratic residue modulo p if p ≡ 1 (mod 4), and a quadratic
non-residue modulo p if p ≡ 3 (mod 4).

Proof. We know from Theorem 6.8 that
(−1

p

)
≡ (−1)

p−1
2 (mod p), and thus (6.10) follows

since
(−1

p

)
takes value from {−1,1} for odd primes p. Finally, p−1

2 is even if p ≡ 1 (mod 4),
and odd if p ≡ 3 (mod 4). ■

6.5 Starters for sums of squares
We prove two additional results based on the knowledge of quadratic residues; they will
be used in our later study of the “sum-of-squares” problems.

Theorem 6.11 Let p ≥ 3 be a prime such that p ≡ 1 (mod 4). Then there exists an
integer x such that

x2 +1 = mp

with 0 < m < p.

Proof. For primes p ≡ 1 (mod 4), Theorem 6.10 tells us that −1 is a quadratic residue
modulo p. Thus, there exists an x among 1, . . ., p−1 such that

x2 ≡−1 (mod p).

In particular, we may choose x with 1 ≤ x ≤ p−1
2 , for if x satisfies the above congruence, so

does p−x. Finally, we have 0< x2+1<
( p

2

)2
+1< p2. Thus, x2+1=mp with 0<m< p. ■

Theorem 6.12 Let p ≥ 3 be a prime. Then there exist integers x and y such that

x2 + y2 +1 = mp

with 0 < m < p.
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Proof. Consider the following p+1 integers: x2 for 0 ≤ x ≤ p−1
2 and −(y2 +1) for 0 ≤ y ≤

p−1
2 . Since there are p residue classes modulo p, by the pigeonhole principle, at least two

of the p+1 integers fall into the same residue class. Note that all the x2 are incongruent
modulo p, and so are the −(y2 +1). Thus, the two integers falling into the same residue
class must be one x2 and one −(y2 + 1). That is, there exist x and y with 0 ≤ x,y ≤ p−1

2
such that x2 ≡ −(y2 + 1) (mod p), namely, x2 + y2 + 1 = mp for an integer m. Finally, we
have 0 < 1+ x2 + y2 < 1+2

( p
2

)2
< p2. Thus, 0 < m < p. ■



7. Quadratic reciprocity

7.1 Gauss’s Lemma
To further evaluate the Legendre symbol

( a
p

)
, we require a lemma due to the German

mathematician Carl Friedrich Gauss. This lemma serves as a key in the derivation of the
famous quadratic reciprocity law that was conjectured by Euler and Legendre, and first
proved by Gauss himself.

Lemma 7.1 (Gauss’s Lemma). Let p ≥ 3 be a prime and a be such that (a, p) = 1. For
each k with 1 ≤ k ≤ p−1

2 , let rk be the smallest nonnegative residue of ak modulo p. If
µ = µa counts the number of rk that is greater than p

2 , then(
a
p

)
= (−1)µ . (7.1)

■ Example 7.1 We provide an illustration of Gauss’s Lemma with p = 11. Noting that the
quadratic residues modulo 11 are given by the residue classes {1,3,4,5,9} and that the
non-residues are given by the residue classes {2,6,7,8,10}, we have, for instance,

( 2
11

)
=−1

and
( 5

11

)
= 1. (i). a = 2: We have {2k mod 11 : 1 ≤ k ≤ 5}= {2,4,6,8,10}, and hence µ2 = 3

and
( 2

11

)
= (−1)3 =−1; (ii). a = 5: We have {5k mod 11 : 1 ≤ k ≤ 5}= {5,10,4,9,3}, and

hence µ5 = 2 and
( 5

11

)
= (−1)2 = 1. ■

Proof. Since (a, p) = 1, we have 1 ≤ rk ≤ p−1 for each k. Now we separate these indices
k ∈ {1,2, . . . , p−1

2 } into two disjoint groups {x1, . . . ,xµ} and {y1, . . . ,yν} such that rx >
p
2 for

all x and ry <
p
2 for all y. Note that µ +ν = p−1

2 . Also, the rx are pairwise distinct and
so are the ry. We further claim that there are no x and y with p− rx = ry; otherwise,
we have 0 ≡ p = rx + ry ≡ ax+ay (mod p), or x+ y ≡ 0 (mod p), which is impossible since
1 ≤ x,y ≤ p−1

2 . As 1 ≤ p−rx <
p
2 and 1 ≤ ry <

p
2 , we conclude that the p−1

2 pairwise distinct
integers (p− rx1), . . . ,(p− rxµ ) and ry1 , . . . ,ryν form a rearrangement of 1, . . . , p−1

2 . Thus,

a
p−1

2 ·
( p−1

2 !
)
=

(p−1)/2

∏
k=1

(ak)≡
(p−1)/2

∏
k=1

rk =
µ

∏
i=1

rxi ·
ν

∏
j=1

ry j

≡ (−1)µ
µ

∏
i=1

(p− rxi) ·
ν

∏
j=1

ry j = (−1)µ ·
( p−1

2 !
)

(mod p).
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Since p−1
2 ! is coprime to p, we have a

p−1
2 ≡ (−1)µ (mod p). Finally, (7.1) follows since

( a
p

)
takes value from {±1} by definition and

( a
p

)
≡ a

p−1
2 (mod p) by Theorem 6.8. ■

For any real number x, let ⌊x⌋ denote the largest integer not exceeding x.

Lemma 7.2 With the notation in Lemma 7.1, we have

µa ≡ (a−1) · p2 −1
8

+
(p−1)/2

∑
k=1

⌊
ak
p

⌋
(mod 2). (7.2)

Proof. Note that each rk is the remainder of ak divided by p. Thus, ak = p ·⌊ ak
p ⌋+rk. Now,

recalling that p is an odd prime,

a · p2 −1
8

=
(p−1)/2

∑
k=1

(ak) =
(p−1)/2

∑
k=1

(
p ·
⌊

ak
p

⌋
+ rk

)
= p

(p−1)/2

∑
k=1

⌊
ak
p

⌋
+

µ

∑
i=1

rxi +
ν

∑
j=1

ry j

≡
(p−1)/2

∑
k=1

⌊
ak
p

⌋
+

(
µ +

µ

∑
i=1

(p− rxi)

)
+

ν

∑
j=1

ry j =
(p−1)/2

∑
k=1

⌊
ak
p

⌋
+µ +

(p−1)/2

∑
k=1

k

=
(p−1)/2

∑
k=1

⌊
ak
p

⌋
+µ +

p2 −1
8

(mod 2),

thereby yielding the desired result. ■

7.2 When is 2 a quadratic residue modulo p?
Theorem 7.3 Let p ≥ 3 be a prime. Then(

2
p

)
= (−1)

p2−1
8 . (7.3)

In particular, 2 is a quadratic residue modulo p if p ≡ ±1 (mod 8), and a quadratic
non-residue modulo p if p ≡±3 (mod 8).

Proof. Note that for k with 1 ≤ k ≤ p−1
2 , we have 0 < 2k

p < 1 and thus ⌊2k
p ⌋ = 0. Now,

taking a = 2 in (7.2) gives µ2 ≡ p2−1
8 (mod 2), and it follows from Gauss’s Lemma that( 2

p

)
= (−1)

p2−1
8 . Finally, p2−1

8 is even if p ≡±1 (mod 8), and odd if p ≡±3 (mod 8). ■

7.3 Guass’s law of quadratic reciprocity
We have witnessed from Gauss’s Lemma (Lemma 7.1) and Lemma 7.2 that for p ≥ 3 a
prime and a an integer with (a, p) = 1,(

a
p

)
= (−1)(a−1)· p2−1

8 +∑(p−1)/2
k=1 ⌊ ak

p ⌋.

Now we further assume that q ≥ 3 is a prime such that q ̸= p. Then (q−1) · p2−1
8 is even

for q−1 is even and p2−1
8 = ∑(p−1)/2

k=1 k is an integer. It follows that(
q
p

)
= (−1)∑(p−1)/2

k=1 ⌊ kq
p ⌋.
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Similarly, (
p
q

)
= (−1)∑(q−1)/2

k=1 ⌊ kp
q ⌋.

It turns out that (
q
p

)(
p
q

)
= (−1)∑(p−1)/2

k=1 ⌊ kq
p ⌋+∑(q−1)/2

k=1 ⌊ kp
q ⌋. (7.4)

Theorem 7.4 Let p,q ≥ 3 be primes with p ̸= q. Then

(p−1)/2

∑
k=1

⌊
kq
p

⌋
+

(q−1)/2

∑
k=1

⌊
kp
q

⌋
=

(p−1)(q−1)
4

. (7.5)

(0,0) (p,0)

(0,q) (p,q)

(p′,0)

(0,q′)

Figure 7.1: Integer lattices and y = q
p x

Proof. For convenience, we write p′ = p−1
2 and q′ = q−1

2 . Consider the line

ℓ : y =
q
p

x

on the xy-plane. We begin with some observations.
Observation 1. For any integer k ≥ 1, ⌊ kq

p ⌋ equals the number of points with integer
coordinates, or lattices for short, (k,y) in the first quadrant which are below ℓ (with
lattices on ℓ included). For its proof, we note that ℓ touches the vertical line x = k at
(k, kq

p ). Thus, such lattices are those with 1 ≤ y ≤ kq
p , and the number of them equals

the integer part of kq
p , that is ⌊ kq

p ⌋.
Observation 2. For any integer k ≥ 1, ⌊ kp

q ⌋ equals the number of lattices (x,k) in the first
quadrant which are above ℓ (with lattices on ℓ included). The proof is similar to that
for the first observation — we only need to note that ℓ touches the horizontal line
y = k at ( kp

q ,k).
Observation 3. There is no lattice (x,y) with 1 ≤ x ≤ p′ or 1 ≤ y ≤ q′ that is on ℓ.

Otherwise, assume that there exists an x0 with 1 ≤ x0 ≤ p′ such that (x0,
q
p x0) is a

lattice. Then q
p x0 is an integer, which is impossible since p ∤ q for p,q are distinct



50 Lecture 7. Quadratic reciprocity

odd primes and p ∤ x0 for 1 ≤ x ≤ p′ = p−1
2 . Similarly, if we assume that there exists

a y0 with 1 ≤ y0 ≤ q′ such that ( p
q y0,y0) is a lattice, then p

q y0 is an integer, and it is
also impossible. The claim follows by contradiction.

Now, we focus on the set of lattices (x,y) with 1 ≤ x ≤ p′ and y ≥ 1 that are strictly
below ℓ, denoted by B, and the set of lattices (x,y) with x ≥ 1 and 1 ≤ y ≤ q′ that are
strictly above ℓ, denoted by A .

By the three observations (especially Observation 3, which allows us to add the strength-
ening of “strictly”), we have

(p−1)/2

∑
k=1

⌊
kq
p

⌋
+

(q−1)/2

∑
k=1

⌊
kp
q

⌋
= cardA + cardB.

First, it is apparent that all lattices (x,y) with 1 ≤ x ≤ p′ and 1 ≤ y ≤ q′ are in A ∪B.
Now we show that they are the only lattices in A ∪B.
(i). For lattices with x > p′ and y > q′, they are not in A ∪B by definition.

(ii). For any lattice with 1 ≤ x ≤ p′ and y > q′ (so it is not in A ), we compute the slope
of the line connecting this lattice and the origin, which is y

x ≥ q′+1
p′ = q+1

p−1 > q
p , and

thus the lattice is above ℓ, so not in B.
(iii). For any lattice with x > p′ and 1 ≤ y ≤ q′ (so it is not in B), we compute the slope

of the line connecting this lattice and the origin, which is y
x ≤ q′

p′+1 = q−1
p+1 < q

p , and
thus the lattice is below ℓ, so not in A .

Noting that A and B are disjoint, we have cardA +cardB = cardA ∪B = p′q′. Thus,

(p−1)/2

∑
k=1

⌊
kq
p

⌋
+

(q−1)/2

∑
k=1

⌊
kp
q

⌋
= cardA + cardB = p′q′ =

(p−1)(q−1)
4

,

thereby proving the desired result. ■

Now we can state Guass’s law of quadratic reciprocity.

Theorem 7.5 (Guass’s Law of Quadratic Reciprocity). Let p,q ≥ 3 be primes with p ̸= q.
Then (

q
p

)(
p
q

)
= (−1)

(p−1)(q−1)
4 . (7.6)

Proof. This is a direct application of (7.4) and (7.5). ■

R The first complete proof of the law of quadratic reciprocity was provided by Gauss
in 1801 (Disquisitiones Arithmeticae, Art. 125–145 (1801), 94–145), who offered six
more in the rest of his life. The presented one in this section is due to the German
mathematician Gotthold Eisenstein (J. Reine Angew. Math. 28 (1844), 246–248),
and the basic idea was motivated by Gauss’s third proof (Comment. Soc. regiae sci.
Göttingen XVI (1808), 69).

7.4 When is ±3 a quadratic residue modulo p?
Theorem 7.6 Let p ≥ 5 be a prime. Then 3 is a quadratic residue modulo p if p ≡ ±1
(mod 12), and a quadratic non-residue modulo p if p ≡±5 (mod 12).
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Proof. By Guass’s law of quadratic reciprocity, we have(
3
p

)( p
3

)
= (−1)

p−1
2 .

Further,
( p

3

)
equals 1 if p ≡ 1 (mod 3) and −1 if p ≡ −1 (mod 3). Also, (−1)

p−1
2 equals

1 if p ≡ 1 (mod 4) and −1 if p ≡ −1 (mod 4). The desired result follows from a simple
calculation. ■

Theorem 7.7 Let p ≥ 5 be a prime. Then −3 is a quadratic residue modulo p if p ≡ 1
(mod 6), and a quadratic non-residue modulo p if p ≡ 5 (mod 6).

Proof. Note that (
−3
p

)
=

(
−1
p

)(
3
p

)
.

Combining Theorems 6.10 and 7.6 gives the desired result. ■

7.5 Eisenstein’s analytic proof
We have presented earlier one of Eisenstein’s proofs of the law of quadratic reciprocity,
whose geometric flavor is clearly seen. Of course, the quadratic reciprocity can be under-
stood by other means, and nearly 200 proofs were beautifully surveyed by Franz Lemmer-
meyer in his admirable monograph “Reciprocity Laws.” Here we will look at another proof
of Eisenstein (J. Reine Angew. Math. 29 (1845), 177–184) featuring a purely analytic per-
spective, which not only exhibits vorzüglichen Eleganz (extreme elegance) as commented
by the German mathematician Ernst Kummer, but allows flexible extensions to cubic and
biquadratic reciprocity laws (which will not be discussed here).

Let us begin with the following relation.

Lemma 7.8 Let p ≥ 3 be a prime and a be such that (a, p) = 1. Then

(
a
p

)
=

p−1
2

∏
α=1

sin 2πaα
p

sin 2πα
p

. (7.7)

Proof. For each 1≤α ≤ p−1
2 , we can find a unique 1≤α ′ ≤ p−1

2 and a unique ε(α)∈{−1,1}
such that

aα ≡ ε(α)α ′ (mod p).

Note that

sin 2πaα
p = sin 2πε(α)α ′

p = ε(α)sin 2πα ′

p .

The last equality is true as ε(α) ∈ {−1,1}. Thus,

aα ≡
sin 2πaα

p

sin 2πα ′

p

α ′ (mod p). (7.8)

Now if two distinct α1 and α2 are given, we claim that the corresponding α ′
1 and

α ′
2 are also different. Assuming not, clearly, ε(α1) ̸= ε(α2) for if this is not the case,
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then aα1 ≡ ε(α1)α ′
1 = ε(α2)α ′

2 ≡ aα2 (mod p), thereby leading to a contradiction. If we
otherwise suppose that ε(α1) = 1 and ε(α2) =−1, it follows that a(α1 +α2)≡ 0 (mod p),
so that α1 +α2 ≡ 0 (mod p). But this is also impossible.

The above argument indicates that as α runs over {1, . . . , p−1
2 }, so does α ′. Multiplying

(7.8) for α ∈ {1, . . . , p−1
2 } yields

a
p−1

2 ·
( p−1

2 !
)
≡

p−1
2

∏
α=1

sin 2πaα
p

p−1
2

∏
α ′=1

sin 2πα ′

p

·
( p−1

2 !
)

(mod p),

that is,

a
p−1

2 ≡
p−1

2

∏
α=1

sin 2πaα
p

sin 2πα
p

(mod p).

Recalling Theorem 6.8,
( a

p

)
≡ a

p−1
2 (mod p), we have

(
a
p

)
≡

p−1
2

∏
α=1

sin 2πaα
p

sin 2πα
p

(mod p).

Finally, we note that ∏
p−1

2
α=1

sin 2πaα
p

sin 2πα
p

=∏
p−1

2
α=1

sin 2πaα
p

sin 2πα ′
p

=∏
p−1

2
α=1 ε(α)∈{−1,1}. Since

( a
p

)
∈{−1,1},

the above congruence becomes the desired equality. ■

Now our attention moves to trigonometric functions. A routine computation gives

sin3θ =−4(sinθ)3 +3sinθ ,
sin5θ = 16(sinθ)5 −20(sinθ)3 +5sinθ .

This pattern continues as follows.

Lemma 7.9 For each nonnegative integer n, there are integer coefficients c2n+1,2n+1,
c2n+1,2n−1, . . ., c2n+1,3, c2n+1,1 such that

sin(2n+1)θ = c2n+1,2n+1(sinθ)2n+1 + c2n+1,2n−1(sinθ)2n−1 + · · ·+ c2n+1,1 sinθ . (7.9)

In particular,

c2n+1,2n+1 = (−4)n. (7.10)

Proof. In light of Euler’s identity eiθ = cosθ + isinθ , we have

sin(2n+1)θ =
1
2i

(
ei(2n+1)θ − e−i(2n+1)θ)

=
1
2i

(
(cosθ + isinθ)2n+1 − (cosθ − isinθ)2n+1)

=
1
2i

·2
n

∑
k=0

i2k+1
(

2n+1
2k+1

)
(sinθ)2k+1(cosθ)(2n+1)−(2k+1)

=
n

∑
k=0

(−1)k
(

2n+1
2k+1

)
(sinθ)2k+1(cosθ)2(n−k)
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=
n

∑
k=0

(−1)k
(

2n+1
2k+1

)
(sinθ)2k+1(1− (sinθ)2)n−k

,

from which the coefficients c2n+1,2ℓ+1 with 0 ≤ ℓ ≤ n become clear. Meanwhile, c2n+1,2n+1
equals

n

∑
k=0

(−1)k
(

2n+1
2k+1

)
· (−1)n−k = (−1)n · 1

2

2n+1

∑
j=0

(
2n+1

j

)
= (−1)n · 1

2
(1+1)2n+1 = (−4)n.

Here we have applied the symmetry
(2n+1

j

)
=
( 2n+1

2n+1− j

)
for all 0 ≤ j ≤ 2n + 1 so that

∑n
k=0
(2n+1

2k+1

)
= ∑n

k=0
(2n+1

2k

)
= 1

2 ∑2n+1
j=0

(2n+1
j

)
. ■

The following relation for sin(2n+1)θ is more surprising.

Lemma 7.10 For each nonnegative integer n,

sin(2n+1)θ
sinθ

= (−4)n
n

∏
k=1

(
(sinθ)2 − (sin 2πk

2n+1)
2). (7.11)

Proof. With the coefficients c2n+1,2ℓ+1 in Lemma 7.9, we define a polynomial p(x) by

p(x) = c2n+1,2n+1x2n+1 + c2n+1,2n−1x2n−1 + · · ·+ c2n+1,1x.

Note that p(x) is of degree 2n+ 1 and has leading coefficient (−4)n. Our object is to
characterize 2n+1 distinct roots of p(x). First, we observe that the 2n+1 real numbers

sin 2π j
2n+1 (−n ≤ j ≤ n)

are pairwise different. Further, by (7.9),

p(sin 2π j
2n+1) = sin(2n+1) 2π j

2n+1 = sin2π j = 0.

Hence, all these numbers are roots of p(x). It follows that

p(x) = (−4)n
n

∏
j=−n

(
x− sin 2π j

2n+1

)
= (−4)nx

n

∏
k=1

(
x2 − (sin 2πk

2n+1)
2).

Replacing x with sinθ implies the required relation as p(sinθ) = sin(2n+1)θ by (7.9). ■

Now we are ready to present Eisenstein’s analytic proof of the quadratic reciprocity.

Eisenstein’s Analytic Proof. Recall that p and q are distinct odd primes. In view of (7.7)
and (7.11), (

q
p

)
= (−4)

(p−1)(q−1)
4

p−1
2

∏
α=1

q−1
2

∏
β=1

(
(sin 2πα

p )2 − (sin 2πβ
q )2).

Similarly, (
p
q

)
= (−4)

(p−1)(q−1)
4

q−1
2

∏
α ′=1

p−1
2

∏
β ′=1

(
(sin 2πα ′

q )2 − (sin 2πβ ′

p )2)
(by (α ′,β ′) 7→ (β ,α)) = (−4)

(p−1)(q−1)
4

p−1
2

∏
α=1

q−1
2

∏
β=1

(
(sin 2πβ

q )2 − (sin 2πα
p )2).
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Hence,

(
q
p

)(
p
q

)
= (−1)

(p−1)(q−1)
4 16

(p−1)(q−1)
4

 p−1
2

∏
α=1

q−1
2

∏
β=1

(
(sin 2πα

p )2 − (sin 2πβ
q )2)2

.

Finally, since
( q

p

)( p
q

)
∈ {−1,1}, it equals the sign of the right-hand side of the above,

which is clearly (−1)
(p−1)(q−1)

4 . ■

7.6 An upper bound for the least quadratic non-residue
Definition 7.1 Let p ≥ 3 be a prime. The least quadratic non-residue modulo p, usually
denoted by np, is the smallest positive integer that is a quadratic non-residue modulo
p.

■ Example 7.2 We have n3 = 2, n5 = 2, n7 = 3, . . . ■

R The least quadratic residue is less interesting because 1 is always a quadratic residue
modulo any odd prime p.

Recall from Theorem 6.2 that there are p−1
2 quadratic residues and p−1

2 quadratic non-
residues modulo p among 1, . . . , p−1. Therefore, we trivially have np ≤ p−1

2 +1 = p+1
2 . But

the upper bound for np could be much sharper.

Theorem 7.11 Let p ≥ 3 be a prime. Then

np <
√

p+1. (7.12)

Proof. Note that 1 < np < p. Let m = ⌊ p
np
⌋+ 1. Since p

np
is not an integer, we have

(m−1)np < p < mnp. Thus, 0 < mnp − p < np. Since np is the least quadratic non-residue,
we have that all 1, . . . ,np −1 are quadratic residues, and so is mnp − p. It follows that

1 =

(
mnp − p

p

)
=

(
mnp

p

)
=

(
m
p

)(
np

p

)
,

where Theorem 6.9 is used. Since np is a quadratic non-residue, we have
(np

p

)
=−1, and

thus
(m

p

)
= −1 from the above. Therefore, m is also a quadratic non-residue. It follows

that np ≤ m. So,
p > (m−1)np ≥ (np −1)np > (np −1)2,

yielding the desired result. ■

R The upper bound for np is far sharper than (7.12). The best bound known today is

np = Oε
(

p
1

4
√

e+ε)
,

for all ε > 0. It was proved with recourse to Burgess’s estimate of certain character
sums and Vinogradov’s sieving trick. An excellent exposition of the idea can be found
in Terry Tao’s blog post:

https://terrytao.wordpress.com/2009/08/18/the-least-quadratic-
nonresidue-and-the-square-root-barrier/

https://terrytao.wordpress.com/2009/08/18/the-least-quadratic-nonresidue-and-the-square-root-barrier/
https://terrytao.wordpress.com/2009/08/18/the-least-quadratic-nonresidue-and-the-square-root-barrier/
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8.1 Primes as the sum of two squares
Recall that the following notation has been used earlier in the study of binomial coefficients.

Definition 8.1 Let p be a prime. Given any nonzero integer n, we denote by νp(n) the
unique nonnegative integer k such that pk | n and pk+1 ∤ n, namely, νp(n) is the power
of p in the canonical form of n.

Theorem 8.1 Let x and y be integers, not both zero. For any prime p with p≡ 3 (mod 4),
we have that νp(x2 + y2) is even.

Proof. Let n = x2 + y2. Note that n > 0. Let d = (x,y) and write x = x0d and y = y0d so
(x0,y0) = 1. Hence, n = d2(x2

0 + y2
0).

We first show that p ∤ (x2
0 + y2

0). If not, then x2
0 + y2

0 ≡ 0 (mod p), or x2
0 ≡−y2

0 (mod p).
Since (x0,y0) = 1, both x0 and y0 are coprime to p for if any of them is a multiple of p, so is
the other. Now y0 has an inverse y−1

0 modulo p. Hence, (x0y−1
0 )2 ≡−1 (mod p), indicating

that −1 is a quadratic residue modulo p. However, this violates Theorem 6.10, saying
that −1 is a quadratic non-residue as p ≡ 3 (mod 4).

Thus, νp(n) = νp(d2) = 2νp(d), which is even. ■

Theorem 8.2 Any prime p with p ≡ 1 (mod 4) can be written as the sum of two squares.

We will present two proofs of this result: one is based on an important method called
“infinite descent” developed by Fermat, and the other relies on a magical involution due
to the American–German mathematician Don Zagier.

Before moving ahead, we record a simple but useful formula.

Lemma 8.3 Let x1,y1,x2,y2 ∈ R. Then

(x2
1 + y2

1)(x
2
2 + y2

2) = (x1x2 + y1y2)
2 +(x1y2 − x2y1)

2. (8.1)

Proof. This formula can be examined by a direct calculation. ■
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R We may also understand (8.1) with recourse to complex numbers. Recall that a
complex number z is of the form z= x+yi with x,y∈R where i=

√
−1 is the imaginary

unit. The modulus of z is define by |z|=
√

x2 + y2. Let z1 = x1 − y1i and z2 = x2 + y2i.
Note that the left hand side of (8.1) is |z1|2|z2|2 and the right hand side is |z1z2|2. So,
|z1|2|z2|2 = |z1z2|2.

8.2 The method of infinite descent
Among different variants of the method of infinite descent, which is also known as Fermat’s
method of descent as Fermat developed this strategy, which first appeared in Euclid’s
Elements, to a great extent, we will make use of the following version.

Lemma 8.4 (The Method of Infinite Descent). Let P be a property that at least one
positive integer, say M, possesses. Assume that whenever a positive integer m with
1 < m ≤ M possesses P, we may find another positive integer m0 with m0 < m such that
m0 also possesses P. Then 1 possesses P.

Proof. We argue by contradiction with the assumption that 1 does not possess P. Since P
is such that M possesses, we may let m′ ≤ M be the smallest positive integer possessing P.
By our assumption, m′ > 1. However, we may then find some m′

0 < m′ with m′
0 possessing

P. This violates the minimality of m′. ■

Now we prove Theorem 8.2 using the method of infinite descent.

First Proof of Theorem 8.2. To begin with, we recall from Theorem 6.11 that for primes
p with p ≡ 1 (mod 4), there exists an integer x such that x2 +1 = mp with 0 < m < p. In
other words, there exists an integer m with 0 < m < p such that the equation

x2 + y2 = mp

has an integer solution (x,y).
Assume that m > 1. Note that for every integer n, we may always find an integer n0

with |n0| ≤ m
2 such that n ≡ n0 (mod m). This is because there are at least m consecutive

integers in the interval [−m
2 ,

m
2 ], thereby covering a complete system modulo m.

Now we find x ≡ x0 (mod m) with |x0| ≤ m
2 and y ≡ y0 (mod m) with |y0| ≤ m

2 . Note that
we cannot simultaneously have m | x and m | y for if this is the case, then it follows that
m2 | (x2 +y2) = mp. But m2 ∤ mp since 0 < m < p (and hence (m, p) = 1), thereby leading to
a contradiction. Hence, x0 and y0 are not simultaneously 0, and we have x2

0 + y2
0 > 0. On

the other hand, x2
0+y2

0 ≤ (m
2 )

2+(m
2 )

2 < m2. Noting that x2
0+y2

0 ≡ x2+y2 = mp ≡ 0 (mod m),
we may write x2

0 + y2
0 = m0m with 0 < m0 < m. By Lemma 8.3, we have

(xx0 + yy0)
2 +(xy0 − x0y)2 = (x2 + y2)(x2

0 + y2
0)

= (mp) · (m0m)

= m2m0 p.

Meanwhile, we have xx0 + yy0 ≡ x2 + y2 ≡ 0 (mod m) and xy0 − x0y ≡ xy− xy = 0 (mod m).
Hence, xx0+yy0

m and xy0−x0y
m are integers. It follows that

m0 p =

(
xx0 + yy0

m

)2

+

(
xy0 − x0y

m

)2

,

a sum of two squares.
Finally, noting that m0 is a positive integer with m0 < m, we deduce that x2 + y2 = p

has an integer solution (x,y) with recourse to the method of infinite descent. ■
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8.3 Zagier’s magical involution
Definition 8.2 Let S be a set. We say that f : S → S is an involution on S if for any
x ∈ S, there holds true that f ( f (x)) = x.

R In fact, every involution f is a bijective map on S. The surjectivity follows by the
fact every x ∈ S in the image of f (x) under f , and the injectivity follows by the fact
that if f (x) = f (y), then x = f ( f (x)) = f ( f (y)) = y.

Definition 8.3 Let S be a set and f : S → S be a map on S. We say that x ∈ S is a fixed
point under f if f (x) = x.

Theorem 8.5 Let S be a finite set and assume that there is an involution f on S.
(i) If f has no fixed points, then the size |S| of S is even.
(ii) If f has exactly one fixed point, then |S| is odd.

Proof. Since f is an involution on S, we may pair elements of S according to {x, f (x)} and
treat { f (x),x} as the same pair. Assume that there are s such pairs.

(i). Since f has no fixed points, we have x ̸= f (x) in each pair. Thus, every x ∈ S
belongs to exactly one of the pairs. It follows that |S|= 2s, which is even.

(ii). Assume that the only fixed point of f is x0. Every x ∈ S is either x0, or belongs to
exactly one of the pairs, excluding {x0, f (x0)}= {x0,x0}. Thus, |S|= 1+2(s−1) = 2s−1,
which is odd. ■

Theorem 8.6 Let p be a prime with p ≡ 1 (mod 4). Consider the finite set S = {(x,y,z)∈
Z3
>0 : x2 +4yz = p}. Then the following map f on S,

f (x,y,z) =


(x+2z,z,y− x− z), if x < y− z,
(2y− x,y,x− y+ z), if y− z < x < 2y,
(x−2y,x− y+ z,y), if x > 2y,

is an involution, and it has exactly one fixed point. In particular, |S| is odd.

Proof. We first show that x ̸= y−z and x ̸= 2y for (x,y,z)∈ S. If x = y−z, then p = (y−z)2+
4yz= (y+z)2, which is impossible since p is prime. If x= 2y, then p= (2y)2+4yz= 4y(y+z),
which is also impossible. Thus, we may separate S into three disjoint subsets S1, S2 and
S3 according to (1). x < y− z, (2). y− z < x < 2y, (3). x > 2y.

A direct calculation reveals that for any (x,y,z) ∈ S, f ( f (x,y,z)) = (x,y,z), and hence, f
is an involution. Also, if (x,y,z) ∈ S1, then f (x,y,z) ∈ S3; if (x,y,z) ∈ S2, then f (x,y,z) ∈ S2;
and if (x,y,z) ∈ S3, then f (x,y,z) ∈ S1. Hence, fixed points (x,y,z) are only in S2, with

x = 2y− x, y = y, z = x− y+ z,

namely, x = y. But in this case, p = x2 +4xz = x(x+4z) implies that the only possible x is
x = 1, and hence y = x = 1. Finally, since p ≡ 1 (mod 4), that is, p = 4k+1 with k > 0, we
have the unique fixed point (x,y,z) = (1,1,k). We conclude from Theorem 8.5 that |S| is
odd. ■

Theorem 8.6 immediately yields an alternative proof of Theorem 8.2.
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Second Proof of Theorem 8.2. The set S in Theorem 8.6 also has a trivial involution g
given by g(x,y,z) = (x,z,y). But g must have a fixed point; otherwise, |S| is even by
Theorem 8.5, thereby contradicting Theorem 8.6. But the fixed point of g means that
z = y. Hence, we may find positive integers x and y such that p = x2 +4y2 = x2 +(2y)2. ■

R Don Zagier’s proof was published in (Amer. Math. Monthly 97 (1990), no. 2, 144).
In fact, his involution is a refinement of an equally beautiful argument attributed
to Roger Heath-Brown (Invariant (1984), 2–5). Heath-Brown’s proof, dating back
to 1971, was motivated by his study of J. V. Uspensky and M. A. Heaslet’s book
“Elementary Number Theory” (McGraw-Hill Book Co., Inc., New York, 1939), which
accounts Liouville’s papers on identities for parity functions.

8.4 Fermat’s two-square theorem
Now we are in a position to characterize which integers can be written as the sum of two
squares.

Theorem 8.7 (Fermat’s Two-Square Theorem). A positive integer n can be written as the
sum of two squares if and only if all prime factors p of n with p ≡ 3 (mod 4) have an
even power in the canonical form of n.

Proof. The “only if” part has been shown by Theorem 8.1. For the “if” part, we write in
the canonical form

n = 2α ∏
p≡1 mod 4

pβ ∏
q≡3 mod 4

q2γ .

Here, p runs over all distinct prime factors of n that are congruent to 1 modulo 4, and q
runs over all distinct prime factors of n that are congruent to 3 modulo 4. In particular,
the exponent of each q is even as assumed. Now, note that 2 = 12 +12, that q2 = 02 +q2

for each q, and that p = x2 + y2 for certain integers x and y by Theorem 8.2 for each p. A
repeated application of Lemma 8.3 gives the desired result. ■

8.5 Lagrange’s four-square theorem
Concerning sums of four squares, we first require an analog of Lemma 8.3.

Lemma 8.8 Let x1,y1,z1,w1,x2,y2,z2,w2 ∈ R. Then

(x2
1 + y2

1 + z2
1 +w2

1)(x
2
2 + y2

2 + z2
2 +w2

2)

= (x1x2 + y1y2 + z1z2 +w1w2)
2 +(x1y2 − y1x2 + z1w2 −w1z2)

2

+(x1z2 − y1w2 − z1x2 +w1y2)
2 +(x1w2 + y1z2 − z1y2 −w1x2)

2. (8.2)

Proof. This formula can also be examined by a direct calculation. ■

Theorem 8.9 (Lagrange’s Four-Square Theorem). Every positive integer can be written
as the sum of four squares.

Proof. Note that 1 = 02 +02 +02 +12 and 2 = 02 +02 +12 +12. In view of Lemma 8.8, it
suffices to show that every odd prime can be written as the sum of four squares.
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Recall from Theorem 6.12 that for odd primes p, there exist integers x and y such that
x2 + y2 +1 = mp with 0 < m < p. In other words, there exists an integer m with 0 < m < p
such that the equation

x2 + y2 + z2 +w2 = mp

has an integer solution (x,y,z,w).
Assume that m > 1. We have two cases.
(i). If m is even, then two of the integers x, y, z and w have the same parity, and the

remaining two also have the same parity. Without loss of generality, we assume that x and
y have the same parity, and z and w have the same parity. Thus, the four integers x+ y,
x− y, z+w, z−w are even. Note that if m0 =

m
2 , then 0 < m0 < m. Also,

m0 p =
1
2
(x2 + y2 + z2 +w2)

=

(
x+ y

2

)2

+

(
x− y

2

)2

+

(
z+w

2

)2

+

(
z−w

2

)2

,

a sum of four squares.
(ii). If m is odd, then similar to the first proof of Theorem 8.2, we find x ≡ x0 (mod m)

with |x0| < m
2 , y ≡ y0 (mod m) with |y0| < m

2 , z ≡ z0 (mod m) with |z0| < m
2 and w ≡ w0

(mod m) with |w0|< m
2 . Here, we use strict “<” since m is odd. Therefore, x2

0+y2
0+z2

0+w2
0 <

(m
2 )

2 +(m
2 )

2 +(m
2 )

2 +(m
2 )

2 = m2. Also, we cannot simultaneously have m | x, m | y, m | z and
m | w, and hence, x2

0 + y2
0 + z2

0 +w2
0 > 0. Noting that x2

0 + y2
0 + z2

0 +w2
0 ≡ x2 + y2 + z2 +w2 =

mp ≡ 0 (mod m), we may write x2
0 + y2

0 + z2
0 +w2

0 = m0m with 0 < m0 < m. By Lemma 8.8,

m2m0 p = (mp) · (m0m) = (x2 + y2 + z2 +w2)(x2
0 + y2

0 + z2
0 +w2

0)

= (xx0 + yy0 + zz0 +ww0)
2 +(xy0 − yx0 + zw0 −wz0)

2

+(xz0 − yw0 − zx0 +wy0)
2 +(xw0 + yz0 − zy0 −wx0)

2

=: x̃2 + ỹ2 + z̃2 + w̃2.

Since x ≡ x0 (mod m), y ≡ y0 (mod m), z ≡ z0 (mod m), w ≡ w0 (mod m) and x2 + y2 + z2 +
w2 ≡ 0 (mod m), we find that x̃, ỹ, z̃ and w̃ are all multiples of m. Hence,

m0 p =

(
x̃
m

)2

+

(
ỹ
m

)2

+

(
z̃
m

)2

+

(
w̃
m

)2

,

a sum of two squares.
Finally, noting that in both cases of the above, m0 is a positive integer with m0 < m,

we deduce that x2 + y2 + z2 +w2 = p has an integer solution (x,y,z,w) with recourse to the
method of infinite descent. ■





9. Generating functions

9.1 Generating functions
In the previous lecture, we have shown the existence of a representation as the sum of
four squares for each nonnegative integer n. Now a natural question is how many such
representations do we have? Is there a formula, or at least a nice way, to characterize the
number of such representations for each n?

In general, for {an}n≥0 a sequence of numbers, not necessarily integers, we want to find
a clothesline on which we hang up {an} for display.

Definition 9.1 Let {an}n≥0 be a sequence of numbers. Then the power series

∑
n≥0

anxn = a0 +a1x+a2x2 + · · ·

is called the generating function of {an}.

R Since we are working on infinite series, a natural question is their radii of convergence.
However, this question is usually not very interesting for generating functions, and
in many cases we only treat these power series in a formal way. Nonetheless there
are still occasions on which the radii of convergence should be taken into account,
especially when analytic techniques are applied. For instance, when we want to make
use of Cauchy’s integral formula to recover the coefficients an from its generating
function A(x) = ∑n≥0 anxn:

an =
1

2πi

∮ A(x)
xn+1 dx,

we must be careful about the convergence conditions when choosing the contour.

9.2 Formal power series
Definition 9.2 A formal power series is an expression of the form

a0 +a1x+a2x2 + · · · ,

where the sequence {an}n≥0 is called the sequence of coefficients.
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We say two series A(x) = ∑n≥0 anxn and B(x) = ∑n≥0 bnxn are equal if an = bn for all n ≥ 0.
We can also define the usual operations for formal power series:
▷ Addition/Subtraction:

∑
n≥0

anxn ± ∑
n≥0

bnxn = ∑
n≥0

(an ±bn)xn;

▷ Multiplication by the Cauchy product rule:(
∑
n≥0

anxn

)(
∑
n≥0

bnxn

)
= ∑

n≥0
cnxn, where cn =

n

∑
k=0

akbn−k.

To determine if division works, we need to check if a series has a reciprocal.
Definition 9.3 Given a formal power series ∑n≥0 anxn, we say a series ∑n≥0 bnxn is the
reciprocal of ∑n≥0 anxn if (

∑
n≥0

anxn

)(
∑
n≥0

bnxn

)
= 1.

Theorem 9.1 A formal power series A(x) =∑n≥0 anxn has a reciprocal if and only if a0 ̸= 0.
In this case, the reciprocal is unique.

Proof. (i). If A(x) has a reciprocal, say B(x) = ∑n≥0 bnxn. Then A(x)B(x) = 1. Hence,
a0b0 = 1, which implies that a0 ̸= 0. Further, b0 is uniquely given by 1/a0. Also, for n ≥ 1,
we have 0 = ∑n

k=0 akbn−k. Therefore,

bn =− 1
a0

n

∑
k=1

akbn−k.

By induction, the bn’s are uniquely determined.
(ii). If an ̸= 0, we choose b0 = 1/a0, and iteratively define bn =− 1

a0
∑n

k=1 akbn−k. Then
we get a series B(x) = ∑n≥0 bnxn. It is straightforward to verify that A(x)B(x) = 1, and
hence B(x) is a reciprocal of A(x). ■

■ Example 9.1 We have
(1− x)(1+ x+ x2 + · · ·) = 1.

Hence, the reciprocal of 1− x is given by 1+ x+ x2 + · · · , written as
1

1− x
= 1+ x+ x2 + · · · .

This is exactly identical to what is obtained by applying the Taylor expansion to 1
1−x . ■

Definition 9.4 Let A(x) = ∑n≥0 anxn be a formal power series. Its derivative is the series

A′(x) = ∑
n≥1

nanxn−1.

■ Example 9.2 We know that
ex = ∑

n≥0

xn

n!
.

Now, (
∑
n≥0

xn

n!

)′

= ∑
n≥1

nxn−1

n!
= ∑

n≥1

xn−1

(n−1)!
= ex.

This is exactly identical to (ex)′ = ex. ■
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9.3 Fibonacci numbers
The Fibonacci numbers are named after the Italian mathematician Leonardo of Pisa, later
known as Fibonacci, for his famous “Rabbit Puzzle” in his 1202 book Liber Abaci:

Assume that we have a pair of fictional rabbits:
(i) they produce a new pair of rabbits every month, starting from the second

month that they are alive;
(ii) and the new generations always repeat the trajectory of their parents’ life.

If rabbits never die and continue breeding forever, how many pairs will there
be in one year?

Assume that there are Fn pairs of rabbits after n months, starting with F0 = 0 and
F1 = 1. Now, for Fn with n ≥ 2, the rabbits are from the alive ones of the previous month,
Fn−1 pairs in total, and the newly born rabbits produced by those of at least two-month-old,
Fn−2 pairs in total. Therefore, for n ≥ 2,

Fn = Fn−1 +Fn−2. (9.1)

Theorem 9.2 We have

∑
n≥0

Fnxn =
x

1− x− x2 . (9.2)

Proof. We multiply (9.1) by xn, and sum over n ≥ 2. Then

∑
n≥2

Fnxn = ∑
n≥2

(Fn−1 +Fn−2)xn = x ∑
n≥2

Fn−1xn−1 + x2 ∑
n≥2

Fn−2xn−2 = x ∑
n≥1

Fnxn + x2 ∑
n≥0

Fnxn.

Let f (x) = ∑n≥0 Fnxn. We have

f (x)− (0+ x) = x
(

f (x)−0
)
+ x2 f (x),

or
(1− x− x2) f (x) = x.

This gives the desired result. ■

Can we find an explicit formula for Fn?

Theorem 9.3 For n ≥ 0,

Fn =
1√
5

((
1+

√
5

2

)n

−

(
1−

√
5

2

)n)
(9.3)

Proof. Let α = 1+
√

5
2 and β = 1−

√
5

2 . Then 1− x− x2 = (1−αx)(1−βx). Therefore,

x
1− x− x2 =

x
(1−αx)(1−βx)

=
1

α −β

(
1

1−αx
− 1

1−βx

)
=

1
α −β

(
∑
n≥0

αnxn − ∑
n≥0

β nxn

)
.
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By equating the coefficient of xn, we have

Fn =
αn −β n

α −β
,

which is exactly as desired. ■

In general, we may consider the sequence {Gn}n≥0 with G0 = a, G1 = b, and for n ≥ 2,
Gn = sGn−1 + tGn−2, where a, b, s and t are fixed.

Theorem 9.4 We have

∑
n≥0

Gnxn =
a+bx−asx
1− sx− tx2 . (9.4)

Proof. Note that
∑
n≥2

Gnxn = sx ∑
n≥1

Gnxn + tx2 ∑
n≥0

Gnxn.

Thus,

∑
n≥0

Gnxn − (a+bx) = sx

(
∑
n≥0

Gnxn −a

)
+ tx2 ∑

n≥0
Gnxn,

yielding the desired result. ■

For example, the Lucas numbers Ln, which were introduced by the French mathemati-
cian François Lucas, are given by L0 = 2, L1 = 1, and for n ≥ 2, Ln = Ln−1 +Ln−2.

Theorem 9.5 We have

∑
n≥0

Lnxn =
2− x

1− x− x2 . (9.5)

In particular, for n ≥ 0,

Ln =

(
1+

√
5

2

)n

+

(
1−

√
5

2

)n

. (9.6)

Proof. The first part is the (a,b,s, t) = (2,1,1,1) case of Theorem 9.4. For the second part,
we still write α = 1+

√
5

2 and β = 1−
√

5
2 . Then

2− x
1− x− x2 =

1
1−αx

+
1

1−βx
= ∑

n≥0
αnxn + ∑

n≥0
β nxn.

Equating the coefficient of xn implies the desired result. ■

9.4 Compositions
Generating functions are of significant use in combinatorics. Here, we will take composi-
tions as an example.

Definition 9.5 A composition of a positive integer n is a way of writing n as the sum of
a sequence of positive integers, and the order of these summands matters.

■ Example 9.3 There are four compositions of 3, namely, 3, 2+1, 1+2 and 1+1+1. ■



9.4 Compositions 65

Theorem 9.6 There are 2n−1 compositions of n.

Proof. We represent the integer n by n nodes in a row. Then there are n−1 gaps between
consecutive nodes. Now, let us choose to place a stick at each gap or not, and there are
2n−1 choices. Each choice will induce a unique composition of n by counting the number of
nodes between each pair of consecutive sticks while we assume that there are two invisible
sticks at the two ends. Therefore, there are 2n−1 compositions of n.

For instance, the above diagram gives 2+3+2+1+1, which is a composition of 9. ■

Is it possible to avoid such a combinatorial argument?

Theorem 9.7 Let c(k,n) count the number of compositions of n into k parts. Then

∑
n≥1

c(k,n)xn =

(
x

1− x

)k

. (9.7)

Proof. Let us consider the product

(x+ x2 + · · ·)k = (x+ x2 + · · ·)(x+ x2 + · · ·) · · ·(x+ x2 + · · ·),

where there are k multiplicands. If we expand this product, then the terms are of the
form xn1+n2+···+nk =: xn where each xni comes from the i-th multiplicand. Also, this term
corresponds to a unique composition of n, given by n = n1 + n2 + · · ·+ nk, and there are
exactly k parts in this composition. Hence,

∑
n≥1

c(k,n)xn = (x+ x2 + · · ·)k =

(
x

1− x

)k

,

as required. ■

Theorem 9.8 Let c(n) count the number of compositions of n. Then

∑
n≥1

c(n)xn =
x

1−2x
. (9.8)

In particular, c(n) = 2n−1.

Proof. For the first part, we deduce from Theorem 9.7 that

∑
n≥1

c(n)xn = ∑
k≥1

∑
n≥1

c(k,n)xn = ∑
k≥1

(
x

1− x

)k

=
x

1−x

1− x
1−x

=
x

1−2x
.

Further, x
1−2x = ∑n≥1 2n−1xn. By equating the coefficient of xn, we arrive at the second

part. ■





10. Integer partitions

10.1 Integer partitions
Integer partitions can be viewed as a twin sibling of compositions.

Definition 10.1 An integer partition or a partition of a natural number n is a way of
writing n as the sum of a sequence of positive integers, and the order of these summands
does not matter. We usually denote by p(n) the number of partitions of n, and call
p(n) the partition function.

R Since for a partition λ = (λ1,λ2, . . . ,λℓ) of n, the order of these positive integers does
not matter, we usually assume that they are in weakly decreasing order λ1 ≥ λ2 ≥
·· · ≥ λℓ, as a representative. We also often write a partition as λ = λ1 +λ2 + · · ·+λℓ.

■ Example 10.1 There are five partitions of 4, namely, 4, 3+1, 2+2, 2+1+1 and 1+1+
1+1. Therefore, p(4) = 5. ■

Definition 10.2 Given a partition λ = (λ1,λ2, . . . ,λℓ) of n, usually written as λ ⊢ n, we
call each λi a part of λ ; call n = λ1 +λ2 + · · ·+λℓ the size of λ , denoted by |λ |; and call
the number ℓ of parts the length of λ , denoted by ℓ(λ ).

R We assume that 0 has an empty partition, written as ∅, so p(0) = 1. For the empty
partition ∅, we have |∅| = 0 and ℓ(∅) = 0. Such a convention is beneficial when
dealing with generating functions.

10.2 Generating function for partitions
Another convenient way to represent partitions is through the frequency notation. Given
a partition λ , for each positive integer k, we may count the number fk of occurrences of k
among the parts in λ , and we call fk the frequency of k. Hence, we may represent λ in the
frequency notation 1 f12 f23 f3 · · · , and we often omit the integers whose frequency is zero.
■ Example 10.2 The partition 6+6+5+3+3+3+2+1+1+1+1+1 has the frequency
notation 6251332115. ■
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R When using the frequency notation, it is necessary to avoid confusion with products
of powers.

Taking advantage of the frequency notation, it is easy to determine the generating
function of p(n).

Theorem 10.1 Let p≤N(n) count the number of partitions of n with the largest part at
most N. We have

∑
n≥0

p≤N(n)qn =
N

∏
k=1

1
1−qk . (10.1)

Proof. We expand the multiplicand

1
1−qk = 1+qk +q2k +q3k + · · ·= q0·k +q1·k +q2·k +q3·k + · · · .

Hence, each term q fk·k enumerates the cases where the frequency of k is fk for fk a nonneg-
ative integer. Further, if we expand the finite product ∏N

k=1
1

1−qk , its terms are of the form
q f1·1+ f2·2+···+ fN ·N , corresponding to a unique partition with frequency notation 1 f12 f2 · · ·N fN ,
which also restricts the largest part to be at most N. ■

Letting N → ∞, we immediately see that the generating function of p(n) is given by an
infinite product.

Theorem 10.2 We have

∑
n≥0

p(n)qn = ∏
k≥1

1
1−qk . (10.2)

We may also apply some additional restrictions to the parts.

Theorem 10.3 For any positive integers 0 < a ≤ m, let pa,m(n) count the number of
partitions of n with parts congruent to a modulo m. We have

∑
n≥0

pa,m(n)qn = ∏
k≥0

1
1−qkm+a . (10.3)

Proof. Note that

∑
n≥0

pa,m(n)qn = ∏
k≥0

(
q0·(km+a)+q1·(km+a)+q2·(km+a)+ · · ·

)
= ∏

k≥0

1
1−qkm+a ,

as required. ■

Theorem 10.4 For any positive integer s, let p[s](n) count the number of partitions of n
in which each distinct part appears at most s times, i.e. the frequency satisfies fk ≤ s
for each k. We have

∑
n≥0

p[s](n)q
n = ∏

k≥1

1−q(s+1)k

1−qk . (10.4)
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Proof. Note that

∑
n≥0

p[s](n)q
n = ∏

k≥1

(
q0·k +q1·k + · · ·+qs·k)= ∏

k≥1

(
1−qk

)(
1+q+ · · ·+qsk

)
1−qk = ∏

k≥1

1−q(s+1)k

1−qk ,

as required. ■

10.3 “Odd partitions” vs “Distinct partitions”
Definition 10.3 A partition is called an odd partition if all its parts are odd integers,
and a partition is called an even partition if all its parts are even integers. We denote
by po(n) the number of odd partitions of n, and by pe(n) the number of even partitions
of n.

Taking m= 2, and then a= 1 and 2, respectively, in Theorem 10.3, we have the following
generating function identities.

Theorem 10.5 We have

∑
n≥0

po(n)qn = ∏
k≥1

1
1−q2k−1 , (10.5)

∑
n≥0

pe(n)qn = ∏
k≥1

1
1−q2k . (10.6)

Definition 10.4 A partition is called a distinct partition if all its parts are pairwise
distinct. We denote by pD(n) the number of distinct partitions of n.

From the proof of Theorem 10.4 with s = 1, the following generating function identity
holds.
Theorem 10.6 We have

∑
n≥0

pD(n)qn = ∏
k≥1

(
1+qk). (10.7)

Euler established a well-known result on odd partitions and distinct partitions.

Theorem 10.7 (Euler). For n ≥ 0, we have po(n) = pD(n).

Proof. It suffices to show that po(n) and pD(n) have the same generating function:

∑
n≥0

po(n)qn = ∏
k≥1

1
1−q2k−1 = ∏

k≥1

1
1−q2k−1

1−q2k

1−q2k = ∏
k≥1

1−q2k

1−qk = ∏
k≥1

(
1+qk)= ∑

n≥0
pD(n)qn,

as required. ■

10.4 Ferrers diagrams
We may also represent partitions in a graphical way.

Definition 10.5 A Ferrers diagram represents a partition as patterns of dots, with the
n-th row having the same number of dots as the n-th part of the partition. If we replace
these dots with squares, the graph is often called a Young diagram.

R Ferrers diagrams are named after the British mathematician Norman Macleod Fer-
rers, and Young diagrams are named after the British mathematician Alfred Young.
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■ Example 10.3 The graphical representations of
the partition 5+3+3+2+2+1 are given as fol-
lows — Ferrers diagram (left) and Young diagram
(right): ■

• • • • •

• • •

• • •

• •

• •

•

Definition 10.6 Given a partition λ , its conjugate partition, denoted by λT, is the
partition whose Ferrers diagram is obtained by flipping the diagram of λ along its
main diagonal.

■ Example 10.4 For the partition λ = 5+ 3+ 3+
2+2+1, its conjugate is λT = 6+5+3+1+1. ■

• • • • •

• • •

• • •

• •

• •

•

• • • • • •

• • • • •

• • •

•

•

Theorem 10.8 Let p(N,n) count the number of partitions of n with at most N parts. We
have

∑
n≥0

p(N,n)qn =
N

∏
k=1

1
1−qk . (10.8)

Proof. Note that for any partition with at most N parts, its conjugate is a partition with
the largest part at most N. Hence, p(N,n) = p≤N(n). Recalling Theorem 10.1 gives the
desired result. ■

10.5 Euler’s summations
Note that the above generating functions are represented in the product form. Now we
introduce the q-Pochhammer symbols for notational brevity.

Definition 10.7 Let q ∈ C be such that |q|< 1. Let n ∈ N. The q-Pochhammer symbols
are given by

(A;q)n :=
n−1

∏
k=0

(1−Aqk),

(A;q)∞ := ∏
k≥0

(1−Aqk).

We first present refinements of Theorems 10.2 and 10.6.

Theorem 10.9 Let P be the set of partitions and D be the set of distinct partitions.
We have

∑
λ∈P

zℓ(λ )q|λ | =
1

(zq;q)∞
, (10.9)

∑
λ∈D

zℓ(λ )q|λ | = (−zq;q)∞. (10.10)

Proof. We have

∑
λ∈P

zℓ(λ )q|λ | = ∏
k≥1

(
1+ zqk + z2q2k + · · ·

)
= ∏

k≥1

1
1− zqk =

1
(zq;q)∞

.
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Similarly,

∑
λ∈D

zℓ(λ )q|λ | = ∏
k≥1

(
1+ zqk)= (−zq;q)∞,

as required. ■

Now, our objective is two important summation formulas due to Euler.

Theorem 10.10 (Euler’s Summations). We have

∑
k≥0

zkqk

(q;q)k
=

1
(zq;q)∞

, (10.11)

∑
k≥0

zkq
k(k+1)

2

(q;q)k
= (−zq;q)∞. (10.12)

Proof. For Euler’s first summation, we consider partitions λ = (λ1,λ2, . . . ,λk) ∈ P with
exactly k parts. Then λ1 ≥ λ2 ≥ ·· · ≥ λk ≥ 1. Now we construct a new partition λ ′ =
(λ ′

1,λ ′
2, . . . ,λ ′

k) with λ ′
i = λi − 1. Noting that λ ′

1 ≥ λ ′
2 ≥ ·· · ≥ λ ′

k ≥ 0, we find that λ ′ is a
partition with at most k parts. Since |λ |= |λ ′|+ k, we have

∑
λ∈P

zℓ(λ )q|λ | = ∑
k≥0

zkqk ∑
n≥0

p(k,n)qn = ∑
k≥0

zkqk

(q;q)k
,

where we make use of Theorem 10.8. Recalling (10.9) gives what we want.
For Euler’s second summation, we consider partitions π = (π1,π2, . . . ,πk) ∈ D with

exactly k parts. Then π1 > π2 > · · · > πk ≥ 1. Now, we construct a new partition π ′ =
(π ′

1,π ′
2, . . . ,π ′

k) with π ′
i = πi − (k+ 1− i). Noting that π ′

1 ≥ π ′
2 ≥ ·· · ≥ π ′

k ≥ 0, we find that
π ′ is a partition with at most k parts. Since |π|= |π ′|+(1+2+ · · ·+ k) = |π ′|+ k(k+1)

2 , we
have

∑
π∈D

zℓ(π)q|π| = ∑
k≥0

zkq
k(k+1)

2 ∑
n≥0

p(k,n)qn = ∑
k≥0

zkq
k(k+1)

2

(q;q)k
,

where we also use Theorem 10.8. Recalling (10.10) implies the desired result. ■

R The above proof can also be understood
graphically.

Euler’s first sum:

• • • • •

• • •

• • •

• •

•

•

•

•

•

•

Euler’s second sum:

• • • • • • • • •

• • • • • •

• • • • •

• • •

•

• • • • •

• • • •

• • •

• •

•

10.6 Durfee squares
From the Ferrers diagram of a partition, another important concept can be introduced.

Definition 10.8 Given a partition, its Durfee square is the largest square contained in
its Ferrers diagram.

R Durfee squares are named after the American mathematician William Pitt Durfee,
a student of James Joseph Sylvester.
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■ Example 10.5 The partition 5+ 3+ 3+ 2+ 2+ 1 has a
Durfee square of size 3, as shown in the Ferrers diagram. ■

• • • • •

• • •

• • •

• •

• •

•

Theorem 10.11 We have

∑
k≥0

qk2

(q;q)2
k
=

1
(q;q)∞

. (10.13)

Proof. We consider partitions λ whose Durfee square is of size k. Note that below the
Durfee square, we have a partition µ with the largest part at most k; and that to the right
of the Durfee square, we have a partition ν with at most k parts. Since |λ |= |µ|+ |ν |+k2

where k2 is contributed by the Durfee square, we have

∑
λ∈P

q|λ | = ∑
k≥0

qk2

(
∑
n≥0

p≤k(n)qn

)(
∑
n≥0

p(k,n)qn

)
= ∑

k≥0

qk2

(q;q)2
k
,

where we consult Theorems 10.1 and 10.8. Finally, the desired identity follows from
Theorem 10.2. ■



11. Basic q-series

11.1 q-Binomial series
We start with an identity due to the French mathematician Augustin-Louis Cauchy, which
is also known as the q-binomial series.

Theorem 11.1 (q-Binomial Series). For |q|< 1 and |t|< 1,

∑
n≥0

(a;q)ntn

(q;q)n
=

(at;q)∞

(t;q)∞
. (11.1)

R Taking a = qN in (11.1) with N a positive integer gives ∑n≥0
(qN ;q)ntn

(q;q)n
= 1

(t;q)N
. Further

letting q → 1− implies that

∑
n≥0

(
N +n−1

n

)
tn = (1− t)−N .

This provides an instance of the binomial theorem for negative powers.

Proof. Let us define
F(t) :=

(at;q)∞

(t;q)∞
.

Note that as a function of t, F(t) is analytic inside |t|< 1. Hence, we may expand F(t) as
a power series in t, i.e.

F(t) = ∑
n≥0

fntn.

Clearly, f0 = F(0) = 1. Further, we have

F(tq) =
(atq;q)∞

(tq;q)∞
=

1− t
1−at

· (at;q)∞

(t;q)∞
=

1− t
1−at

·F(t).

Since F(tq) = ∑n≥0 fn(tq)n = ∑n≥0
(

fnqn
)
tn, it follows that

(1−at) ∑
n≥0

(
fnqn)tn = (1− t) ∑

n≥0
fntn.



74 Lecture 11. Basic q-series

Hence, for n ≥ 1, we equate the coefficients of qn on both sides of the above and obtain

fnqn −a fn−1qn−1 = fn − fn−1,

or
fn =

1−aqn−1

1−qn · fn−1.

Iterating the above gives
fn =

(a;q)n

(q;q)n

for n ≥ 0. Substituting these coefficients back into F(t) = ∑n≥0 fntn confirms the required
result. ■

R Euler’s summations (10.11) and (10.12) are indeed special cases of the q-binomial
series. For (10.11), we simply take a = 0 and t = zq in (11.1), and note that for
n ∈ N∪{∞}, (0;q)n = (1− 0)(1− 0 · q) · · ·(1− 0 · qn−1) = 1. For (10.12), we need the
following trickier observation: for any nonnegative integer n,

lim
τ→0

(a/τ;q)nτn = lim
τ→0

τn
n−1

∏
k=0

(
1−aqk/τ

)
= lim

τ→0

n−1

∏
k=0

(
τ −aqk)= n−1

∏
k=0

(
−aqk)= (−a)nq

n(n−1)
2 .

Now, in (11.1), we take a 7→ −zq/t and then let t → 0. Therefore, (10.12) follows.

11.2 Heine’s transformations
The q-binomial series serves as a key to many basic hypergeometric identities. Among
these, Heine’s fundamental transformations are of substantial significance.

Theorem 11.2 (Heine’s Transformations). Let |q|< 1 and |t|< 1. For |b|< 1,

∑
n≥0

(a;q)n(b;q)ntn

(q;q)n(c;q)n
=

(b;q)∞(at;q)∞

(c;q)∞(t;q)∞
∑
n≥0

(c/b;q)n(t;q)nbn

(q;q)n(at;q)n
; (11.2)

For |c|< |b|,

∑
n≥0

(a;q)n(b;q)ntn

(q;q)n(c;q)n
=

(c/b;q)∞(bt;q)∞

(c;q)∞(t;q)∞
∑
n≥0

(abt/c;q)n(b;q)n(c/b)n

(q;q)n(bt;q)n
; (11.3)

For |abt|< |c|,

∑
n≥0

(a;q)n(b;q)ntn

(q;q)n(c;q)n
=

(abt/c;q)∞

(t;q)∞
∑
n≥0

(c/a;q)n(c/b;q)n(abt/c)n

(q;q)n(c;q)n
. (11.4)

R These transformation formulas were first studied by the German mathematician
Eduard Heine (J. Reine Angew. Math. 32 (1846), 210–212).

Proof. We begin with a trivial observation that for any nonnegative integer n,

(α;q)n

(β ;q)n
=

(α;q)∞

(β ;q)∞

(βqn;q)∞

(αqn;q)∞
.
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Now, for (11.2), we have

∑
n≥0

(a;q)n(b;q)ntn

(q;q)n(c;q)n
=

(b;q)∞

(c;q)∞
∑
n≥0

(a;q)ntn

(q;q)n
· (cqn;q)∞

(bqn;q)∞

(by (11.1)) =
(b;q)∞

(c;q)∞
∑
n≥0

(a;q)ntn

(q;q)n
∑

m≥0

(c/b;q)m(bqn)m

(q;q)m

=
(b;q)∞

(c;q)∞
∑

m≥0

(c/b;q)mbm

(q;q)m
∑
n≥0

(a;q)n(tqm)n

(q;q)n

(by (11.1)) =
(b;q)∞

(c;q)∞
∑

m≥0

(c/b;q)mbm

(q;q)m
· (atqm;q)∞

(tqm;q)∞

=
(b;q)∞

(c;q)∞

(at;q)∞

(t;q)∞
∑

m≥0

(c/b;q)mbm

(q;q)m
· (t;q)m

(at;q)m
,

as required. For (11.3), we first take (a,b,c, t) 7→ (t,c/b,at,b) in (11.2). Then

∑
n≥0

(t;q)n(c/b;q)nbn

(q;q)n(at;q)n
=

(c/b;q)∞(bt;q)∞

(at;q)∞(b;q)∞
∑
n≥0

(abt/c;q)n(b;q)n(c/b)n

(q;q)n(bt;q)n
.

Substituting the above into the right-hand side of (11.2) gives

∑
n≥0

(a;q)n(b;q)ntn

(q;q)n(c;q)n
=

(b;q)∞(at;q)∞

(c;q)∞(t;q)∞
· (c/b;q)∞(bt;q)∞

(at;q)∞(b;q)∞
∑
n≥0

(abt/c;q)n(b;q)n(c/b)n

(q;q)n(bt;q)n
,

which is exactly (11.3). Finally, for (11.4), we take (a,b,c, t) 7→ (b,abt/c,bt,c/b) in (11.2).
Then

∑
n≥0

(b;q)n(abt/c;q)n(c/b)n

(q;q)n(bt;q)n
=

(abt/c;q)∞(c;q)∞

(bt;q)∞(c/b;q)∞
∑
n≥0

(c/a;q)n(c/b;q)n(abt/c)n

(q;q)n(c;q)n
.

Substituting the above into the right-hand side of (11.3) gives

∑
n≥0

(a;q)n(b;q)ntn

(q;q)n(c;q)n
=

(c/b;q)∞(bt;q)∞

(c;q)∞(t;q)∞
· (abt/c;q)∞(c;q)∞

(bt;q)∞(c/b;q)∞
∑
n≥0

(c/a;q)n(c/b;q)n(abt/c)n

(q;q)n(c;q)n
,

thereby confirming (11.4). ■

As an important consequence of Heine’s transformations, we have the q-Gauss sum-
mation.
Corollary 11.3 (q-Gauss Summation). For |q|< 1 and |c|< |ab|,

∑
n≥0

(a;q)n(b;q)n

(q;q)n(c;q)n

( c
ab

)n
=

(c/a;q)∞(c/b;q)∞

(c;q)∞(c/(ab);q)∞
. (11.5)

Proof. In Heine’s first transformation (11.2), we take t 7→ c/(ab). Then

∑
n≥0

(a;q)n(b;q)n

(q;q)n(c;q)n

( c
ab

)n
=

(b;q)∞(c/b;q)∞

(c;q)∞(c/(ab);q)∞
∑
n≥0

(c/b;q)n(c/(ab);q)nbn

(q;q)n(c/b;q)n

=
(b;q)∞(c/b;q)∞

(c;q)∞(c/(ab);q)∞
∑
n≥0

(c/(ab);q)nbn

(q;q)n

(by (11.1)) =
(b;q)∞(c/b;q)∞

(c;q)∞(c/(ab);q)∞
· (c/a;q)∞

(b;q)∞
,

which leads to the required identity. ■
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R It is worth pointing out that (10.13) is a special case of the q-Gauss summation by
first taking (a,b,c) 7→ (1/τ,1/τ,q) in (11.5) and then letting τ → 0.

11.3 Jacobi’s triple product identity
Let us take z 7→ z/q in Euler’s two summation formulas (10.11) and (10.12):

∑
k≥0

zk

(q;q)k
=

1
(z;q)∞

, (11.6)

∑
k≥0

zkq
k(k−1)

2

(q;q)k
= (−z;q)∞. (11.7)

From the discussions in the final remark in §11.1, we see that under the assumption of
|q|< 1, (11.6) is true for |z|< 1 and (11.7) is true for any complex z.

Now we shall use them to prove one of the most important q-series identities — Jacobi’s
triple product identity, named after the German mathematician Carl Gustav Jacob Jacobi.

Theorem 11.4 (Jacobi’s Triple Product Identity). For |q|< 1 and z ̸= 0,
∞

∑
n=−∞

(−z)nq
n(n−1)

2 = (z;q)∞(q/z;q)∞(q;q)∞. (11.8)

Proof. We start with (11.7) and deduce that

(−z;q)∞ = ∑
k≥0

zkq
k(k−1)

2

(q;q)k
=

1
(q;q)∞

∑
k≥0

zkq
k(k−1)

2 (qk+1;q)∞.

Note that for j a nonpositive integer, in (q j;q)∞ = (1−q j)(1−q j+1) · · · , one of the factors
is (1− q0) = (1− 1) = 0, thereby yielding (q j;q)∞ = 0 for every such j. It turns out that
the above summation can be extended as a bilateral one,

(−z;q)∞ =
1

(q;q)∞

∞

∑
k=−∞

zkq
k(k−1)

2 (qk+1;q)∞

(by (11.7)) =
1

(q;q)∞

∞

∑
k=−∞

zkq
k(k−1)

2 ∑
ℓ≥0

(−qk+1)ℓq
ℓ(ℓ−1)

2

(q;q)ℓ

=
1

(q;q)∞

∞

∑
k=−∞

∑
ℓ≥0

(−1)ℓ · zk ·q
ℓ(ℓ−1)

2 + k(k−1)
2 +(k+1)ℓ

(q;q)ℓ

=
1

(q;q)∞

∞

∑
k=−∞

∑
ℓ≥0

(−1)ℓ · zk ·q
(ℓ+k)(ℓ+k−1)

2 +ℓ

(q;q)ℓ

=
1

(q;q)∞
∑
ℓ≥0

(−1)ℓz−ℓqℓ

(q;q)ℓ

∞

∑
k=−∞

zℓ+kq
(ℓ+k)(ℓ+k−1)

2

(with n = ℓ+ k) =
1

(q;q)∞
∑
ℓ≥0

(−1)ℓz−ℓqℓ

(q;q)ℓ

∞

∑
n=−∞

znq
n(n−1)

2

(by (11.6)) =
1

(q;q)∞

1
(−q/z;q)∞

∞

∑
n=−∞

znq
n(n−1)

2 .
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Note that in the last equality, we should require |q/z|< 1, or |z|> |q| to pertain the absolute
convergence. However, the entire argument can be carried out again with z replaced by
q/z. Namely, for 0 < |z|< 1,

(−q/z;q)∞ =
1

(q;q)∞(−z;q)∞

∞

∑
n=−∞

z−nq
n(n+1)

2 =
1

(q;q)∞(−z;q)∞

∞

∑
n=−∞

znq
n(n−1)

2 .

Further, {z : |z|> |q|}∪{z : 0< |z|< 1}=C\{0} since |q|< 1. We remark that a simpler way
to get rid of the requirement that |z| > |q| is by invoking analytic continuation. Finally,
we derive from the above that for z ≠ 0,

∞

∑
n=−∞

znq
n(n−1)

2 = (−z;q)∞(−q/z;q)∞(q;q)∞,

thereby yielding the desired result by setting z 7→ −z. ■

A direct consequence of Jacobi’s triple product identity is Euler’s pentagonal number
theorem.
Corollary 11.5 (Euler’s Pentagonal Number Theorem). For |q|< 1,

∞

∑
n=−∞

(−1)nq
n(3n−1)

2 = (q;q)∞. (11.9)

Proof. In (11.8), we take (z,q) 7→ (q,q3). Noting that (q;q3)∞(q2;q3)∞(q3;q3)∞ = (q;q)∞, we
arrive at the desired result. ■

11.4 Ramanujan’s theta function
An important object in the theory of q-series is the theta function introduced by the Indian
mathematician Srinivasa Ramanujan.

Definition 11.1 Ramanujan’s general theta function is defined as

f (a,b) :=
∞

∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 (|ab|< 1). (11.10)

Theorem 11.6 For |ab|< 1,

f (a,b) = (−a;ab)∞(−b;ab)∞(ab;ab)∞. (11.11)

Proof. This is (11.8) with (z,q) 7→ (−a,ab). ■

Two special cases of the general theta function are of particular interest.
Definition 11.2 Ramanujan’s classical theta functions are defined as

ϕ(q) :=
∞

∑
n=−∞

qn2
, (11.12)

ψ(q) := ∑
n≥0

q
n(n+1)

2 . (11.13)
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Theorem 11.7 We have

ϕ(q) =
(q2;q2)5

∞
(q;q)2

∞(q4;q4)2
∞
, (11.14)

ψ(q) =
(q2;q2)2

∞
(q;q)∞

, (11.15)

ϕ(−q) =
(q;q)2

∞
(q2;q2)∞

, (11.16)

ψ(−q) =
(q;q)∞(q4;q4)∞

(q2;q2)∞
. (11.17)

Proof. For (11.14), we note that

ϕ(q) =
∞

∑
n=−∞

qn2
= f (q,q). (11.18)

Hence, it follows from (11.11) that

ϕ(q) = (−q;q2)2
∞(q

2;q2)∞ =
(q2;q4)2

∞
(q;q2)2

∞
(q2;q2)∞ =

(q2;q2)2
∞

(q4;q4)2
∞

(q2;q2)2
∞

(q;q)2
∞

(q2;q2)∞,

as required. For (11.15), we first show that

∑
n≥0

q
n(n+1)

2 =
∞

∑
n=−∞

q2n2−n = f (q,q3). (11.19)

To see this, for the left-hand side, we distinguish the parity of n and write n as 2k and
2k+1 with k ≥ 0. On the other hand, for the right-hand side, we separate n into −k and
k+1, also with k ≥ 0. Then

∑
n≥0

q
n(n+1)

2 = ∑
k≥0

q
(2k)(2k+1)

2 + ∑
k≥0

q
(2k+1)(2k+2)

2 = ∑
k≥0

qk(2k+1)+ ∑
k≥0

q(k+1)(2k+1)

and
∞

∑
n=−∞

q2n2+n = ∑
k≥0

q2(−k)2−(−k)+ ∑
k≥0

q2(k+1)2−(k+1) = ∑
k≥0

qk(2k+1)+ ∑
k≥0

q(k+1)(2k+1),

and thus they are equal. By (11.11), we have

ψ(q) = (−q;q4)∞(−q3;q4)∞(q4;q4)∞ = (−q;q2)∞(q4;q4)∞ =
(q2;q4)∞

(q;q2)∞
(q4;q4)∞

=
(q2;q2)∞

(q4;q4)∞

(q2;q2)∞

(q;q)∞
(q4;q4)∞,

as required. Finally, for (11.16) and (11.17), we note that

(−q;−q)∞ = (1+q)(1−q2)(1+q3)(1−q4) = (−q;q2)∞(q2;q2)∞.

Hence,

(−q;−q)∞ =
(q2;q2)3

∞
(q;q)∞(q4;q4)∞

. (11.20)

Taking q 7→ −q in (11.14) and (11.15), and making use of the above relation, the desired
results follow. ■



12. Sums of squares (II)

12.1 Jacobi’s identity
Here, we record another important implication of Jacobi’s triple product identity.

Theorem 12.1 (Jacobi’s Identity). For |q|< 1,

∑
n≥0

(−1)n(2n+1)q
n(n+1)

2 = (q;q)3
∞. (12.1)

Proof. Recall (11.8):

(z;q)∞(z−1q;q)∞(q;q)∞ =
∞

∑
n=−∞

(−z)nq
n(n−1)

2 .

Note that the product side can be rewritten as

(z;q)∞(z−1q;q)∞(q;q)∞ =−(z−1)(zq;q)∞(z−1q;q)∞(q;q)∞.

For the summation side, we distinguish n as −k and k+1 with k ≥ 0:
∞

∑
n=−∞

(−z)nq
n(n−1)

2 = ∑
k≥0

(−1)kz−kq
k(k+1)

2 − ∑
k≥0

(−1)kzk+1q
k(k+1)

2

=− ∑
k≥0

(−1)k(zk+1 − z−k)q k(k+1)
2 .

Hence,
(z−1)(zq;q)∞(z−1q;q)∞(q;q)∞ = ∑

k≥0
(−1)k(zk+1 − z−k)q k(k+1)

2 .

Now, note that zk+1 − z−k = (z−1)(zk + zk−1 + · · ·+ z−k). We then divide by z−1 on both
sides of the above and obtain

(zq;q)∞(z−1q;q)∞(q;q)∞ = ∑
k≥0

(−1)k(zk + zk−1 + · · ·+ z−k)q k(k+1)
2 .

Finally, taking z = 1 gives the desired result. ■
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12.2 Lambert series
Definition 12.1 Let k be a fixed positive integer. For every natural number n, we denote
by rk(n) the number of representations of n as m2

1 +m2
2 + · · ·+m2

k with all mi integers,
where representations differing only in the sign or order of the mi shall be reckoned as
distinct.

■ Example 12.1 We can represent 5 as

12 +22, (−1)2 +22, 12 +(−2)2, (−1)2 +(−2)2,

22 +12, 22 +(−1)2, (−2)2 +12, (−2)2 +(−1)2.

Hence, r2(5) = 8. ■

Theorem 12.2 Let ϕ(q) be Ramanujan’s theta function as in (11.12). We have

1+ ∑
n≥1

rk(n)qn = ϕ(q)k. (12.2)

Proof. This is a direct consequence of ϕ(q) = ∑∞
n=−∞ qn2 . ■

Now our object is to derive explicit formulas for r2(n) and r4(n). For this purpose, we
require the knowledge of Lambert series, named after the Swiss–German mathematician
Johann Heinrich Lambert.

Definition 12.2 A Lambert series is of the form

∑
k≥1

akqk

1−qk ,

where {ak}k≥1 is a sequence of complex numbers.

Theorem 12.3 Let

∑
n≥1

unqn = ∑
k≥1

k≡r mod m

akqk

1−qk .

Then

un = ∑
d|n

d≡r mod m

ad . (12.3)

Proof. We expand the summand

akqk

1−qk = ak
(
qk +q2k +q3k + · · ·

)
.

Note that qn appears in this series if and only if k | n. Since we are summing over all positive
integers k with k ≡ r (mod m) in the Lambert series, then to compute the coefficient un, we
need to take into account all positive divisors d of n with d ≡ r (mod m), and thus arrive
at the required expression. ■
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Lemma 12.4 We have

d
dx ∏

k
fk(x) =

(
∏

k
fk(x)

)
·∑

k

(
1

fk(x)
· d

dx
fk(x)

)
. (12.4)

Proof. Let F(x) =∏k fk(x). Note that d
dx logF(x) = F ′(x)

F(x) , where F ′(x) denotes the derivative
of F(x). Hence,

F ′(x) = F(x) · d
dx

logF(x) = F(x) · d
dx ∑

k
log fk(x) = F(x) ·∑

k

d
dx

log fk(x) = F(x) ·∑
k

f ′k(x)
fk(x)

,

as required. ■

R This lemma allows us to connect q-Pochhammer symbols with the Lambert series
through differentiation. For instance,

q · d
dq

(q;q)∞ = q · d
dq ∏

k≥1
(1−qk) = q(q;q)∞ ∑

k≥1

−kqk−1

1−qk =−(q;q)∞ ∑
k≥1

kqk

1−qk .

12.3 Jacobi’s two-square formula
Theorem 12.5 (Jacobi’s Two-Square Formula). For n ≥ 1,

r2(n) = 4

 ∑
d|n

d≡1 mod 4

1− ∑
d|n

d≡3 mod 4

1

 . (12.5)

Proof. We begin with Jacobi’s identity (12.1):

(q;q)3
∞ = ∑

n≥0
(−1)n(2n+1)q

n(n+1)
2 = ∑

k≥0
(4k+1)q

(2k)(2k+1)
2 − ∑

k≥0
(4k+3)q

(2k+1)(2k+2)
2

= ∑
k≥0

(4k+1)q2k2+k + ∑
k≥0

(
4(−k−1)+1

)
q2(−k−1)2+(−k−1)

=
∞

∑
n=−∞

(4n+1)q2n2+n.

Hence,

(q;q)3
∞ =

[
d
dz

(
∞

∑
n=−∞

z4n+1q2n2+n

)]
z=1

(by (11.8)) =

[
d
dz

(
z(−z−4q;q4)∞(−z4q3;q4)∞(q4;q4)∞

)]
z=1

(by (12.4)) = (−q;q4)∞(−q3;q4)∞(q4;q4)∞

1− ∑
k≥1

k≡1 mod 4

4qk

1+qk + ∑
k≥1

k≡3 mod 4

4qk

1+qk

 .

In the proof of Theorem 11.7, we have shown that

ψ(q) = (−q;q4)∞(−q3;q4)∞(q4;q4)∞.
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Recalling (11.15) and (11.16), we have

ϕ(−q)2 = 1− ∑
k≥1

k≡1 mod 4

4qk

1+qk + ∑
k≥1

k≡3 mod 4

4qk

1+qk .

Now we take q 7→ −q and derive that

ϕ(q)2 = 1+ ∑
k≥1

k≡1 mod 4

4qk

1−qk − ∑
k≥1

k≡3 mod 4

4qk

1−qk .

Finally, the required result follows by using (12.2) and (12.3). ■

R This proof comes from an unpublished work of the Australian mathematician Michael
Hirschhorn. See also Hirschhorn’s monograph The power of q, Sect. 2.3.

12.4 Jacobi’s four-square formula
Theorem 12.6 (Jacobi’s Four-Square Formula). For n ≥ 1,

r4(n) = 8 ∑
d|n

d ̸≡0 mod 4

d. (12.6)

For its proof, we need a reformulation of (q;q)6
∞.

Lemma 12.7 We have

(q;q)6
∞ =

1
2

∞

∑
s=−∞

qs2
∞

∑
r=−∞

(2r+1)2qr2+r − 1
2

∞

∑
r=−∞

qr2+r
∞

∑
s=−∞

(2s)2qs2
. (12.7)

Proof. We note from Jacobi’s identity (12.1) that

∞

∑
n=−∞

(−1)n(2n+1)q
n(n+1)

2

= ∑
n≥0

(−1)n(2n+1)q
n(n+1)

2 + ∑
n≥0

(−1)−n−1(2(−n−1)+1
)
q

(−n−1)((−n−1)+1)
2

= 2 ∑
n≥0

(−1)n(2n+1)q
n(n+1)

2

= 2(q;q)3
∞.

Hence,

(q;q)6
∞ =

1
4

∞

∑
m,n=−∞

(−1)m+n(2m+1)(2n+1)q
m(m+1)

2 + n(n+1)
2 .

We may further split the sum into two parts, according to whether m and n have the same
parity or not, and obtain

(q;q)6
∞ =

1
4

∞

∑
m,n=−∞

m≡n mod 2

(2m+1)(2n+1)q
m(m+1)

2 + n(n+1)
2
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− 1
4

∞

∑
m,n=−∞

m ̸≡n mod 2

(2m+1)(2n+1)q
m(m+1)

2 + n(n+1)
2 .

For the first sum,
∞

∑
m,n=−∞

m≡n mod 2

(2m+1)(2n+1)q
m(m+1)

2 + n(n+1)
2 ,

we make the following change of variables (so that r and s run over all integers):{
r = m+n

2

s = m−n
2

⇐⇒

{
m = r+ s
n = r− s

.

Similarly, for the second sum,
∞

∑
m,n=−∞

m̸≡n mod 2

(2m+1)(2n+1)q
m(m+1)

2 + n(n+1)
2 ,

we make another change of variables:{
r = m−n−1

2

s = m+n+1
2

⇐⇒

{
m = r+ s
n = s− r−1

.

Thus,

(q;q)6
∞ =

1
4

∞

∑
r,s=−∞

(
(2r+1)2 − (2s)2)qr2+r+s2 − 1

4

∞

∑
r,s=−∞

(
(2s)2 − (2r+1)2)qr2+r+s2

=
1
2

∞

∑
r,s=−∞

(
(2r+1)2 − (2s)2)qr2+r+s2

,

as required. ■

Now we are in a position to prove Theorem 12.6.

Proof of Theorem 12.6. We first reformulate (12.7) and get

(q;q)6
∞ =

1
2

∞

∑
s=−∞

qs2
∞

∑
r=−∞

(2r+1)2qr2+r − 1
2

∞

∑
r=−∞

qr2+r
∞

∑
s=−∞

(2s)2qs2

=
1
2

∞

∑
s=−∞

qs2
∞

∑
r=−∞

qr2+r +2
∞

∑
s=−∞

qs2
∞

∑
r=−∞

(r2 + r)qr2+r −2
∞

∑
r=−∞

qr2+r
∞

∑
s=−∞

s2qs2

=
1
2

∞

∑
s=−∞

qs2
∞

∑
r=−∞

qr2+r +2
∞

∑
s=−∞

qs2 ·q d
dq

∞

∑
r=−∞

qr2+r −2
∞

∑
r=−∞

qr2+r ·q d
dq

∞

∑
s=−∞

qs2
.

Since
∞

∑
n=−∞

qn2
= ϕ(q)

and
∞

∑
n=−∞

qn2+n = 2 ∑
n≥0

qn2+n = 2ψ(q2),

we further have

(q;q)6
∞ = ϕ(q)ψ(q2)+4ϕ(q) ·q d

dq
ψ(q2)−4ψ(q2) ·q d

dq
ϕ(q).
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Now, by Jacobi’s triple product identity (11.8),

ϕ(q) = (−q;q2)2
∞(q

2;q2)∞.

Also, by (11.15),

ψ(q2) =
(q4;q4)2

∞
(q2;q2)∞

=
(q4;q4)2

∞
(q2;q2)∞

(q2;q4)2
∞

(q2;q4)2
∞
=

(q2;q2)∞

(q2;q4)2
∞
.

It is a routine exercise by applying (12.4) to the above two relations that

q
d
dq

ϕ(q) = ϕ(q) ∑
k≥1

(
2(2k−1)q2k−1

1+q2k−1 − 2kq2k

1−q2k

)
and

q
d

dq
ψ(q2) = ψ(q2) ∑

k≥1

(
2(4k−2)q4k−2

1−q4k−2 − 2kq2k

1−q2k

)
.

Therefore,

(q;q)6
∞ = ϕ(q)ψ(q2)

(
1+8 ∑

k≥1

(
(4k−2)q4k−2

1−q4k−2 − (2k−1)q2k−1

1+q2k−1

))
.

Recalling (11.14), (11.15) and (11.16), we have

ϕ(−q)4 = 1+8 ∑
k≥1

(
(4k−2)q4k−2

1−q4k−2 − (2k−1)q2k−1

1+q2k−1

)
.

Finally, we take q 7→ −q and derive that

ϕ(q)4 = 1+8 ∑
k≥1

(
(4k−2)q4k−2

1−q4k−2 +
(2k−1)q2k−1

1−q2k−1

)
= 1+8 ∑

k≥1
k ̸≡0 mod 4

kqk

1−qk .

The desired result follows by applying (12.2) and (12.3). ■

R This proof is also attributed to Hirschhorn (Proc. Amer. Math. Soc. 101 (1987),
no. 3, 436–438).
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13.1 Arithmetic functions
In the previous lectures, we have witnessed functions like the “sum-of-squares” functions
rk(n) that are defined on the positive integers. Such functions are of particular interest in
the study of number theory.

Definition 13.1 An arithmetic function is a complex-valued function that is defined on
the positive integers.

R In G. H. Hardy and E. M. Wright’s Introduction, they also include in their definition
the requirement that an arithmetical function “expresses some arithmetical property
of [each positive integer].”

Recall that we have also encountered multiplicative functions such as Euler’s totient
function and completely multiplicative functions such as the Legendre symbol restricted
to the positive integers.

Definition 13.2 An arithmetic function f is
(i) multiplicative if f (1) = 1 and f (mn) = f (m) f (n) for all positive integers m and n

with (m,n) = 1;
(ii) completely multiplicative if f (1) = 1 and f (mn) = f (m) f (n) for all positive integers

m and n.

R Observe that for any multiplicative function f , we have f (1) = f (1 ·1) = f (1) · f (1).
Hence, there are only two possibilities of f (1), namely, f (1) = 1 or f (1) = 0. However,
if f (1) = 0, then for any positive integer n, we have f (n) = f (1 ·n) = f (1) · f (n) = 0. In
other words, we are led to an arithmetic function that is identical to zero. Therefore,
the restriction that f (1) = 1 is added to exclude the above less interesting function.

Analogously, we may replace the above multiplicative condition with an additive con-
dition.

Definition 13.3 An arithmetic function f is
(i) additive if f (mn) = f (m)+ f (n) for all positive integers m and n with (m,n) = 1;
(ii) completely additive if f (mn) = f (m)+ f (n) for all positive integers m and n.
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R For any additive function f , we always have f (1) = 0.

We list here several simple but important arithmetic functions:
▷ the constant function 1(n), defined by 1(n)= 1 for all n — completely multiplicative;
▷ the identity function id(n), defined by id(n) = n for all n — completely multiplica-

tive;
▷ the unit function ε(n), defined by ε(n) = 1 if n = 1, and 0 otherwise — completely

multiplicative;
▷ the function Ω(n), defined by the total number of prime factors of n (e.g. Ω(1) = 0,

Ω(2) = 1, Ω(4) = 2, Ω(6) = 2, Ω(12) = 3, etc.) — completely additive;
▷ the function ω(n), defined by the number of distinct prime factors of n (e.g. ω(1) = 0,

ω(2) = 1, ω(4) = 1, ω(6) = 2, ω(12) = 2, etc.) — additive.

13.2 Divisor functions
Definition 13.4 For s a given real or complex number, the divisor function σs(n) is
defined by

σs(n) := ∑
d|n

ds,

where the summation runs over all positive divisors of n. In particular, we define

d(n) = σ0(n) = ∑
d|n

1 and σ(n) = σ1(n) = ∑
d|n

d.

Theorem 13.1 Let n = pα1
1 · · · pαr

r be in the canonical form. Then

d(n) =
r

∏
k=1

(αk +1) (13.1)

and for s ̸= 0,

σs(n) =
r

∏
k=1

p(αk+1)s
k −1

ps
k −1

. (13.2)

Proof. Noting that all divisors of n are of the form pβ1
1 · · · pβr

r with 0 ≤ βk ≤ αk for each k,
we have

σs(n) = ∑
d|n

ds =
α1

∑
β1=0

· · ·
αr

∑
βr=0

(
pβ1

1 · · · pβr
r
)s

=
r

∏
k=1

(
1+ ps

k + p2s
k + · · ·+ pαks

k

)
.

We further get (13.1) and (13.2) by using the fact that 1+ ps + · · ·+ pαs equals α + 1 if
s = 0, and p(α+1)s−1

ps−1 if s ̸= 0. ■

Corollary 13.2 For any s, the divisor function σs(n) is multiplicative.

Proof. This is a direct implication of Theorem 13.1. ■

13.3 Möbius function
Recall that ω(n) counts the number of distinct prime factors of n.
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Definition 13.5 An integer n is squarefree if no squares other than 1 divide n; otherwise,
we say n is squareful.

■ Example 13.1 The first several positive squarefree integers are 1, 2, 3, 5, 6, 7, 10, 11, . . .
and the first several positive squareful integers are 4, 8, 9, 12, 16, 18, 20, 24, . . . ■

Definition 13.6 The Möbius function µ(n) is defined by

µ(n) =

{
(−1)ω(n) if n is squarefree,
0 otherwise.

R The Möbius function was introduced by the German mathematician August Ferdi-
nand Möbius (J. Reine Angew. Math. 9 (1832), 105–123).

■ Example 13.2 We have µ(1) = 1, µ(2) =−1, µ(3) =−1, µ(4) = 0, µ(5) =−1, µ(6) = 1,
etc. ■

Theorem 13.3 The Möbius function µ(n) is multiplicative.

Proof. First, we have µ(1) = 1. Let us assume that m and n are such that (m,n) = 1. If one
of m and n is squareful, then mn is also squareful, and hence µ(mn) = 0= µ(m)µ(n). If both
m and n are squarefree, so is mn as (m,n) = 1. Thus, µ(mn) = (−1)ω(mn) = (−1)ω(m)+ω(n) =
µ(m)µ(n) since ω(n) is additive. ■

Theorem 13.4 For n ≥ 1,

∑
d|n

µ(d) =

{
1 if n = 1,
0 if n > 1.

(13.3)

Proof. The formula is trivial when n = 1. For n > 1, we write n in the canonical form
n = pα1

1 · · · pαr
r . Note that it suffices to consider squarefree divisors d of n in the sum

∑d|n µ(d). We have

∑
d|n

µ(d) = µ(1)+µ(p1)+ · · ·+µ(pr)+µ(p1 p2)+ · · ·+µ(pr−1 pr)+ · · ·+µ(p1 · · · pr)

=

(
r
0

)
−
(

r
1

)
+

(
r
2

)
+ · · ·+(−1)r

(
r
r

)
= (1−1)r = 0,

as required. ■

R Recalling the definition of the unit function ε, we have

ε(n) = ∑
d|n

µ(d).
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13.4 Euler’s totient function revisited
Euler’s totient function ϕ(n) was well studied in Sect. 4.2 and later lectures. In particular,
we know that ϕ(n) is multiplicative. Also, we have shown in Theorem 4.5 that

∑
d|n

ϕ(d) = n. (13.4)

Now we establish a formula connecting Euler’s totient function and the Möbius function.

Theorem 13.5 For n ≥ 1,

ϕ(n) = ∑
d|n

µ(d)
n
d
. (13.5)

Proof. By the definition of ϕ(n), we have, with (13.3) applied, that

ϕ(n) =
n

∑
k=1

ε
(
(k,n)

)
=

n

∑
k=1

∑
d|(k,n)

µ(d) =
n

∑
k=1

∑
d|k
d|n

µ(d) = ∑
d|n

µ(d)
n

∑
k=1
d|k

1 = ∑
d|n

µ(d)
n
d
,

as required. ■

13.5 Mangoldt function
In this part, we introduce the Mangoldt function Λ(n) which plays a crucial role in the
study of the distribution of primes.

Definition 13.7 The Mangoldt function Λ(n) is defined by

Λ(n) =

{
log p if n = pα with p a prime and α a positive integer,
0 otherwise.

R The Mangoldt function is named after the German mathematician Hans von Man-
goldt.

■ Example 13.3 We have Λ(1) = 0, Λ(2) = log2, Λ(3) = log3, Λ(4) = log2, Λ(5) = log5,
Λ(6) = 0, etc. ■

R The Mangoldt function Λ(n) is neither multiplicative nor additive, for Λ(6) ̸=Λ(2)Λ(3)
and Λ(6) ̸= Λ(2)+Λ(3).

Theorem 13.6 For n ≥ 1,

logn = ∑
d|n

Λ(d). (13.6)

Proof. This formula is trivial when n = 1. For n > 1, we write n in the canonical form
n = pα1

1 · · · pαr
r . Then

∑
d|n

Λ(d) =
r

∑
k=1

(
Λ(pk)+Λ(p2

k)+ · · ·+Λ(pαk
k )
)
=

r

∑
k=1

αk log pk =
r

∑
k=1

log pαk
k = logn,

as desired. ■
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Theorem 13.7 For n ≥ 1,

Λ(n) =−∑
d|n

µ(d) logd. (13.7)

Proof. The relation is trivial when n = 1. Also, if n = pα with p a prime and α a positive
integer, we have

− ∑
d|pα

µ(d) logd =−µ(1) log1−µ(p) log p = log p = Λ(pα).

Now we assume that n is written in the canonical form n = pα1
1 · · · pαr

r with r ≥ 2. Then

−∑
d|n

µ(d) logd = ∑
1≤i≤r

log pi − ∑
1≤i< j≤r

log pi p j

+ ∑
1≤i< j<k≤r

log pi p j pk −·· ·+(−1)r−1 log p1 p2 · · · pr.

Note that logxy= logx+ logy. We then find that in the summation ∑1≤i≤r log pi, each log pℓ
appears 1=

(r−1
0

)
time; in the summation ∑1≤i< j≤r log pi p j, each log pℓ appears r−1=

(r−1
1

)
times; in the summation ∑1≤i< j<k≤r log pi p j pk, each log pℓ appears

(r−1
2

)
times, etc. Hence,

−∑
d|n

µ(d) logd =
r

∑
ℓ=1

((
r−1

0

)
−
(

r−1
1

)
+

(
r−1

2

)
−·· ·+(−1)r−1

(
r−1
r−1

))
log pℓ

=
r

∑
ℓ=1

(1−1)r−1 log pℓ = 0.

However, for n = pα1
1 · · · pαr

r with r ≥ 2, we also have Λ(n) = 0 by definition. The desired
identity holds. ■

Corollary 13.8 For n ≥ 1,

Λ(n) = ∑
d|n

µ(d) log
n
d
. (13.8)

Proof. Note that

∑
d|n

µ(d) log
n
d
= ∑

d|n
µ(d)

(
logn− logd

)
= (logn)∑

d|n
µ(d)−∑

d|n
µ(d) logd.

Since (logn)∑d|n µ(d) = (logn) ·ε(n) = 0 for every n ≥ 1, we arrive at the required result by
recalling (13.7). ■





14. Möbius inversion formula

14.1 Möbius inversion formula
The pair of relations (13.4) and (13.5), and the pair of relations (13.6) and (13.8) are
indeed special cases of a general phenomenon, known as the Möbius inversion.

Theorem 14.1 (Möbius Inversion Formula). Let f (n) and g(n) be arithmetic functions. If

g(n) = ∑
d|n

f (d) (14.1)

then

f (n) = ∑
d|n

µ(d)g
(n

d

)
, (14.2)

and vice versa.

R In (13.4) and (13.5), we have f = ϕ and g = id; in (13.6) and (13.8), we have f = Λ
and g = log.

Proof. We first prove (14.2) by (14.1). Note that

∑
d|n

µ(d)g
(n

d

)
= ∑

d|n
µ(d) ∑

d′| n
d

f (d′) = ∑
d,d′

dd′|n

µ(d) f (d′)

= ∑
d′|n

f (d′) ∑
d| n

d′

µ(d) = ∑
d′|n

f (d′)ε
( n

d′

)
= f (n),

where we make use of (13.3). Conversely, to show (14.1) from (14.2), we first require the
trivial fact that for any arithmetic function a(n),

∑
d|n

a(d) = ∑
d|n

a
(n

d

)
.

Rewriting (14.2) as
f (n) = ∑

d|n
µ
(n

d

)
g(d),
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it follows that

∑
d|n

f (d) = ∑
d|n

f
(n

d

)
= ∑

d|n
∑
d′| n

d

µ
(

n/d
d′

)
g(d′) = ∑

d,d′

dd′|n

µ
( n

dd′

)
g(d′)

= ∑
d′|n

g(d′) ∑
d| n

d′

µ
(

n/d′

d

)
= ∑

d′|n
g(d′) ∑

d| n
d′

µ(d) = ∑
d′|n

g(d′)ε
( n

d′

)
= g(n),

where (13.3) is also applied. ■

There is a slightly different type of Möbius inversion formula working for functions
defined on real x > 0. Below, in the summation ∑n≤x, the index n runs over all positive
integers no larger than x.

Theorem 14.2 Let F(x) and G(x) be functions defined on real x > 0. If

G(x) = ∑
n≤x

F
( x

n

)
(14.3)

then

F(x) = ∑
n≤x

µ(n)G
( x

n

)
, (14.4)

and vice versa.

Proof. We first prove (14.4) by (14.3). Note that

∑
n≤x

µ(n)G
( x

n

)
= ∑

n≤x
µ(n) ∑

m≤ x
n

F
(

x/n
m

)
= ∑

m,n
mn≤x

µ(n)F
( x

mn

)
(with N = mn) = ∑

N≤x
F
( x

N

)
∑
n|N

µ(n) = ∑
N≤x

F
( x

N

)
ε(N) = F(x).

Conversely, to show (14.3) from (14.4), we have

∑
n≤x

F
( x

n

)
= ∑

n≤x
∑

m≤ x
n

µ(m)G
(

x/n
m

)
= ∑

m,n
mn≤x

µ(m)G
( x

mn

)
(with N = mn) = ∑

N≤x
G
( x

N

)
∑
m|N

µ(m) = ∑
N≤x

G
( x

N

)
ε(N) = G(x),

as required. ■

14.2 Multiplicative Möbius inversion formula
Another important variant of Möbius inversion formula is in the multiplicative notation.

Theorem 14.3 Let f (n) and g(n) be arithmetic functions such that f (n) ̸= 0 and g(n) ̸= 0
for all n. If

g(n) = ∏
d|n

f (d) (14.5)



14.3 Dirichlet convolutions 93

then

f (n) = ∏
d|n

g
(n

d

)µ(d)
, (14.6)

and vice versa.

Proof. We first prove (14.6) by (14.5). Note that

∏
d|n

g
(n

d

)µ(d)
= ∏

d|n

(
∏
d′| n

d

f (d′)

)µ(d)
= ∏

d|n
∏
d′| n

d

f (d′)µ(d) = ∏
d′|n

∏
d| n

d′

f (d′)µ(d)

= ∏
d′|n

f (d′)
∑d| n

d′
µ(d)

= ∏
d′|n

f (d′)ε(n/d′) = f (n).

Conversely, to show (14.5) from (14.6), we have

∏
d|n

f (d) = ∏
d|n

f
(n

d

)
= ∏

d|n
∏
d′| n

d

g(d′)
µ
(

n/d
d′

)
= ∏

d′|n
∏
d| n

d′

g(d′)µ( n
dd′ )

= ∏
d′|n

g(d′)
∑d| n

d′
µ
(

n/d′
d

)
= ∏

d′|n
g(d′)

∑d| n
d′

µ(d)
= ∏

d′|n
g(d′)ε(n/d′) = g(n),

as required. ■

R Intuitively, for positive-valued f and g, we may define f̃ (n) = log f (n) and g̃(n) =
logg(n). By taking logarithm in (14.5) and (14.6), their equivalence becomes

g̃(n) = ∑
d|n

f̃ (d) ⇐⇒ f̃ (n) = ∑
d|n

µ(d)g̃
(n

d

)
,

which is exactly the usual Möbius inversion formula.

14.3 Dirichlet convolutions
The Möbius inversion formula can be further understood in a more abstract way, through
Dirichlet convolutions, named after the German mathematician Peter Gustav Lejeune
Dirichlet.

Definition 14.1 For arithmetic functions f and g, their Dirichlet convolution is defined
to be an arithmetic function h with

h(n) = ∑
d|n

f (d)g
(n

d

)
,

where the summation runs over all positive divisors of n. We write

h = f ∗g.

The Dirichlet convolution satisfies the following algebraic properties.

Theorem 14.4 For any arithmetic functions u, v and w, we have
(i) u∗ v = v∗u (commutative law);
(ii) (u∗ v)∗w = u∗ (v∗w) (associative law).
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Proof. It is straightforward to verify that

(u∗ v)(n) = (v∗u)(n) = ∑
a,b

ab=n

u(a)v(b)

and (
(u∗ v)∗w

)
(n) =

(
u∗ (v∗w)

)
(n) = ∑

a,b,c
abc=n

u(a)v(b)w(c),

where a, b and c run over positive integers. ■

Theorem 14.5 Let ε be the unit function. For any arithmetic function f , we have
f ∗ ε = ε ∗ f = f .

Proof. We have
( f ∗ ε)(n) = (ε ∗ f )(n) = ∑

d|n
f (d)ε

(n
d

)
= f (n),

as required. ■

Theorem 14.6 Let f be an arithmetic function with f (1) ̸= 0. Then there exists a unique
arithmetic function g such that f ∗g = g∗ f = ε. Moreover, g is given by

g(1) =
1

f (1)
(14.7)

and for n ≥ 2,

g(n) =− 1
f (1) ∑

d|n
d<n

f
(n

d

)
g(d). (14.8)

Proof. First, we note that ( f ∗g)(1) = f (1)g(1) = ε(1) = 1 gives g(1) = 1/ f (1). For n ≥ 2,
we have ε(n) = 0, and hence,

0 = ( f ∗g)(n) = (g∗ f )(n) = ∑
d|n

f
(n

d

)
g(d) = f (1)g(n)+ ∑

d|n
d<n

f
(n

d

)
g(d).

Hence, we may iteratively determine the unique g(n) by (14.8). ■

Definition 14.2 Given an arithmetic function f with f (1) ̸= 0, we call the unique arith-
metic function g such that f ∗ g = g ∗ f = ε the Dirichlet inverse of f , denoted by
g = f−1.

Theorem 14.7 For any arithmetic functions with f (1) ̸= 0 and g(1) ̸= 0, we have ( f ∗
g)−1 = f−1 ∗g−1.

Proof. We have ( f ∗g)∗ ( f−1 ∗g−1) = ( f ∗ f−1)∗ (g∗g−1) = ε ∗ ε = ε, as required. ■

R In the language of group theory, the set of arithmetic functions f with f (1) ̸= 0 forms
an abelian group under the operation “∗” (Dirichlet convolution), and the identity
element of this group is the unit function ε.
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Corollary 14.8 The Möbius function µ and the constant function 1 are Dirichlet inverses
of one another.

Proof. We simply rewrite the relation (13.3), ∑d|n µ(d) = ε(n), in terms of the Dirichlet
convolution, and find that µ ∗1 = ε, thereby yielding the desired result. ■

R We may also interpret the Möbius inversion formula in this setting by noting that
the Möbius inversion is exactly the equivalence

g = f ∗1 ⇐⇒ f = g∗µ.

This is trivial since if g = f ∗1, then g∗µ = ( f ∗1)∗µ = f ∗ (µ ∗1) = f ∗ ε = f ; and if
f = g∗µ, then f ∗1 = (g∗µ)∗1 = g∗ (µ ∗1) = g∗ ε = g.

Now we consider Dirichlet convolutions on multiplicative functions.

Theorem 14.9 If f and g are multiplicative functions, so is their Dirichlet convolution
f ∗g.

Proof. We write h = f ∗ g. Let m and n be positive integers with (m,n) = 1. We use the
fact that if d | mn, then we may uniquely write d = ab with a | m and b | n. In particular,
(a,b) = 1 and (m

a ,
n
b) = 1. Now,

h(mn) = ∑
d|mn

f (d)g
(mn

d

)
= ∑

a|m,b|n
f (ab)g

(mn
ab

)
= ∑

a|m,b|n
f (a) f (b)g

(m
a

)
g
(n

b

)
= ∑

a|m
f (a)g

(m
a

)
∑
b|n

f (b)g
(n

b

)
= h(m)h(n).

Hence, h = f ∗g is multiplicative. ■

Theorem 14.10 If f is a multiplicative function, so is its Dirichlet inverse f−1.

Proof. Noting that f is multiplicative, we have f (1) = 1, and hence f−1(1) = 1
f (1) = 1.

Now we shall show that for every positive integer N, f−1(N) = f−1(m) f−1(n) holds for any
positive integers m and n with (m,n) = 1 and mn = N. We argue by induction on N. The
base case N = 1 is confirmed by the fact that f−1(1) = 1. Assume that the claim is true
for 1, . . . ,N −1 with N ≥ 2, and we shall prove the case of N. Note that

ε(N) = ( f−1 ∗ f )(mn) = ∑
a|m,b|n

f−1(ab) f
(mn

ab

)
= f−1(mn) f (1)+ ∑

a|m,b|n
ab<N

f−1(ab) f
(mn

ab

)
(induc. assump.) = f−1(mn) f (1)+ ∑

a|m,b|n
ab<N

f−1(a) f−1(b) f
(m

a

)
f
(n

b

)
= f−1(mn) f (1)− f−1(m) f−1(n) f (1) f (1)+ ∑

a|m,b|n
f−1(a) f−1(b) f

(m
a

)
f
(n

b

)
= f−1(N)− f−1(m) f−1(n)+( f−1 ∗ f )(m)( f−1 ∗ f )(n)

= f−1(N)− f−1(m) f−1(n)+ ε(N),

thereby implying that f−1(N) = f−1(m) f−1(n), as required. ■
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R The set of multiplicative functions forms a subgroup of the group of all arithmetic
functions f with f (1) ̸= 0 under the Dirichlet convolution.

14.4 Ramanujan’s sums
We first adopt a conventional notation in analytic number theory.

Definition 14.3 For any complex number τ, we define

e(τ) := e2πiτ .

A trivial fact about this function is that for any integer k,

e(τ + k) = e(τ), (14.9)

since e2πi(τ+k) = e2πiτ · e2kπi = e2πiτ .
Now we introduce Ramanujan’s sums, which are crucial in, for instance, the proof of

I. M. Vinogradov’s theorem (Recueil Math. 2 (1937), 179–195) that every sufficiently large
odd number is the sum of three primes.

Definition 14.4 For q and n positive integers, Ramanujan’s sums are defined by

cq(n) := ∑
1≤a≤q
(a,q)=1

e
(

an
q

)
.

R Ramanujan’s sums were introduced by Ramanujan (Trans. Cambridge Philos. Soc.
22 (1918), no. 13, 259–276).

We introduce another sum for q and n positive integers:

ηq(n) := ∑
1≤a≤q

e
(

an
q

)
.

Lemma 14.11 For positive integers q and n,

ηq(n) =

{
q if q | n,
0 if q ∤ n.

(14.10)

In particular, for positive integers s and t with (s, t) = 1, we have ηs(n)ηt(n) = ηst(n).

Proof. Let d = (q,n), and write q = q′d and n = n′d. Noting that (q′,n′) = 1, we have
{an′ : 1 ≤ a ≤ q′} forms a complete system modulo q′. Now,

ηq(n) = ∑
1≤a≤q

e
(

an
q

)
= ∑

1≤a≤q′d
e
(

an′

q′

)
= d ∑

1≤a≤q′
e
(

an′

q′

)
= d ∑

1≤a≤q′
e
(

a
q′

)
,

where we use (14.9) in the second last equality. Note that

∑
1≤a≤q′

e
(

a
q′

)
=

{
1 if q′ = 1,
0 if q′ > 1.

Finally, we use the fact that q′ = 1 if and only if q = d = (q,n), namely, q | n, as desired.
The second part is a direct consequence of (14.10). ■
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Now we establish a relation between cq(n) and ηq(n).

Theorem 14.12 For positive integers q and n,

ηq(n) = ∑
d|q

cd(n). (14.11)

Proof. We use the fact that {a
q : 1 ≤ a ≤ q}= ∪d|q{ b

d : 1 ≤ b ≤ d and (b,d) = 1}, by simpli-
fying each a

q to its irreducible expression. Hence,

∑
1≤a≤q

e
(

an
q

)
= ∑

d|q
∑

1≤b≤d
(b,d)=1

e
(

bn
d

)
,

as required. ■

Let us treat ηq(n) and cq(n) as functions in q with n fixed, and define H(q) := ηq(n)
and C(q) := cq(n) for clarity. Then we may paraphrase (14.11) as

H =C ∗1, (14.12)

and equivalently,

C = H ∗µ. (14.13)

Corollary 14.13 Let n be a positive integer. For positive integers s and t with (s, t) = 1,

cs(n)ct(n) = cst(n). (14.14)

Proof. We use Theorem 14.9 by noting that both H and µ are multiplicative. ■

Corollary 14.14 For positive integers q and n,

cq(n) = ∑
d|q,d|n

µ
(q

d

)
d. (14.15)

Proof. Note that (14.13) can be explicitly written as

cq(n) = ∑
d|q

µ
(q

d

)
ηd(n).

The desired relation follows with recourse to (14.10). ■

Theorem 14.15 For positive integers q and n,

cq(n) = µ
(

q
(q,n)

)
ϕ(q)

ϕ
(

q
(q,n)

) . (14.16)

Proof. For convenience, we write

Rq(n) := µ
(

q
(q,n)

)
ϕ(q)

ϕ
(

q
(q,n)

) . (14.17)
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Let n be an arbitrary positive integer. Note that c1(n) = R1(n). Also, let s and t be such
that (s, t) = 1. Then (st,n) = (s,n) · (t,n) and

( s
(s,n) ,

t
(t,n)

)
= 1. Thus,

Rst(n) = µ
(

st
(st,n)

)
ϕ(st)

ϕ
(

st
(st,n)

) = µ
(

s
(s,n)

)
µ
(

t
(t,n)

)
ϕ(s)ϕ(t)

ϕ
(

s
(s,n)

)
ϕ
(

t
(t,n)

) = Rs(n)Rt(n).

Recalling (14.14), it suffices to prove for prime powers pα that cpα (n) = Rpα (n). Finally, it
is straightforward to compute from (14.15) and (14.17) that

cpα (n) = Rpα (n) =


pα − pα−1 if (pα ,n) = pα ,

−pα−1 if (pα ,n) = pα−1,

0 otherwise.

The desired relation holds. ■



15. Average of arithmetic functions

15.1 Asymptotic relations
Given an arithmetic function f , one of the basic problems in analytic number theory
concerns the asymptotic analysis of the partial sum

∑
n≤x

f (n)

where the summation runs over all positive integers no larger than x. Meanwhile, we
are also often interested in the behavior of

∑
p≤x

f (p)

in which the index p means that we are summing over primes no larger than x.
To begin with, we introduce some useful notations for asymptotic analysis.

Definition 15.1 (Bachmann–Landau Notations).
▷ The big O notation f (x) = O(g(x)) means that there exists a constant C such that

| f (x)| ≤C|g(x)|;
▷ The small o notation f (x) = o(g(x)) means that lim f (x)/g(x) = 0.

R Big O and small o belong to a family of notations invented by the German mathe-
maticians Paul Bachmann and Edmund Landau.

Definition 15.2 (Vinogradov Notations).
▷ The notation f (x)≪ g(x) means that f (x) = O(g(x));
▷ The notation f (x)≫ g(x) means that g(x)≪ f (x).

R The two notations were introduced by the Russian mathematician Ivan Matveevich
Vinogradov.

Definition 15.3
▷ The asymptotic equivalence symbol f (x)∼ g(x) means that lim f (x)/g(x) = 1;
▷ The order of magnitude estimate symbol f (x) ≍ g(x) means that both f (x)≪ g(x)

and g(x) ≪ f (x) hold. Equivalently, there exist constants C1 and C2 such that
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C1|g(x)| ≤ | f (x)| ≤C2|g(x)|.

15.2 Abel’s summation formula
On many occasions, a partial sum can be nicely estimated by comparing it with an integral.
To do so, a summation formula due to the Norwegian mathematician Niels Henrik Abel,
and especially its special case that was obtained earlier by Euler, play a crucial role.

Definition 15.4 We denote by ⌊x⌋ the largest integer not exceeding x, and by {x} :=
x−⌊x⌋.

Theorem 15.1 (Abel’s Summation Formula). Let a :Z>0 →C be an arithmetic function, let
0 < y < x be real numbers, and let f : [y,x]→C be a function with continuous derivative
f ′ on the interval [y,x]. Then

∑
y<n≤x

a(n) f (n) = A(x) f (x)−A(y) f (y)−
∫ x

y
A(t) f ′(t)dt, (15.1)

where A(t) = ∑n≤t a(n).

Proof. We start by observing that A(t) = A(⌊t⌋) and A(t +1)−A(t) = a(⌊t⌋+1). It is also
straightforward to see that if there is no integer in the interval (y,x], both sides of (15.1) are
zero. Now we assume that there is at least one integer in (y,x], and evaluate the integral
on the right-hand side of (15.1):∫ x

y
A(t) f ′(t)dt =

(∫ ⌊y⌋+1

y
+
∫ ⌊y⌋+2

⌊y⌋+1
+ · · ·+

∫ ⌊x⌋

⌊x⌋−1
+
∫ x

⌊x⌋

)
A(t) f ′(t)dt

= A(y)
(

f (⌊y⌋+1)− f (y)
)
+A(y+1)

(
f (⌊y⌋+2)− f (⌊y⌋+1)

)
+ · · ·

+A(x−1)
(

f (⌊x⌋)− f (⌊x⌋−1)
)
+A(x)

(
f (x)− f (⌊x⌋)

)
= A(x) f (x)−A(y) f (y)−

(
A(y+1)−A(y)

)
f (⌊y⌋+1)−·· ·

−
(
A(x)−A(x−1)

)
f (⌊x⌋)

= A(x) f (x)−A(y) f (y)−a(⌊y⌋+1) f (⌊y⌋+1)−·· ·−a(⌊x⌋) f (⌊x⌋)
= A(x) f (x)−A(y) f (y)− ∑

y<n≤x
a(n) f (n),

as required. ■

R A more advanced way to think of Abel’s summation formula is by means of the
Riemann–Stieltjes integral:

∑
y<n≤x

a(n) f (n) =
∫ x

y
f (t)dA(t)

= f (x)A(x)− f (y)A(y)−
∫ x

y
A(t)d f (t),

where we use integration by parts for the second equality.

It is particularly useful to choose a(n) = 1 for all n in Abel’s summation formula, and
then observe that

A(t) = ∑
n≤t

1 = ⌊t⌋.

We may recover a summation formula due to Euler.
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Corollary 15.2 (Euler’s Summation Formula). Let 0 < y < x be real numbers, and let f :
[y,x]→ C be a function with continuous derivative f ′ on the interval [y,x]. Then

∑
y<n≤x

f (n) =
∫ x

y
f (t)dt +

∫ x

y
{t} f ′(t)dt +{y} f (y)−{x} f (x). (15.2)

Proof. By choosing a(n) = 1 for all n in (15.1), we have

∑
y<n≤x

f (n) = ⌊x⌋ f (x)−⌊y⌋ f (y)−
∫ x

y
⌊t⌋ f ′(t)dt.

Also, it follows from integration by parts that∫ x

y
f (t)dt = f (x)− f (y)−

∫ x

y
t f ′(t)dt.

Combining the above two relations gives (15.2) by recalling that {x}= x−⌊x⌋. ■

In the sequel, we present some applications of Euler’s summation formula. Here,

γ := lim
x→∞

(
∑
n≤x

1
n
− logx

)
= 1−

∫ ∞

1

{t}
t2 dt = 0.577215 · · ·

is the Euler–Mascheroni constant, named after Euler and the Italian mathematician
Lorenzo Mascheroni;

ζ (s) := ∑
n≥1

1
ns

with s a complex number such that ℜ(s)> 1 is the Riemann zeta function which is abso-
lutely convergent in this half-plane.

Theorem 15.3 As x → ∞,

(i) ∑
n≤x

1
n
= logx+ γ +O(x−1);

(ii) ∑
n≤x

1
ns = ζ (s)+O(x1−s) if ℜ(s)> 1;

(iii) ∑
n≤x

1
ns =

x1−s

1− s
+O(1) if 0 < ℜ(s)≤ 1 and s ̸= 1;

(iv) ∑
n≤x

nα =
xα+1

α +1
+O(xα) if ℜ(α)≥ 0.

R Parts (ii) and (iii) can be improved uniformly. It is known that the Riemann zeta
function has an analytic continuation to C\{1}. In particular, we will show in The-
orem 18.2 that, for s ̸= 1 with 0 < ℜ(s)≤ 1, ζ (s) is continued analytically as

ζ (s) =
s

s−1
− s
∫ ∞

1

{t}
ts+1 dt.

Mimicking the proof of Part (iii) with Euler’s summation formula applied with f (t) =
t−s for all complex s ̸= 1 with ℜ(s)> 0, we have

∑
n≤x

1
ns =

x1−s

1− s
+ζ (s)+O(x−s).

This is left as an exercise.
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Proof. (i). We take f (t) = t−1 in Euler’s summation formula and find that

∑
n≤x

1
n
=
∫ x

1−

dt
t
−
∫ x

1−

{t}
t2 dt +1− {x}

x
= logx−

∫ x

1

{t}
t2 dt +1+O(x−1)

= logx+1−
∫ ∞

1

{t}
t2 dt +

∫ ∞

x

{t}
t2 dt +O(x−1) = logx+ γ +O(x−1),

since
∫ ∞

x
{t}
t2 dt ≪

∫ ∞
x

1
t2 dt = x−1.

(ii). We directly note that, for ℜ(s)> 1,

∑
n≤x

1
ns = ζ (s)− ∑

n>x

1
ns = ζ (s)+O

(∫ ∞

x

dt
ts

)
= ζ (s)+O(x1−s).

(iii). With f (t) = t−s where 0 < ℜ(s)≤ 1 and s ̸= 1, we know from Euler’s summation
formula that

∑
n≤x

1
ns =

∫ x

1−

dt
ts − s

∫ x

1−

{t}
ts+1 dt +1− {x}

xs =
∫ x

1

dt
ts +O(1) =

x1−s

1− s
+O(1).

(iv). With f (t) = tα where ℜ(α)≥ 0, Euler’s summation formula gives us that

∑
n≤x

nα =
∫ x

1−
tαdt +α

∫ x

1−
{t}tα−1dt +1−{x}xα =

∫ x

1
tαdt +O(xα) =

xα+1

α +1
+O(xα),

as required. ■

15.3 Average order of σ(n)

Theorem 15.4 As x → ∞,

∑
n≤x

σ(n) =
ζ (2)

2
x2 +O(x logx). (15.3)

Proof. We have

∑
n≤x

σ(n) = ∑
n≤x

∑
m|n

m = ∑
m,d

md≤x

m = ∑
d≤x

∑
m≤ x

d

m = ∑
d≤x

1
2

⌊ x
d

⌋(⌊ x
d

⌋
+1
)

=
1
2 ∑

d≤x

( x
d

)2
+O

(
∑
d≤x

x
d

)
=

ζ (2)
2

x2 +O(x logx),

where we make use of Theorem 15.3, Parts (i) and (ii). ■

Theorem 15.5 Let α ̸= 1 be a complex number with ℜ(α)> 0. As x → ∞,

∑
n≤x

σα(n) =
ζ (α +1)

α +1
xα+1 +O(xmax{1,ℜ(α)}). (15.4)

Proof. We have

∑
n≤x

σα(n) = ∑
n≤x

∑
m|n

mα = ∑
m,d

md≤x

mα = ∑
d≤x

∑
m≤ x

d

mα = ∑
d≤x

(
( x

d )
α+1

α +1
+O

(( x
d

)α))
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=
xα+1

α +1 ∑
d≤x

1
dα+1 +O

(
∑
d≤x

xα

dα

)
=

(
ζ (α +1)

α +1
xα+1 +O(x)

)
+O(xmax{1,ℜ(α)}),

where we make use of Theorem 15.3, Parts (ii), (iii) and (iv). ■

15.4 Average order of ϕ(n)
Theorem 15.6 As x → ∞,

∑
n≤x

ϕ(n) =
1

2ζ (2)
x2 +O(x logx). (15.5)

Proof. We recall (13.5) and obtain

∑
n≤x

ϕ(n) = ∑
n≤x

∑
d|n

µ(d)
n
d
= ∑

m,d
md≤x

µ(d)m = ∑
d≤x

µ(d) ∑
m≤ x

d

m = ∑
d≤x

µ(d)
2

(( x
d

)2
+O

( x
d

))

=
x2

2 ∑
d≤x

µ(d)
d2 +O

(
∑
d≤x

x
d

)
=

x2

2 ∑
d≤x

µ(d)
d2 +O(x logx).

Finally, we will show later in Example 16.4 that

∑
d≥1

µ(d)
d2 =

1
ζ (2)

.

Hence,

x2

2 ∑
d≤x

µ(d)
d2 =

x2

2

(
∑
d≥1

µ(d)
d2 − ∑

d>x

µ(d)
d2

)
=

x2

2 ∑
d≥1

µ(d)
d2 +O

(
x2
∫ ∞

x

dt
t2

)
=

x2

2ζ (2)
+O(x),

thereby confirming the desired relation. ■

15.5 Dirichlet hyperbola method
For the purpose of getting a better estimate of the partial sum of the Dirichlet convolution
of certain arithmetic functions, we sometimes require a trick due to Dirichlet, known as
the Dirichlet hyperbola method.

Theorem 15.7 (Dirichlet Hyperbola Method). Let f and g be arithmetic functions and
define

F(x) = ∑
n≤x

f (n) and G(x) = ∑
n≤x

g(n).

Then for any 1 ≤ M ≤ x,

∑
n≤x

( f ∗g)(n) = ∑
u≤M

f (u)G
( x

u

)
+ ∑

v≤x/M
g(v)F

(x
v

)
−F(M)G

( x
M

)
. (15.6)

Proof. We have

∑
n≤x

( f ∗g)(n) = ∑
u,v

uv≤x

f (u)g(v).
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Now we consider the set of lattices S = {(u,v) ∈ Z2
>0 : uv ≤ x}. By the inclusion-exclusion

principle, we may rewrite S as S = SL∪SB\SO, where

SLeft := {(u,v) ∈ Z2
>0 : uv ≤ x and u ≤ M},

SBelow := {(u,v) ∈ Z2
>0 : uv ≤ x and v ≤ x/M},

SOverlapping := {(u,v) ∈ Z2
>0 : u ≤ M and v ≤ x/M}.

Hence,

∑
n≤x

( f ∗g)(n) = ∑
u≤M
uv≤x

f (u)g(v)+ ∑
v≤x/M
uv≤x

f (u)g(v)− ∑
u≤M

v≤x/M

f (u)g(v),

yielding the required result. ■

Visually, the above argument can be understood as follows.

= + −

u

v

u

v

u

v

u

v

15.6 Average order of d(n)

Here we give an instance of how the Dirichlet hyperbola method provides better estimates.
We start by mimicking the proof of Theorem 15.4 to estimate the partial sum of d(n), the
divisor function:

∑
n≤x

d(n) = ∑
n≤x

∑
m|n

1 = ∑
m,d

md≤x

1 = ∑
d≤x

⌊ x
d

⌋
= ∑

d≤x

( x
d
+O(1)

)
= x logx+O(x).

Then in the next theorem, we will see that with the Dirichlet hyperbola method, the above
O(x) term can be explicitly expressed, and the error can be reduced to O(

√
x).

Theorem 15.8 As x → ∞,

∑
n≤x

d(n) = x logx+(2γ −1)x+O(
√

x). (15.7)

Proof. Recalling the definition of d(n), we have d = 1∗1. Now, in Theorem 15.7, we take
f = g = 1, and note that F(x) = G(x) = ⌊x⌋. Choosing M =

√
x gives

∑
n≤x

d(n) = 2 ∑
d≤

√
x

⌊ x
d

⌋
−⌊

√
x⌋2 = 2x ∑

d≤
√

x

1
d
− x+O(

√
x)

= 2x
(

log
√

x+ γ +O(x−1/2)
)
− x+O(

√
x) = x logx+(2γ −1)x+O(

√
x),

as required. ■



16. Dirichlet series

16.1 Dirichlet series
In 1837, Lejeune Dirichlet (Abhandlungen der Königlichen Preußischen Akademie der
Wissenschaften zu Berlin 48 (1837), 45–71) proved the following important result, which
fully extends Theorems 1.2, 1.3 and 1.4.

Dirichlet’s Theorem on Primes in Arithmetic Progressions There are infinitely many primes
congruent to a modulo N provided that (a,N) = 1.

To establish this result, many influential techniques in analytic number theory were intro-
duced, one of which is the Dirichlet series, an infinite series associated with an arithmetic
function.

Definition 16.1 Let f be an arithmetic function. The Dirichlet series for f is defined
by

∑
n≥1

f (n)
ns ,

where s is a complex variable.

R Following the German mathematician Bernhard Riemann, we always write complex
variables s as

s = σ + it,

where σ and t are real. We usually call the set of complex numbers {s : σ > σ0} with
σ0 a given real number a half-plane.

As we are working on infinite series, an exigent issue is the analysis of convergence.
One basic fact that will be frequently used is |ns| = nσ for all positive integers n since
ns = es logn = nσ eit logn.
Rule 16.1 (Abscissa of Absolute Convergence). Suppose the series ∑n≥1 | f (n)n−s| does not
converge for all s or diverge for all s. Then there exists a real number σa, called the
abscissa of absolute convergence, such that the series ∑n≥1 f (n)n−s converges absolutely
if σ > σa, but does not converge absolutely if σ < σa.

Proof. This is a direct consequence of the comparison test. ■



106 Lecture 16. Dirichlet series

Lemma 16.2 Suppose that the series ∑n≥1 f (n)n−s converges for s0 = σ0 + it0. Then this
series converges for all s with σ > σ0. Moreover, the convergence is uniform in every
compact region contained in the half-plane σ > σ0.

Proof. For convenience, we define for 1 ≤ a < b,

S(a,b) := ∑
a<n≤b

f (n)
ns .

Since ∑n≥1 f (n)n−s0 converges, there exists a constant M such that the partial sum S(x) :=
∑n≤x f (n)n−s0 satisfies |S(x)| ≤ M for all x ≥ 1. By Abel’s summation formula (15.1),

S(a,b) = ∑
a<n≤b

f (n)
ns0

1
ns−s0

=
S(b)
bs−s0

− S(a)
as−s0

+(s− s0)
∫ b

a

S(x)
xs−s0+1 dx.

Hence,

|S(a,b)| ≤ M
bσ−σ0

+
M

aσ−σ0
+ |s− s0|M

∫ b

a

dx
xσ−σ0+1

=
M

bσ−σ0
+

M
aσ−σ0

+
M|s− s0|
σ −σ0

(
1

aσ−σ0
− 1

bσ−σ0

)
≤ 2Maσ0−σ

(
1+

|s− s0|
σ −σ0

)
=C ·aσ0−σ .

Here, the factor C = C(s,s0) := 2M
(

1+ |s−s0|
σ−σ0

)
is independent of a. Noting that σ > σ0

and hence that aσ0−σ → 0 as a → +∞, it follows by Cauchy’s criterion that ∑n≥1 f (n)n−s

converges for all s with σ > σ0.
Further, in any compact region K contained in the half-plane σ > σ0, we find that both

σ −σ0 > 0 and |s− s0| are bounded below and above. Hence, C can be chosen so that it
only depends on K, thereby implying the uniform convergence in K. ■

Rule 16.3 (Abscissa of Convergence). Suppose the series ∑n≥1 f (n)n−s does not converge
for all s or diverge for all s. Then there exists a real number σc, called the abscissa of
convergence, such that this series converges if σ > σc, and diverges if σ < σc.

Proof. This is a direct consequence of the first part in Lemma 16.2. ■

Corollary 16.4 For any Dirichlet series ∑n≥1 f (n)n−s with σc finite, we have 0≤σa−σc ≤ 1.

Proof. It is sufficient to show that if ∑n≥1 f (n)n−s converges at some s0, then it is absolutely
convergent for all s with σ > σ0 + 1. Noting that from the above assumption, | f (n)n−s0 |
is bounded. Further, | f (n)n−s| = | f (n)n−s0 | · nσ0−σ . Therefore, we obtain the absolute
convergence by comparison with the series ∑n≥1 nσ0−σ . ■

R The equality in 0 ≤ σa −σc ≤ 1 can occur in both cases: (i). For the Riemann zeta
function ∑n≥1

1
ns , we have σa = σc = 1; (ii). For the alternating series ∑n≥1

(−1)n

ns , we
have σa = 1 and σc = 0.
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Rule 16.5 (Analyticity Theorem). Any Dirichlet series F(s) = ∑n≥1 f (n)n−s is analytic in
its half-plane of convergence σ > σc, and its derivative F ′(s) is represented in this half-
plane by the Dirichlet series

F ′(s) =− ∑
n≥1

f (n) logn
ns . (16.1)

In particular, F(s) and F ′(s) have the same abscissa of convergence and the same abscissa
of absolute convergence.

Proof. Let us write FN(s) = ∑n≤N f (n)n−s for N positive integers. Note that FN(s) is entire
since each f (n)n−s is entire. Also, we know from the second part in Lemma 16.2 that
as N → ∞, FN(s) converges to F(s), uniformly in every compact region contained in the
half-plane σ > σ0 for any σ0 > σc. Since σ0 can be taken arbitrarily close to σc, we
may also replace σ0 by σc in the above conclusion. Further, such a compact convergence
implies the locally uniform convergence of FN(s) → F(s) in the open half-plane σ > σc.
Karl Weierstrass’s theorem on uniformly convergent sequences of analytic functions (see,
for instance, E. Freitagand R. Busam,Complex Analysis, 2nd Edition, Theorem III.1.3,
p. 106) then asserts that F(s) is analytic in the half-plane σ > σc. Further, its derivative
is obtained by differentiating term by term. ■

Rule 16.6 (Uniqueness Theorem). Given two Dirichlet series

F(s) = ∑
n≥1

f (n)
ns and G(s) = ∑

n≥1

g(n)
ns ,

both convergent for σ > σ0. If F(s) = G(s) for each s in an infinite sequence {sk}k≥1 such
that σk →+∞ as k → ∞, then f (n) = g(n) for every n.

Proof. Note that the Dirichlet series for h(n) = f (n)−g(n), denoted by H(s), is also con-
vergent for σ > σ0. Meanwhile, H(s) = F(s)−G(s). By Corollary 16.4, all three series
are absolute convergent for σ > σ0 + 1. Without loss of generality, we assume that the
sequence {sk}k≥1 is such that σ0 +1 < σ1 < σ2 < · · · . Supposing that h(n) is not identical
to zero for all n, there exists a minimal N with h(N) ̸= 0 and h(n) = 0 for n = 1, . . . ,N −1.
Noting that H(sk) = 0, we have h(N)N−sk =−∑n≥N+1 h(n)n−sk . Hence,

|h(N)| ≤ ∑
n≥N+1

|h(n)|N
σk

nσk
= ∑

n≥N+1
|h(n)|N

σ1

nσ1

(
N
n

)σk−σ1

≤

(
∑

n≥N+1
|h(n)|N

σ1

nσ1

)(
N

N +1

)σk−σ1

.

Note that ∑n≥N+1 |h(n)|Nσ1

nσ1 is a finite constant, independent of k. Letting k → ∞ so that
(σk −σ1)→ ∞, we have

( N
N+1

)σk−σ1 → 0 and hence h(N) = 0. This leads to a contradiction,
thereby implying that h(n) = 0, i.e. f (n) = g(n), for all n. ■

16.2 Multiplication of Dirichlet series
Definition 16.2 For any arithmetic function f , we denote by D( f ;s) the Dirichlet series
for f , namely,

D( f ;s) := ∑
n≥1

f (n)
ns .
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Theorem 16.7 Let f and g be arithmetic functions such that D( f ;s) and D(g;s) have
finite abscissas of absolute convergence. In the half-plane where both D( f ;s) and D(g;s)
converge absolutely, we have that D( f ∗g;s) also converges absolutely in this half-plane,
and that

D( f ;s)D(g;s) = D( f ∗g;s), (16.2)

where f ∗g is the Dirichlet convolution of f and g.

Proof. Since the series D( f ;s) and D(g;s) are absolutely convergent in the half-plane, so is
their Cauchy product, which has the same value as D( f ;s)D(g;s). Note that the Cauchy
product of D( f ;s) = ∑m≥1

f (m)
ms and D(g;s) = ∑n≥1

g(n)
ns equals

∑
k≥2

∑
m,n≥1
m+n=k

f (m)g(n)
(mn)s = ∑

ℓ≥1
∑

m,n≥1
mn=ℓ

f (m)g(n)
(mn)s = ∑

ℓ≥1

( f ∗g)(ℓ)
ℓs = D( f ∗g;s),

in which the first equality is valid as the absolute convergence allows us to rearrange the
terms without altering the sum. The desired result therefore follows. ■

Corollary 16.8 Let f be an arithmetic function with f (1) ̸= 0, and let f−1 be the Dirichlet
inverse of f . Then in any half-plane where D( f ;s) and D( f−1;s) converge absolutely, we
have D( f ;s) ̸= 0 and D( f−1;s) ̸= 0. Also,

D( f−1;s) =
1

D( f ;s)
. (16.3)

Proof. We use the fact that f ∗ f−1 = ε. Hence, by Theorem 16.7, D( f ;s)D( f−1;s) =
D(ε;s) = 1. ■

16.3 Dirichlet series for some arithmetic functions
Now we present some examples of the Dirichlet series.
■ Example 16.1 The Dirichlet series for the constant function 1 is the Riemann zeta function

D(1;s) = ∑
n≥1

1
ns = ζ (s). (16.4)

Meanwhile, D(1;s) has abscissa of absolute convergence σa = 1 and abscissa of convergence
σc = 1. ■

■ Example 16.2 The Dirichlet series for the unit function ε is

D(ε;s) = 1. (16.5)

Meanwhile, D(ε;s) is absolutely convergent in C. ■

■ Example 16.3 The Dirichlet series for the identity function id is

D(id;s) = ∑
n≥1

1
ns−1 = ζ (s−1). (16.6)
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Meanwhile, D(id;s) has abscissa of absolute convergence σa = 2 and abscissa of convergence
σc = 2. Further, if we define idα(n) = nα for all n with α ∈ C, then the Dirichlet series for
idα is

D(idα ;s) = ∑
n≥1

1
ns−α = ζ (s−α). (16.7)

Meanwhile, D(idα ;s) has abscissa of absolute convergence σa = 1+ℜ(α) and abscissa of
convergence σc = 1+ℜ(α). ■

■ Example 16.4 The Dirichlet series for the Möbius function µ is

D(µ;s) = ∑
n≥1

µ(n)
ns =

1
ζ (s)

, (16.8)

for σ > 1. This is because µ is the Dirichlet inverse of 1, i.e. µ ∗1 = ε. ■

■ Example 16.5 The Dirichlet series for the divisor function σα is

D(σα ;s) = ∑
n≥1

σα(n)
ns = ζ (s)ζ (s−α), (16.9)

for σ >max{1,1+ℜ(α)}. This is because σα = 1∗ idα , and hence D(σα ;s)=D(1;s)D(idα ;s).
In particular, the Dirichlet series for the number-of-divisors function d is

D(d;s) = ∑
n≥1

d(n)
ns = ζ (s)2, (16.10)

for σ > 1, and the Dirichlet series for the sum-of-divisors function σ is

D(σ ;s) = ∑
n≥1

σ(n)
ns = ζ (s)ζ (s−1), (16.11)

for σ > 2. ■

■ Example 16.6 The Dirichlet series for Euler’s totient function ϕ is

D(ϕ ;s) = ∑
n≥1

ϕ(n)
ns =

ζ (s−1)
ζ (s)

, (16.12)

for σ > 2. This is because ϕ = µ ∗ id by (13.5), and hence D(ϕ ;s) = D(µ;s)D(id;s). ■

■ Example 16.7 The Dirichlet series for the logarithm function log is

D(log;s) = ∑
n≥1

log(n)
ns =−ζ ′(s), (16.13)

where we make use of (16.1). Meanwhile, D(log;s) has abscissa of absolute convergence
σa = 1 and abscissa of convergence σc = 1. ■

■ Example 16.8 The Dirichlet series for the Mangoldt function Λ is

D(Λ;s) = ∑
n≥1

Λ(n)
ns =−ζ ′(s)

ζ (s)
, (16.14)

for σ > 1. This is because Λ = µ ∗ log by (13.8), and hence D(Λ;s) = D(µ;s)D(log;s). ■
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16.4 Euler products
Recall that in our proof of the divergence of ∑p

1
p in Sect. 1.6, we make use of the following

relation

∏
p≤N

(
1+

1
p
+

1
p2 + · · ·

)
= ∑

n≥1
n has no prime factor > N

1
n
. (16.15)

This idea was first discovered by Euler, and in 1737 he proved the following theorem, also
known as the analytic version of the fundamental theorem of arithmetic.

Theorem 16.9 (Euler). Let a be a multiplicative function such that the series ∑n≥1 a(n)
is absolutely convergent. Then this series can be expressed as an absolutely convergent
infinite product indexed by prime numbers,

∑
n≥1

a(n) = ∏
p

(
1+a(p)+a(p2)+ · · ·

)
. (16.16)

In particular, if a is completely multiplicative, we have

∑
n≥1

a(n) = ∏
p

1
1−a(p)

. (16.17)

R The infinite product in (16.16) is called the Euler product of the series ∑n≥1 a(n).

Proof. We elaborate our argument for (16.15) that was originally presented in Sect. 1.6.
Recall always that a(1) = 1 since a is multiplicative. Let us define the partial product

P(N) := ∏
p≤N

(
1+a(p)+a(p2)+ · · ·

)
.

Note that for each p, the series ∑k≥0 a(pk) is absolutely convergent as ∑n≥1 a(n) converges
absolutely. As a consequence, we may expand the product and rearrange the terms. On
the other hand, for any n with the canonical form n = ∏ j pα j

j such that no prime factor is
greater than N, i.e. p j ≤ N for all j, we find that a(n) = ∏ j a(pα j

j ) since a is multiplicative,
and that it corresponds to exactly one term in the expansion of P(N). Thus,

P(N) = ∑
n≥1

n has no prime factor > N

a(n),

or equivalently,
∑
n≥1

a(n)−P(N) = ∑
n≥1

n has at least one prime factor > N

a(n).

Hence, recalling that ∑n≥1 |a(n)| converges, we have∣∣∣∣∣∑n≥1
a(n)−P(N)

∣∣∣∣∣≤ ∑
n>N

|a(n)| → 0 (as N → ∞),

thereby implying that P(N)→ ∑n≥1 a(n) as N → ∞.
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Now let us show that the infinite product in (16.16) is absolutely convergent. To see
this, it is sufficient to prove that ∑p |up| converges where up = a(p)+ a(p2)+ · · · . This is
obvious since

∑
p
|up| ≤ ∑

p
(|a(p)|+ |a(p2)|+ · · ·

)
≤ ∑

n≥2
|a(n)|,

while ∑n≥2 |a(n)| is finite by the absolute convergence of ∑n≥1 a(n).
Finally, when a is completely multiplicative, we have a(pk) = a(p)k for all prime powers

pk. Therefore, the absolutely convergent subseries ∑k≥0 a(pk) =∑k≥0 a(p)k can be evaluated
as a geometric series and hence equals 1

1−a(p) . ■

Corollary 16.10 Let ∑n≥1 f (n)n−s be a Dirichlet series that converges absolutely in the
half-plane σ > σa. If f is multiplicative, then for σ > σa,

∑
n≥1

f (n)
ns = ∏

p

(
1+

f (p)
ps +

f (p2)

p2s + · · ·
)
. (16.18)

In particular, if f is completely multiplicative, then for σ > σa,

∑
n≥1

f (n)
ns = ∏

p

1
1− f (p)p−s . (16.19)

Proof. We simply use the fact that if f (n) is multiplicative or completely multiplicative,
so is f (n)n−s. ■

■ Example 16.9 We have the following Euler product expressions:

(i) ∑
n≥1

1
ns = ζ (s) = ∏

p

1
1− p−s for σ > 1;

(ii) ∑
n≥1

µ(n)
ns =

1
ζ (s)

= ∏
p

(
1− p−s) for σ > 1;

(iii) ∑
n≥1

σα(n)
ns = ζ (s)ζ (s−α) = ∏

p

1(
1− p−s

)(
1− pα−s

) for σ > max{1,1+ℜ(α)};

(iv) ∑
n≥1

d(n)
ns = ζ (s)2 = ∏

p

1(
1− p−s

)2 for σ > 1;

(v) ∑
n≥1

σ(n)
ns = ζ (s)ζ (s−1) = ∏

p

1(
1− p−s

)(
1− p1−s

) for σ > 2;

(vi) ∑
n≥1

ϕ(n)
ns =

ζ (s−1)
ζ (s)

= ∏
p

1− p−s

1− p1−s for σ > 2.

■





17. Dirichlet characters

17.1 Dirichlet characters
For the purpose of proving Dirichlet’s theorem on primes in arithmetic progressions, an-
other crucial tool is the Dirichlet character.

Definition 17.1 Let N be a positive integer. A Dirichlet character or a character modulo
N is a complex-valued arithmetic function χ : Z>0 → C with the following properties:

(i) χ(ab) = χ(a)χ(b), i.e. χ is completely multiplicative;

(ii) χ(a)

{
= 0 if (a,N)> 1,
̸= 0 if (a,N) = 1;

(iii) χ(a+N) = χ(a), i.e. χ is periodic with period N.

R We sometimes define Dirichlet characters on Z instead of Z>0 by the same conditions.

■ Example 17.1 For each positive integer N,

χ0(a) = χN,0(a) =

{
0 if (a,N)> 1
1 if (a,N) = 1

is a Dirichlet character modulo N. We call this character the principal character. We
shall label Dirichlet characters modulo N by χN,0, χN,1, . . ., or by χ0, χ1, . . . if there is no
ambiguity concerning the modulus. ■

Theorem 17.1 Let N be a positive integer and a be such that (a,N) = 1. Then for any
character χ modulo N, χ(a) is a ϕ(N)-th root of unity.

Proof. By the Fermat–Euler theorem, aϕ(N) ≡ 1 (mod N). Hence, χ(a)ϕ(N) = χ(aϕ(N)) =
χ(1) = 1, where we use the fact that χ is completely multiplicative. ■

From Theorem 17.1, we see that if χ(a) is a real number, then it takes value only from
{−1,0,1}.
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Definition 17.2 Let χ be a Dirichlet character modulo a positive integer N. If all of its
values are real, we say χ is a real character. Otherwise, it is called a complex character.

■ Example 17.2 The principal character modulo any N is real. Another example of real
characters is the Legendre symbol

( a
p

)
where the modulus N = p is an odd prime. We will

give instances of complex characters in later sections. ■

Theorem 17.2 Let N be a positive integer.
(i) If χ and χ ′ are two characters modulo N, so is their product χχ ′, defined by

χχ ′(a) := χ(a)χ ′(a).
(ii) If χ is a character modulo N, so is its complex conjugate χ, defined by χ(a) := χ(a),

the complex conjugate of χ(a). In particular, χχ = χ0, the principal character.

Proof. The results follow by a direct verification of the three conditions in Definition 17.1.
For the second part in (ii), we also use the fact that zz = |z|2 for any complex z, and any
root of unity has absolute value 1. ■

Corollary 17.3 Let N be a positive integer. If χ is a real character modulo N, then
χ2 = χ0, the principal character.

Proof. This is because for real χ, we have χ(a) ∈ {−1,1} for all (a,N) = 1. Hence, χ2(a) =
χ(a)2 = (±1)2 = 1 = χ0(a). ■

Theorem 17.4 Let N be a positive integer and a be such that (a,N) = 1. Let a be
the inverse of a modulo N, i.e. aa ≡ 1 (mod N). Then for any character χ modulo N,
χ(a) = χ(a)−1 = χ(a).

Proof. Noting that aa ≡ 1 (mod N), we have χ(a)χ(a) = χ(aa) = χ(1) = 1. Hence, χ(a) =
χ(a)−1. Also, for any complex z with |z|= 1, we have z−1 = z, giving the second equality. ■

17.2 Construction of Dirichlet characters modulo prime powers
Definition 17.3 For positive integers n, we define ζn := e

2πi
n .

■ Construction 17.1 Let N = 2, or 4, or pα with p an odd prime and α a positive integer.
Let g be a primitive root of N. We know that {g0,g1, . . . ,gϕ(N)−1} gives a reduced system
modulo N. For each a with (a,N) = 1, we may find a unique integer d with 0 ≤ d < ϕ(N)
such that a≡ gd (mod N). We call this d the index of a modulo N with respect to g, denoted
by inda = indN:g a = d. For any character χ modulo N, we know from Theorem 17.1 that
χ(g) is a ϕ(N)-th root of unity. We claim that this character χ is uniquely determined by
χ(g). This is because for any a with (a,N) = 1, we have χ(a) = χ(ginda) = χ(g)inda. ■

■ Example 17.3 For N = 2,
we choose the primitive root
g = 1; for N = 3, we choose
the primitive root g = 2; for
N = 5, we choose the primi-
tive root g = 2. ■

a 1
ind2:1 a 0

χ
a

1

χ2,0 1

a 1 2
ind3:2 a 0 1

χ
a

1 2

χ3,0 1 1
χ3,1 1 −1

a 1 2 3 4
ind5:2 a 0 1 3 2

χ
a

1 2 3 4

χ5,0 1 1 1 1
χ5,1 1 i −i −1
χ5,2 1 −1 −1 1
χ5,3 1 −i i −1

For N = 2α with α ≥ 3, however, we know from Theorem 5.16 that N has no primitive
roots. Hence, a different construction is necessary.
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Lemma 17.5 For α ≥ 3, we have ord2α 5 = 2α−2.

Proof. We have seen from the proof of Theorem 5.16 that 52α−2 ≡ 1 (mod 2α). Now, it
suffices to show that 52α−3

= 1+ 2α−1x with 2 ∤ x, so that 52α−3 ̸≡ 1 (mod 2α). We prove
this claim by induction on α. For α = 3, we have 520

= 5 = 1+22 ·1. Now we assume that
the claim is true for some α ≥ 3, and we prove the α +1 case. Note that

52(α+1)−3
=
(
52α−3)2

=
(
1+2α−1x

)2
= 1+2α(x+2α−2x2).

Here, x+2α−2x2 is odd since x is odd and α ≥ 3. We remark that the above argument also
gives another confirmation of 52α−2 ≡ 1 (mod 2α). ■

Lemma 17.6 Let N = 2α with α ≥ 3. For every odd integer a, there exist unique
integers νN:−1(a) and νN:5(a) with 0 ≤ νN:−1(a) < 2 and 0 ≤ νN:5(a) < 2α−2 such that
a ≡ (−1)νN:−1(a)5νN:5(a) (mod N).

Proof. It suffices to show that {(−1)u5v : 0 ≤ u < 2 and 0 ≤ v < 2α−2} is a reduced system
modulo N = 2α . First, the 2α−2 numbers 5v (with 0 ≤ v < 2α−2) are pairwise incongruent
modulo N since ord2α 5 = 2α−2 by Lemma 17.5. The same property also holds for the 2α−2

numbers −5v (with 0 ≤ v < 2α−2). Finally, we see that 5u1 ̸≡ −5u2 (mod N) since 5u1 ≡ 1
(mod 4), while −5u1 ≡ 3 (mod 4), where we recall that 4 | N. ■

■ Construction 17.2 Let N = 2α with α ≥ 3. For any character χ modulo N, we find that
χ(−1)2 = χ((−1)2) = χ(1) = 1, implying that χ(−1) is a quadratic root of unity. Also,
since ordN 5 = 2α−2 = ϕ(N)

2 by Lemma 17.5, we have that χ(5) is a ϕ(N)
2 -th root of unity. We

claim that this character χ is uniquely determined by χ(−1) and χ(5). This is because
for any a with (a,N) = 1, we know from Lemma 17.6 that χ(a) = χ((−1)νN:−1(a)5νN:5(a)) =
χ(−1)νN:−1(a)χ(5)νN:5(a). ■

■ Example 17.4 For N = 23 = 8, we have χ(−1) ∈
{1,−1} and χ(5) ∈ {1,−1}. We write the charac-
ters modulo N as χ(χ(−1);χ(5)) for clarity. ■

a 1 3 5 7
ν8:−1(a) 0 1 0 1
ν8:5(a) 0 1 1 0

χ
a

1 3 5 7

χ(1;1) 1 1 1 1
χ(1;−1) 1 −1 −1 1
χ(−1;1) 1 −1 1 −1

χ(−1;−1) 1 1 −1 −1

Corollary 17.7 Let N be a prime power. Then there are exactly ϕ(N) characters modulo
N. In particular, for any a with (a,N) = 1 and a ̸≡ 1 (mod N), there always exists a
character χ such that χ(a) ̸= 1.

Proof. For N = 2, or 4, or pα with p an odd prime and α a positive integer, the first part
comes from the fact that the number of ϕ(N)-th roots of unity is ϕ(N), namely, ζ 0

ϕ(N) = 1,
ζ 1

ϕ(N), . . ., ζ ϕ(N)−1
ϕ(N) . Hence, there are exactly ϕ(N) choices of χ(g) as in Construction

17.1, and thus exactly ϕ(N) characters modulo N. Finally, for any a with (a,N) = 1 and
a ̸≡ 1 (mod N), we know that 0 < inda < ϕ(N). Hence, we choose a character χ such that
χ(g) = ζϕ(N), and thus χ(a) = ζ inda

ϕ(N) ̸= 1.
For N = 2α with α ≥ 3, the first part comes from the fact that the number of quadratic

roots of unity is 2, namely 1 and −1; and the number of ϕ(N)
2 -th roots of unity is ϕ(N)

2 ,
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namely, ζ 0
ϕ(N)/2 = 1, ζ 1

ϕ(N)/2, . . ., ζ ϕ(N)/2−1
ϕ(N)/2 . Hence, there are exactly 2 choices of χ(−1)

and exactly ϕ(N)
2 choices of χ(5) as in Construction 17.2, and thus exactly 2 · ϕ(N)

2 = ϕ(N)
characters modulo N. Finally, for any a with (a,N) = 1 and a ̸≡ 1 (mod N), we see from
Lemma 17.6 that at least one of νN:−1(a) and νN:5(a) is not zero. If νN:−1(a) ̸= 0 (and
hence νN:−1(a) = 1), we choose a character χ such that χ(−1) = −1 and χ(5) = 1, and
thus χ(a) = (−1)1 ·1 = −1 ̸= 1; if νN:5(a) ̸= 0 (and hence 0 < νN:5(a) <

ϕ(N)
2 ), we choose a

character χ such that χ(−1) = 1 and χ(5) = ζϕ(N)/2, and thus χ(a) = 1 ·ζ νN:5(a)
ϕ(N)/2 ̸= 1. ■

17.3 Construction of Dirichlet characters modulo generic integers
Now we construct characters modulo generic integers.

Lemma 17.8 Let m and n be positive integers such that (m,n) = 1, and write N =
mn. There exist a unique reduced system Rn(m) := {rm,1, . . . ,rm,ϕ(m)} modulo m such
that 1 ≤ rm,i ≤ N and rm,i ≡ 1 (mod n) for all i, and a unique reduced system Rm(n) :=
{rn,1, . . . ,rn,ϕ(n)} modulo n such that 1 ≤ rn, j ≤ N and rn, j ≡ 1 (mod m) for all j. In
particular,

(i) (rm,i,N) = 1 for all i and (rn, j,N) = 1 for all j;
(ii) Rn(m)∩Rm(n) = {1}.

Proof. By the Chinese Remainder Theorem, the system{
xa ≡ a (mod m)

xa ≡ 1 (mod n)

has a unique solution modulo N. Running a over a reduced system modulo m and choosing
the solutions xa so that 1 ≤ xa ≤ N, we arrive at the unique reduced system Rn(m) modulo
m. Similarly, we have the unique reduced system Rm(n) modulo n. Further, (rm,i,m) = 1
by definition. Also, rm,i ≡ 1 (mod n) implies that (rm,i,n) = 1. Hence, (rm,i,N) = 1. By
symmetry, we also have (rn, j,N) = 1. Finally, if r ∈ Rn(m)∩Rm(n), then r ≡ 1 (mod m) and
r ≡ 1 (mod n), and hence the only possibility is r = 1. ■

Lemma 17.9 Let m and n be positive integers such that (m,n) = 1, and write N = mn.
Let Rn(m) = {rm,1, . . . ,rm,ϕ(m)} and Rm(n) = {rn,1, . . . ,rn,ϕ(n)} be as in Lemma 17.8. Then
for any a such that (a,N) = 1, there are unique integers rm,i ∈ Rn(m) and rn, j ∈ Rm(n)
such that a ≡ rm,irn, j (mod N).

Proof. Note that there are ϕ(m)ϕ(n) = ϕ(N) such rm,irn, j. Further, by Lemma 17.8(i),
(rm,irn, j,N) = 1. Now, it suffices to show that they are pairwise incongruent modulo N. If
we have rm,irn, j ≡ rm,i′rn, j′ (mod N), then it implies that rm,irn, j ≡ rm,i′rn, j′ (mod m) and hence
rm,i ≡ rm,i′ (mod m) since rn, j ≡ rn, j′ ≡ 1 (mod m). Similarly, we have rn, j ≡ rn, j′ (mod n).
The desired result thus follows. ■

■ Construction 17.3 Let m and n be positive integers such that (m,n) = 1, and write N =mn.
Let Rn(m) = {rm,1, . . . ,rm,ϕ(m)} and Rm(n) = {rn,1, . . . ,rn,ϕ(n)} be as in Lemma 17.8. For each
character χ ′ modulo m and each character χ ′′ modulo n, we define [χ ′,χ ′′] =: χ by

χ(a) =

{
0 if (a,N)> 1,
χ ′(rm,i)χ ′′(rn, j) if (a,N) = 1,

where we use Lemma 17.9 to write a ≡ rm,irn, j (mod N) for the second case. ■



17.3 Construction of Dirichlet characters modulo generic integers 117

Theorem 17.10 The function χ as in Construction 17.3 is a character modulo N.

Proof. It is sufficient to show that χ is completely multiplicative. In particular, given a
and b with (a,N) = (b,N) = 1, we want to show that χ(ab) = χ(a)χ(b). By Lemma 17.9,
we write a ≡ rm,i1rn, j1 (mod N), b ≡ rm,i2rn, j2 (mod N) and ab ≡ rm,Irn,J (mod N). Hence,
rm,Irn,J ≡ rm,i1rm,i2rn, j1rn, j2 (mod N), and further rm,Irn,J ≡ rm,i1rm,i2rn, j1rn, j2 (mod m). Since
rn,J ≡ rn, j1 ≡ rn, j2 ≡ 1 (mod m), we have rm,I ≡ rm,i1rm,i2 (mod m), and therefore, χ ′(rm,I) =
χ ′(rm,i1rm,i2) = χ ′(rm,i1)χ ′(rm,i2). Similarly, χ ′′(rn,J) = χ ′′(rn, j1)χ ′′(rn, j2). It follows that

χ(ab) = χ ′(rm,I)χ ′′(rn,J) = χ ′(rm,i1)χ
′(rm,i2)χ

′′(rn, j1)χ
′′(rn, j2) = χ(a)χ(b),

as required. ■

■ Example 17.5 For N = 3 · 5 = 15,
we first find that R5(3) = {1,11} and
R3(5) = {1,7,13,4}, and then compute
r3,ir5, j mod 15 for each i and j. The char-
acters modulo 3 and 5 are given in Ex-
ample 17.3. ■

r3,i

r5, j 1 7 13 4

1 1 7 13 4
11 11 2 8 14

χ
a

1 2 4 7 8 11 13 14

[χ3,0,χ5,0] 1 1 1 1 1 1 1 1
[χ3,0,χ5,1] 1 i −1 i −i 1 −i −1
[χ3,0,χ5,2] 1 −1 1 −1 −1 1 −1 1
[χ3,0,χ5,3] 1 −i −1 −i i 1 i −1
[χ3,1,χ5,0] 1 −1 1 1 −1 −1 1 −1
[χ3,1,χ5,1] 1 −i −1 i i −1 −i 1
[χ3,1,χ5,2] 1 1 1 −1 1 −1 −1 −1
[χ3,1,χ5,3] 1 i −1 −i −i −1 i 1

The following are implications of Construction 17.3.

Theorem 17.11 Let m and n be positive integers such that (m,n) = 1, and write N = mn.
If [χ ′,χ ′′] = [χ̂ ′, χ̂ ′′] with χ ′ and χ̂ ′ characters modulo m, and χ ′′ and χ̂ ′′ characters
modulo m, then χ ′ = χ̂ ′ and χ ′′ = χ̂ ′′.

Proof. For each rm,i ∈ Rn(m), we note that rm,i ≡ rm,i · 1 (mod N) while 1 ∈ Rm(n). Hence,
[χ ′,χ ′′] = [χ̂ ′, χ̂ ′′] implies that [χ ′,χ ′′](rm,i) = [χ̂ ′, χ̂ ′′](rm,i), or χ ′(rm,i)χ ′′(1) = χ̂ ′(rm,i)χ̂ ′′(1),
or χ ′(rm,i) = χ̂ ′(rm,i). Since Rn(m) is a reduced system modulo m, we have χ ′ = χ̂ ′. By
symmetry, we also have χ ′′ = χ̂ ′′. ■

Theorem 17.12 Let m and n be positive integers such that (m,n) = 1, and write N = mn.
Let χ = [χ ′,χ ′′]. If χ ′ = χm,0, the principal character modulo m, then for any a with
(a,N) = 1, we have χ(a) = χ ′′(a). Also, if χ ′′ = χn,0, the principal character modulo n,
then for any a with (a,N) = 1, we have χ(a) = χ ′(a).

Proof. For any a with (a,N) = 1. We write a ≡ rm,irn, j (mod N) as in Construction 17.3,
and hence a ≡ rm,irn, j (mod n). Noting that rm,i ≡ 1 (mod n) by definition, we have a ≡ rn, j

(mod n). If χ ′ = χm,0, then χ(a) = χm,0(rm,i)χ ′′(rn, j) = χ ′′(rn, j) = χ ′′(a), as required. We
further derive the second part by symmetry. ■

Theorem 17.13 Let m and n be positive integers such that (m,n) = 1, and write N = mn.
There are no characters modulo N other than those as constructed in Construction 17.3.

Proof. To show that there are no other characters modulo N, it suffices to prove that for
each character χ modulo N, we can find a character χ ′ modulo m and a character χ ′′ modulo
n such that χ = [χ ′,χ ′′]. Let Rn(m) = {rm,1, . . . ,rm,ϕ(m)} and Rm(n) = {rn,1, . . . ,rn,ϕ(n)} be as in
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Construction 17.3. Recall that they form a reduced system modulo m and n, respectively.
We first define

χ|m(a) =

{
0 if (a,m)> 1,
χ(rm,i) if (a,m) = 1 and a ≡ rm,i (mod m).

We claim that χ|m is a character modulo m. In fact, it suffices to show that χ|m is
completely multiplicative. For any a and b with (a,m) = (b,m) = 1, we assume that a≡ rm,i′

(mod m), b ≡ rm,i′′ (mod m) and ab ≡ rm,I (mod m). Then rm,I ≡ rm,i′rm,i′′ (mod m). Also,
rm,I ≡ 1 ≡ rm,i′rm,i′′ (mod n) by definition. Hence, by the Chinese Remainder Theorem,
rm,I ≡ rm,i′rm,i′′ (mod N). We then have

χ|m(ab) = χ(rm,I) = χ(rm,i′rm,i′′) = χ(rm,i′)χ(rm,i′′) = χ|m(a)χ|m(b),

as required. Similarly, we define

χ|n(a) =

{
0 if (a,n)> 1,
χ(rn, j) if (a,n) = 1 and a ≡ rn, j (mod n),

and find that χ|n is a character modulo n. Finally, we claim that χ = [χ|m,χ|n]. In fact, if
we write [χ|m,χ|n] = χ̃, then for any a with (a,N) = 1 and a ≡ rm,irn, j (mod N),

χ̃(a) = χ|m(rm,i)χ|n(rn, j) = χ(rm,i)χ(rn, j) = χ(rm,irn, j) = χ(a),

as desired. ■

Corollary 17.14 Let m and n be positive integers such that (m,n) = 1, and write N = mn.
(i) If there are A characters modulo m and B characters modulo n, provided that A

and B are finite, then there are AB characters modulo N;
(ii) If for each u with (u,m) = 1 and u ̸≡ 1 (mod m) there exists a character χ ′ modulo

m such that χ ′(u) ̸= 1, and for each v with (v,n) = 1 and v ̸≡ 1 (mod n) there exists
a character χ ′′ modulo n such that χ ′′(v) ̸= 1, then for each w with (w,N) = 1 and
w ̸≡ 1 (mod N) there exists a character χ modulo N such that χ(w) ̸= 1.

Proof. Part (i) is a direct consequence of Construction 17.3 and Theorems 17.10, 17.11
and 17.13. For Part (ii), we note that (w,N) = 1 implies that (w,m) = 1 and (w,n) = 1.
Also, since w ̸≡ 1 (mod N), we have either w ̸≡ 1 (mod m) or w ̸≡ 1 (mod n). Otherwise,
if w ≡ 1 (mod m) and w ≡ 1 (mod n), then the Chinese Remainder Theorem tells us that
w ≡ 1 (mod N). Now, if w ̸≡ 1 (mod m), we choose χ = [χ ′,χn,0] with χ ′(w) ̸= 1 and use
17.12 to obtain that χ(w) = χ ′(w) ̸= 1. Similarly, if w ̸≡ 1 (mod n), we choose χ = [χm,0,χ ′′]
with χ ′′(w) ̸= 1. ■

Theorem 17.15 For any positive integer N, there are exactly ϕ(N) characters modulo
N. In particular, for any a with (a,N) = 1 and a ̸≡ 1 (mod N), there always exists a
character χ such that χ(a) ̸= 1.

Proof. First, there is a unique character modulo 1, namely, χ1,0(a) = 1 for all a. Also,
there exists no a such that a ̸≡ 1 (mod 1). Now we assume that N ≥ 2. We write N in
the canonical form N = pα1

1 pα2
2 · · · pαℓ

ℓ . Using Corollary 17.7 as the base case, we iteratively
apply Corollary 17.14 and derive that there are ϕ(pα1

1 )ϕ(pα2
2 ) characters modulo pα1

1 pα2
2 ,

. . ., and ϕ(pα1
1 )ϕ(pα2

2 ) · · ·ϕ(pαℓ
ℓ ) = ϕ(N) characters modulo N. The second part also holds

from this argument. ■
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Theorem 17.16 Let N be a positive integer and {χ0, . . . ,χϕ(N)−1} be the set of characters
modulo N. Then for any χ ∈ {χ1, . . . ,χϕ(N)}, the set {χχ1, . . . ,χχϕ(N)−1} also covers all
characters modulo N.

Proof. This follows from the trivial fact that if χχi = χχ j, then χi = χ j. ■

R In general, we may define characters on a group G as group homomorphisms from
G to the multiplicative group of a field, usually the field of complex numbers. If G
is a finite abelian group, then the number of characters equals the size of G. The
Dirichlet characters modulo N correspond to the case of the finite abelian group
(Z/NZ)×, which is of size ϕ(N).

17.4 Orthogonality relations for Dirichlet characters
As we are comfortable with the construction of all Dirichlet characters for a given modulus,
we shall establish one of their most important properties, the orthogonality.

Theorem 17.17 Let N be a positive integer.
(i) For any Dirichlet character χ modulo N,

N

∑
a=1

χ(a) =

{
ϕ(N) if χ = χ0,

0 otherwise,
(17.1)

where χ0 is the principal character modulo N;
(ii) For any integer a ∈ Z>0,

∑
χ mod N

χ(a) =

{
ϕ(N) if a ≡ 1 (mod N),

0 otherwise,
(17.2)

where the summation runs over all Dirichlet characters modulo N.

Proof. Part (i) is trivial when χ = χ0. If χ ̸= χ0, we choose k with (k,N) = 1 and χ(k) ̸= 1.
By Theorem 3.6, {ak : 1 ≤ a ≤ N} gives a complete system modulo N. Hence,

χ(k)
N

∑
a=1

χ(a) =
N

∑
a=1

χ(ak) =
N

∑
a=1

χ(a),

thereby implying the desired result since χ(k) ̸= 1.
For Part (ii), it is trivial when a ≡ 1 (mod N) or (a,N)> 1. If a is such that (a,N) = 1

and a ̸≡ 1 (mod N), by Theorem 17.15, we have a character χ̃ modulo N such that χ̃(a) ̸= 1.
Also, Theorem 17.16 tells us that if χ run over all characters modulo N, so do χ̃χ . Hence,

χ̃(a) ∑
χ mod N

χ(a) = ∑
χ mod N

χ̃χ(a) = ∑
χ mod N

χ(a),

which yields the required result since χ̃(a) ̸= 1. ■

As an important consequence of (17.1), we shall show that the partial sum of non-
principal characters over positive integers is uniformly bounded.



120 Lecture 17. Dirichlet characters

Corollary 17.18 Let χ be a non-principal character modulo a positive integer N. For
n ≥ 1, ∣∣∣∣∣ n

∑
a=1

χ(a)

∣∣∣∣∣≤ ϕ(N). (17.3)

Proof. We write n = qN + r where 0 ≤ r < N. Then with recourse to (17.1),∣∣∣∣∣ n

∑
a=1

χ(a)

∣∣∣∣∣=
∣∣∣∣∣
(

q−1

∑
k=0

N

∑
a=1

χ(kN +a)

)
+

r

∑
a=1

χ(qN +a)

∣∣∣∣∣=
∣∣∣∣∣ r

∑
a=1

χ(a)

∣∣∣∣∣≤ r

∑
a=1

|χ(a)| ≤ ϕ(N),

since among |χ(1)|, . . ., |χ(N−1)|, there are exactly ϕ(N) of them equal to 1, and all others
are 0. ■

Theorem 17.19 (Orthogonality Relations). Let N be a positive integer.
(i) For any Dirichlet characters χ1,χ2 modulo N,

N

∑
a=1

χ1(a)χ2(a) =

{
ϕ(N) if χ1 = χ2,

0 otherwise;
(17.4)

(ii) For any integers a1,a2 ∈ Z>0,

∑
χ mod N

χ(a1)χ(a2) =

{
ϕ(N) if a1 ≡ a2 (mod N) and (a1,N) = (a2,N) = 1,
0 otherwise,

(17.5)

where the summation runs over all Dirichlet characters modulo N.

Proof. For Part (i), we use (17.1) by noting from Theorem 17.2 that χ1(a)χ2(a) = χ1χ2(a)
and χ1χ2 = χ0 when χ1 = χ2. For Part (ii), we use (17.2) by noting from Theorem 17.4
that χ(a1)χ(a2) = χ(a1)χ(a2) = χ(a1a2) whenever a2 is invertible modulo N. ■

The orthogonality relation (17.5) is by far the most crucial, as it allows one to extract
terms indexed by an arithmetic progression from a sum.

Definition 17.4 Let N be a positive integer and a be an integer. We define

1a(x) = 1N,a(x) :=

{
1 if x ≡ a (mod N),

0 otherwise.

Corollary 17.20 Let N be a positive integer and a be an integer such that (a,N) = 1.
Then

1a(x) =
1

ϕ(N) ∑
χ mod N

χ(a)χ(x), (17.6)

where the summation runs over all Dirichlet characters modulo N.

Proof. This is simply (17.5) with a1 = x and a2 = a. ■



18. Dirichlet’s Theorem on primes in
arithmetic progressions

18.1 Riemann zeta function
Now we shall take a formal look at the Riemann zeta function.

Definition 18.1 For s a complex variable with ℜ(s) > 1, the Riemann zeta function is
defined by

ζ (s) := ∑
n≥1

1
ns .

We have seen from the theory of Dirichlet series that the series ∑n≥1
1
ns is absolutely

convergent in the half-plane σ > 1, and the Riemann zeta function is analytic in its domain.
Further, we have the Euler product for ζ (s) by taking f = 1 in (16.19).

Theorem 18.1 For σ > 1,

ζ (s) = ∏
p

1
1− p−s . (18.1)

As for many other functions of a complex variable, we also hope to extend the domain
of definition of the Riemann zeta function through analytic continuation.

Theorem 18.2 For s ̸= 1 with σ > 0,

ζ (s) =
s

s−1
− s
∫ ∞

1

{u}
us+1 du. (18.2)

In particular, ζ (s) is analytic in the half-plane σ > 0 but with a simple pole at s = 1,
with residue 1.

Proof. We start with the case σ > 1. Note that by Euler’s summation formula (15.2),

∑
n≤x

1
ns =

∫ x

1−

du
us − s

∫ x

1−

{u}
us+1 du+1− {x}

xs

=
s

s−1
− x1−s

s−1
− {x}

xs − s
∫ x

1

{u}
us+1 du.

Now for σ > 1, we have x1−s

s−1 → 0 and {x}
xs → 0 as x → ∞. Also, the integral

∫ ∞
1 {u}u−s−1du is
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convergent in the half-plane σ > 0 by comparison with
∫ ∞

1 u−σ−1du. Hence, (18.2) is valid
for σ > 1. Further, the convergence of the aforementioned integral is also locally uniform in
the open half-plane σ > 0, and by Weierstrass’s theorem on uniformly convergent sequences
of analytic functions, we see that

∫ ∞
1 {u}u−s−1du is an analytic function in this half-plane.

Recalling the uniqueness of analytic continuation, the formula (18.2) is valid for σ > 0
with s ̸= 1, and at s = 1, we have a simple pole from s

s−1 . ■

R In general, the Riemann zeta function can be analytically continued to C\{1}. This
can be achieved by applying the Euler–Maclaurin formula, which extends Euler’s
summation formula (15.2) via repeated integration by parts. A more immediate way
is by invoking the functional equation for the Riemann zeta function

ζ (1− s) = 2(2π)−sΓ(s)cos(πs
2 )ζ (s),

where Γ(s) is the Gamma function; see T. M. Apostol, Ch. 12.

18.2 Dirichlet L-functions
Noting that the Dirichlet characters are arithmetic functions, we may further consider
their associated Dirichlet series.

Definition 18.2 Let χ be a Dirichlet character modulo N. Its Dirichlet series

L(s,χ) := ∑
n≥1

χ(n)
ns

is called the Dirichlet L-function, or the Dirichlet L-series, associated with χ.

Recall that we have χ(n) = 0 if (n,N)> 1 by definition, and |χ(n)|= 1 if (n,N) = 1 by
Theorem 17.1. Therefore, the series ∑n≥1

χ(n)
ns is absolutely convergent in the half-plane

σ > 1. Noting that χ is completely multiplicative, we then derive the Euler product for
L(s,χ) by taking f = χ(n) in (16.19).

Theorem 18.3 Let χ be a Dirichlet character modulo N. For σ > 1,

L(s,χ) = ∏
p

1
1−χ(p)p−s . (18.3)

Now we work on the analytic properties of Dirichlet L-functions.

Theorem 18.4 Let χ0 be the principal Dirichlet character modulo N. For s ̸= 1 with
σ > 0,

L(s,χ0) = ζ (s)∏
p|N

(
1− 1

ps

)
. (18.4)

In particular, L(s,χ0) is analytic in the half-plane σ > 0 but with a simple pole at s = 1,
with residue ϕ(N)/N.

Proof. It is sufficient to prove (18.4) for σ > 1; we may then analytically extend the domain
to the larger half-plane σ > 0 as ∏p|N

(
1− 1

ps

)
is entire. Since χ0 is principal, we have

χ0(p) = 1 if p ∤ N, and 0 if p | N. For σ > 1, we derive from the Euler products for ζ (s)
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and L(s,χ0) that

L(s,χ0) = ∏
p∤N

1
1− p−s = ∏

p

1
1− p−s ∏

p|N

(
1− p−s)= ζ (s)∏

p|N

(
1− p−s),

as required. The simple pole of L(s,χ0) at s = 1 comes from the simple pole of ζ (s). Also,
the residue at s = 1 equals ∏p|N

(
1− p−1

)
= ϕ(N)

N . ■

Theorem 18.5 Let χ ̸= χ0 be a non-principal Dirichlet character modulo N. The series
∑n≥1 χ(n)n−s converges in the half-plane σ > 0. Also, L(s,χ) is analytic in this half-plane,
and

L(s,χ) = s
∫ ∞

1

X(u)
us+1 du, (18.5)

where X(u) := ∑n≤u χ(n).

Proof. We apply Abel’s summation formula (15.1) and derive that

∑
n≤x

χ(n)
ns =

X(x)
xs + s

∫ x

1

X(u)
us+1 du.

Recall from Corollary 17.18 that |X(u)| ≤ ϕ(N) for all u > 0. Hence, for σ > 0, X(x)x−s →
0 as x → ∞. Also, the integral

∫ ∞
1 X(u)u−s−1du is convergent in the half-plane σ > 0

by comparison with ϕ(N)
∫ ∞

1 u−σ−1du. The above argument implies the convergence of
∑n≥1 χ(n)n−s for σ > 0, and also the formula (18.5). Finally, L(s,χ) is analytic in the
half-plane σ > 0 due to the Analyticity Theorem in Rule 16.5. ■

One crucial property of the Dirichlet L-function is the non-vanishing of L(1,χ) for all
non-principal characters χ.

Theorem 18.6 Let χ ̸= χ0 be a non-principal Dirichlet character modulo N. Then
L(1,χ) ̸= 0.

We shall separate this theorem into two parts, according to whether χ is non-real or
real; see Theorem 18.8 and 18.9, respectively.

Here one necessary step is to consider the logarithm of the L-functions. Since the
L-functions are complex-valued, we should choose a suitable branch for the complex log-
arithm. Throughout, what we mean by log is the principal branch, which is analytically
continued by the normal real logarithm to C\R≤0. For this choice of log, we know that
logz is real if and only if z is a positive real number. Also, it has the power series expansion
for |z|< 1,

log
1

1− z
= ∑

m≥1

zm

m
.

Now, let us constrain our focus from the whole half-plane σ > 0 to the positive real
axis.
Lemma 18.7 Let N be a positive integer, and define

Z(s) := ∏
χ mod N

L(s,χ).
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Then for σ > 1, Z(σ) is real-valued with Z(σ)> 1.

Proof. We make use of the Euler product (18.3) for L-functions, and obtain that

logZ(σ) = log ∏
χ mod N

∏
p

1
1−χ(p)p−σ = ∑

χ mod N
∑
p

log
1

1−χ(p)p−σ

= ∑
χ mod N

∑
p

∑
m≥1

χ(p)m

mpmσ = ∑
p

∑
m≥1

1
mpmσ ∑

χ mod N
χ(p)m

= ∑
p

∑
m≥1

1
mpmσ ∑

χ mod N
χ(pm).

By (17.2),

∑
χ mod N

χ(pm) =

{
ϕ(N) if pm ≡ 1 (mod N),

0 otherwise.

For every p ∤ N, we may always find such m with pm ≡ 1 (mod N), viz. m are multiples of
ordN p. It follows that logZ(σ) is a positive real number, and hence Z(σ) is real-valued
with Z(σ)> 1. ■

Theorem 18.8 Let χ ̸= χ0 be a non-principal non-real Dirichlet character modulo N.
Then L(1,χ) ̸= 0.

Proof. We argue by contradiction. If χ† is a non-principal non-real character such that
L(1,χ†) = 0, so is χ† since

L(1,χ†) = ∑
n≥1

χ†(n)
n

= ∑
n≥1

χ†(n)
n

= L(1,χ†) = 0.

Note that the three characters χ0, χ† and χ† are pairwise distinct. Hence, we may rewrite
Z(σ) in Lemma 18.7 as

Z(σ) = L(σ ,χ0)L(σ ,χ†)L(σ ,χ†) ∏
χ ̸=χ0,χ†,χ†

L(σ ,χ).

If we look at a small neighborhood |σ −1|< ε → 0 near σ = 1, we have that L(1+ε,χ0) =
O(ε−1) by the simple pole of L(s,χ0) at s = 1, and that L(1+ ε,χ†) = O(ε), L(1+ ε,χ†) =
O(ε) and L(1+ ε,χ) = O(1) otherwise by the analyticity of L-functions in the half-plane
σ > 0 for every non-principal characters together with the assumption that L(1,χ†) =
L(1,χ†) = 0. Hence, as ε → 0, Z(1+ε) = O(ε)→ 0. But this violates Lemma 18.7, claiming
that Z(1+ ε)> 1 whenever ε > 0. ■

However, for non-principal real characters, we cannot proceed with the above argument
as the complex conjugate of a real character is still itself. So we cannot automatically get
another copy of L(1+ ε,χ ′

†) = O(ε) as above to reduce Z(1+ ε) to O(ε). Now we shall
adopt an elegant device due to Paul Monsky (Amer. Math. Monthly 100 (1993), no. 9,
861–862).

Theorem 18.9 Let χ ̸= χ0 be a non-principal real Dirichlet character modulo N. Then
L(1,χ) ̸= 0.
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Proof. We start with the Lambert series with 0 < x < 1,

F(x) = ∑
k≥1

χ(k)xk

1− xk .

Note that this series is absolutely convergent by comparison with ∑k≥1
xk

1−xk , whose con-
vergence follows by the ratio test. We may also expand F(x) as a power series in x, say,
F(x) = ∑n≥1 a(n)xn. With recourse to (12.3), we have

a(n) = ∑
d|n

χ(d).

By Theorem 14.9, the arithmetic function a is multiplicative since a = χ ∗1 while both
χ and 1 are multiplicative. We then claim that a(n) ≥ 0 for all n. Here it is sufficient to
verify that a(pα) ≥ 0 for all prime powers pα . Recalling that χ is real, and hence that
χ(p) ∈ {−1,0,1}, we have

a(pα) = 1+χ(p)+ · · ·+χ(pα) = 1+χ(p)+ · · ·+χ(p)α ≥ 0,

by grouping terms χ(p)2 j +χ(p)2 j+1 ≥ 0. In particular, we deduce by the same argument
that a(p2β ) ≥ 1 for all even powers of primes p2β . Since a is multiplicative, we have
a(n2) ≥ 1 for all n. It follows from the above that the series ∑n≥1 a(n) diverges. For each
M ≥ 1, we have limsupx→1− F(x) ≥ limx→1− ∑n≤M a(n)xn = ∑n≤M a(n). Hence, as x → 1−,
F(x)→ ∞.

Let us assume that the real character χ ̸= χ0 is such that L(1,χ) = 0. Then

−F(x) =
L(1,χ)
1− x

−F(x) = ∑
n≥1

χ(n)
(

1
(1− x)n

− xn

1− xn

)
=: ∑

n≥1
fn(x)χ(n).

Then for 0 < x < 1, limn→∞ fn(x) = 0. Also,

fn(x)− fn+1(x) =
(

1
(1− x)n

− xn

1− xn

)
−
(

1
(1− x)(n+1)

− xn+1

1− xn+1

)
=

1
1− x

(
1

n(n+1)
− xn(1− x)2

(1− xn)(1− xn+1)

)
.

Further, we apply the arithmetic-geometric mean inequality and find that for every positive
integer k,

1− xk

1− x
= 1+ x+ · · ·+ xk−1 =

1+ xk−1

2
+

x+ xk−2

2
+ · · ·+ xk−1 +1

2
≥ kx

k−1
2 .

Hence,

fn(x)− fn+1(x)≥
1

1− x

(
1

n(n+1)
− x

1
2

n(n+1)

)
> 0.

That is, fn(x) is a decreasing sequence whenever 0 < x < 1.
Now, if we as usual write X(u) = ∑n≤u χ(n), then for every integer M ≥ 1, by replacing

χ(n) with X(n)−X(n−1) and then rearranging terms, we have

∑
n≤M

fn(x)χ(n) = X(M) fM+1(x)+ ∑
n≤M

X(n)
(

fn(x)− fn+1(x)
)
.



126 Lecture 18. Dirichlet’s Theorem on primes in arithmetic progressions

Since fn(x)↘ 0 as n → ∞, we have the following bound by also recalling from Corollary
17.18 that |X(u)| ≤ ϕ(N),∣∣∣∣∣∑n≤M

fn(x)χ(n)

∣∣∣∣∣≤ ϕ(N) fM+1(x)+ϕ(N) ∑
n≤M

(
fn(x)− fn+1(x)

)
= ϕ(N) f1(x),

for all 0 < x < 1. However, f1(x) = 1
1−x −

x
1−x = 1. Hence, we have that |F(x)| ≤ ϕ(N)

whenever 0 < x < 1. But this contradicts what we have shown earlier that F(x) → ∞ as
x → 1−. Thus, we cannot have any real character χ ̸= χ0 with L(1,χ) = 0. ■

R The above evaluation of ∑n≤M fn(x)χ(n) is indeed an instance of the Abel transforma-
tion, also known as summation by parts.

Theorem 18.10 (Abel Transformation). For sequences {an}n≥1 and {bn}n≥1, if we
put An := ∑N<m≤n am, then for integers 0 ≤ N < M,

∑
N<n≤M

anbn = AMbM+1 + ∑
N<n≤M

An(bn −bn+1).

This can be regarded as a discrete version of Abel’s summation formula (15.1). For
its proof, we simply replace an with An −An−1 and rearrange terms.

18.3 Dirichlet’s Theorem on primes in arithmetic progressions
Now we are in a position to put the finishing touches to the proof of Dirichlet’s theorem
on primes in arithmetic progressions.

Theorem 18.11 (Dirichlet’s Theorem on Primes in Arithmetic Progressions). There are
infinitely many primes congruent to a modulo N provided that (a,N) = 1.

We first summarize what was obtained earlier.
Lemma 18.12 In the half-plane σ > 1, we have, as s → 1,

logL(s,χ0)∼− log(s−1), (18.6)

where χ0 is the principal Dirichlet character modulo a positive integer N, and

logL(s,χ) = O(1), (18.7)

where χ ̸= χ0 is a non-principal Dirichlet character modulo N.

Proof. For (18.6), we use (18.2) and (18.4). For (18.7), we know from Theorems 18.5 and
18.6 that in the half-plane σ > 0 there exists a neighborhood near s = 1 such that within
this neighborhood L(s,χ) is bounded and L(s,χ) ̸= 0, thereby implying that logL(s,χ) is
also bounded. ■

Proof of Theorem 18.11. We make use of the Euler product (18.3) for L-functions, and
obtain that for σ > 1,

∑
χ mod N

χ(a) logL(s,χ) = ∑
χ mod N

χ(a)∑
p

log
1

1−χ(p)p−s

= ∑
χ mod N

χ(a)∑
p

∑
m≥1

χ(p)m

mpms
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= ∑
p

∑
χ mod N

χ(a)
χ(p)

ps +∑
p

∑
m≥2

∑
χ mod N

χ(a)
χ(p)m

mpms .

For the first term, we deduce from Corollary 17.20 that

∑
p

∑
χ mod N

χ(a)
χ(p)

ps = ϕ(N) ∑
p≡a mod N

1
ps .

For the second term, we have the bound for σ > 1,∣∣∣∣∣∑p
∑

m≥2
∑

χ mod N
χ(a)

χ(p)m

mpms

∣∣∣∣∣≤ ∑
p

∑
m≥2

∑
χ mod N

1
mpmσ

<
ϕ(N)

2 ∑
p

∑
m≥2

1
pm =

ϕ(N)

2 ∑
p

1
p(p−1)

<
ϕ(N)

2 ∑
n≥2

1
n(n−1)

=
ϕ(N)

2
.

Finally, since (a,N) = 1, we have χ0(a) = 1. It follows from (18.6) and (18.7) that, as s → 1
in the half-plane σ > 1,

∑
χ mod N

χ(a) logL(s,χ)∼− log(s−1)→ ∞.

This in turn implies the divergence of ∑p≡a mod N
1
p , and therefore the infinitude of primes

congruent to a modulo N. ■





19. Rational and irrational numbers

19.1 Algebraic structures
We begin with some basic concepts in abstract algebra: groups, rings and fields.

Definition 19.1 A group (G,◦) is a finite or infinite set G of elements together with
a binary operation “◦”, called the group operation, such that the following properties
hold:

(i) Closure: For all a,b ∈ G, we have a◦b ∈ G;
(ii) Associativity: For all a,b,c ∈ G, we have (a◦b)◦ c = a◦ (b◦ c);
(iii) Identity: There exists an identity element e ∈ G such that for all a ∈ G, we have

a◦ e = e◦a = a;
(iv) Inverse: For all a ∈ G, there exists an element b ∈ G, which is called the inverse

of a, such that a◦b = b◦a = e; the inverse of a is usually denoted by a−1 or −a.

Strictly speaking, a group and its underlying set are two different mathematical objects
as in a group we must have an associated binary operation. However, when this group
operation is clear, we often abuse notation and use the name of the set G to represent the
group.
■ Example 19.1 Considering the set R of real numbers, we have a group (R,+) under
the usual addition “+”, where 0 is the identity element and the opposite of a, namely,
−a, is the inverse of a ∈ R. But in most cases, we simply write R for this group. Also,
considering the set R× of nonzero real numbers, we have a group (R×,×) under the usual
multiplication “×”, where 1 is the identity element and the reciprocal of a, namely, 1/a
or a−1, is the inverse of a ∈ R×. We may write R× for this group as well. ■

R In general, we speak of an additive group whenever the group operation is notated
as addition, and in this case, the identity element is typically denoted by 0 and the
inverse of an element a is denoted by −a. Similarly, we speak of a multiplicative
group whenever the group operation is notated as multiplication, and in this case,
the identity element is typically denoted by 1 and the inverse of an element a is
denoted by a−1.

Definition 19.2 A group (G,◦) is abelian if the following property further holds:
(v) Commutativity: For all a,b ∈ G, we have a◦b = b◦a.
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R It is a common convention that for an abelian group we may use either additive or
multiplicative notation, but for a nonabelian group only multiplicative notation is
used.

If the requirement of having an inverse for every element is removed from Definition
19.1, we arrive at a monoid.

Definition 19.3 A monoid is a set which is closed under an associative binary opera-
tion and has an identity element.

■ Example 19.2 The set of integers Z under the usual multiplication forms a monoid, and
1 is the identity element. However, Z under the usual addition forms a group with 0 the
identity element. ■

Definition 19.4 A ring (R,+, ·) is a finite or infinite set R of elements together with
two binary operations “+” (addition) and “·” (multiplication) such that the following
properties hold:

(i) R is an abelian group under addition with addition identity 0;
(ii) R is a monoid under multiplication with multiplication identity 1;
(iii) Multiplication is distributive with respect to addition, i.e. for all a,b,c ∈ R, we

have a · (b+ c) = a ·b+a · c and (b+ c) ·a = b ·a+ c ·a.

■ Example 19.3 The set of integers Z under the usual addition and multiplication forms a
ring. ■

Definition 19.5 If the ring multiplication of (R,+, ·) is commutative, that is, a ·b = b ·a
for all a,b ∈ R, then R is called a commutative ring.

■ Example 19.4 The ring of integers, Z, is commutative. However, the ring of 2 × 2
matrices over integers, Mat2,2(Z), under the usual matrix addition and multiplication is
noncommutative. ■

Definition 19.6 A nonzero commutative ring in which the product of any two nonzero
elements is nonzero is called an integral domain.

■ Example 19.5 The quotient ring Z/pZ with p a prime is an integral domain. However,
Z/mZ with m a composite is not an integral domain. For instance, 2 and 3 in Z/6Z are
nonzero, but 2×3 = 6 ≡ 0 (mod 6), and hence 2×3 = 0 in Z/6Z. ■

Proposition 19.1 Let R be an integral domain. If a,b,c ∈ R are such that a ̸= 0 and
ab = ac, then b = c.

Proof. We know from ab = ac that a(b− c) = 0. If b ̸= c, or b− c ̸= 0, then by a ̸= 0, we
have a(b− c) ̸= 0 since R is an integral domain. This leads to a contradiction. ■

Definition 19.7 A field (F,+, ·) is a commutative ring where 0 ̸= 1 and all nonzero
elements are invertible under multiplication. That is, the following properties hold for
all a,b,c ∈ F :

(i) Closure of addition and multiplication: a+b ∈ F and a ·b ∈ F ;
(ii) Associativity of addition and multiplication: (a+b)+c = a+(b+c) and (a ·b) ·c =

a · (b · c);
(iii) Commutativity of addition and multiplication: a+b = b+a and a ·b = b ·a;
(iv) Additive and multiplicative identity: There exist two different elements 0 and 1
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in F such that a+0 = a and a ·1 = a;
(v) Additive inverses: For every a ∈ F , there exists an element in F , denoted by −a,

such that a+(−a) = 0; here −a is called the additive inverse of a;
(vi) Multiplicative inverses: For every a ∈ F with a ̸= 0, there exists an element in F ,

denoted by a−1, such that a ·a−1 = 1; here a−1 is called the multiplicative inverse
of a;

(vii) Distributivity of multiplication over addition: a · (b+ c) = a ·b+a · c.
■ Example 19.6 The set of real numbers R under the usual addition and multiplication
forms a field. Also, the set of complex numbers C under the usual addition and multipli-
cation forms a field. ■

19.2 Rational and irrational numbers
Definition 19.8 A rational number or a rational x is a real number that can be expressed
as the quotient x = a

b of integers a and b with b ̸= 0. In particular, if (a,b) = 1 and
b > 0, then a

b is called the irreducible expression of x.

Theorem 19.2 Every rational number has a unique irreducible expression.

Proof. The existence of an irreducible expression for any rational x comes from the fact
that if x = a

b with d = (a,b) and b > 0, then

x =
a′

b′

where a′ = a/d and b′ = b/d so that (a′,b′) = 1. For uniqueness, if x has irreducible
expressions

x =
a1

b1
=

a2

b2

with (a1,b1) = (a2,b2) = 1 and b1,b2 > 0, then a1b2 = a2b1. Now b1 | a1b2 and (a1,b1) = 1
imply that b1 | b2 by Theorem 2.6. Similarly, we have b2 | b1, and thus conclude that
b1 = b2, which further yields a1 = a2. ■

Theorem 19.3 The set of rational numbers Q under the usual addition and multiplication
forms a field.

Proof. This statement follows readily by verifying the properties in Definition 19.7. ■

Definition 19.9 An irrational number or an irrational is a real number that is not
rational, i.e. it cannot be expressed as a quotient a

b of integers a and b with b ̸= 0.

R The set of irrational numbers under either the usual addition or multiplication is
not a group. This is because neither 0 nor 1 is irrational.

It is in general hard to determine if a real number is irrational or not. Among the
known results about irrationality, we know that every non-integral radical of a positive
integer is irrational, and that every rational power of e is irrational except e0 = 1; the two
results will be proved in the next two sections, respectively.

For other results, we have the irrationality of all rational powers of π, again except
π0 = 1; this fact is a direct implication of the transcendence of π, but we will not cover it
in the current series of notes and the interested reader may refer to Hardy and Wright’s
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Introduction, Sect. 11.14. Now by the fact (see Apostol, Sect. 12.12) that for n ≥ 1, the
Riemann zeta function has the following evaluation (with B2n the 2n-th Bernoulli number),

ζ (2n) =
(−1)n+1B2n(2π)2n

2(2n)!
, (19.1)

which is a rational multiple of π2n, we know that ζ (2n) is irrational for every positive
integer n. Another important result is the irrationality of ζ (3), which was proved by the
French mathematician Roger Apéry (Astérisque 61 (1979), 11–13).

However, it remains an open problem for the irrationality of ζ (2n+ 1) with n ≥ 2 an
integer. Also, it is unknown if π+e, πe, π/e, πe, 2e, logπ or the Euler–Mascheroni constant
γ are irrational.

19.3 Irrationality of radicals
The very first study of irrationality dates back to ancient Greece. Here, we start with a
result that is usually attributed to a Pythagorean, possibly Hippasus of Metapontum.

Theorem 19.4
√

2 is irrational.

Hippasus’s reasoning is as follows. First, we assume that
√

2 is rational, and hence by
Theorem 19.2, we can write

√
2 in the irreducible expression

√
2 =

a
b
,

where (a,b) = 1 and b > 0. Then
a2 = 2b2,

thereby implying that a is even, and thus that a2 is a multiple of 4. Then b2 is also even,
yielding that b is even. But this violates the assumption that (a,b) = 1.

The above argument is of course intuitive. However, to ensure the possibility of further
generalizations, we shall go beyond the consideration for parity.

Proof. First, we know that 1 <
√

2 < 2, and hence that
√

2 is not an integer. Thus, if
we assume that

√
2 is rational and write

√
2 in the irreducible expression

√
2 = a

b , where
(a,b) = 1 and b > 0 as before, then b > 1. In other words, b has a prime factor p. Now,
p | 2b2 = a2, and by Corollary 2.7, p | a. This violates the assumption that (a,b) = 1. ■

Now we go ahead with a more general result.

Theorem 19.5 Let x be a real number such that

xm + cm−1xm−1 + · · ·+ c1x+ c0 = 0 (19.2)

with all coefficients ci integers. Then either x is an integer or x is irrational.

Proof. If x is an integer, then we are done. Now assume that x is a non-integral rational;
so written in the irreducible expression x = a

b with (a,b) = 1, we have b > 1. Note that
(19.2) is equivalent to

am + cm−1am−1b+ · · ·+ c1abm−1 + c0bm = 0.

Thus, if p is a prime factor of b, then p | am, and hence p | a by repeatedly using Corollary
2.7. This leads to a contradiction. ■
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■ Example 19.7 For any positive integers m and N, the number m
√

N is irrational unless N
is the m-th power of a certain positive integer n. In particular, if N > 1 is such that there
is a prime p with p | N and pm ∤ N, then m

√
N is irrational. Here we note that x = m

√
N is

such that xm −N = 0. ■

■ Example 19.8 The number
√

2+
√

3 is irrational. Here we note that x =
√

2+
√

3 is such
that x4 −10x2 +1 = 0. ■

19.4 Irrationality of e

We start with the irrationality of e, whose proof is nearly elementary.

Theorem 19.6 e is irrational.

Proof. We shall make use of the following infinite series representation of e, which may be
deduced from the Taylor expansion of ex:

e = 1+
1
1!

+
1
2!

+ · · · .

Assume that e is rational, and write e = a
b with a and b integers and b > 0. Further, let n

be a positive integer with n ≥ b. Then b | n! and hence the number

S := n!
(

e−1− 1
1!

− 1
2!

−·· ·− 1
n!

)
is an integer. However, we also have

0 < S = n!
(

1
(n+1)!

+
1

(n+2)!
+

1
(n+3)!

+ · · ·
)

<
1

n+1
+

1
(n+1)2 +

1
(n+1)3 + · · ·

=
1
n
≤ 1.

Hence, S cannot be an integer and we arrive at a contradiction. ■

For the irrationality of rational powers of e other than e0 = 1, we require a clever idea
due to the French mathematician Charles Hermite (Comptes rendus de l’Académie des
Sciences (Paris) 77 (1873), 18–24) that requires some calculus. However, the underlying
logic is similar — We assume that the statement is false, and then construct a quantity
that is an integer but also falls into the open interval (0,1), which is definitely absurd.

Lemma 19.7 Let n be a positive integer and define

f (x) =
xn(1− x)n

n!
. (19.3)

Then
(i) The function f (x) is a polynomial in x of the form f (x) = 1

n! ∑2n
i=n cixi, where the

coefficients ci are integers;
(ii) For 0 < x < 1, we have 0 < f (x)< 1

n! ;
(iii) The derivatives f (k)(0) and f (k)(1) are integers for all k ≥ 0.

Proof. The first two parts are plain. For Part (iii), it is immediate that f (k)(0) = 0 when
k < n or k > 2n. For the cases where n ≤ k ≤ 2n, we have f (k)(0) = k!

n! ck, which is an integer
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by first noting that k!
n! is an integer since k ≥ n and then recalling from Part (i) that ck is

also an integer. Finally, we have f (k)(1) = (−1)k f (k)(0) since f (x) = f (1− x). ■

Theorem 19.8 eu is irrational for every rational u with u ̸= 0.

Proof. We first prove that em is irrational for every positive integer m. Assume not, and
write em = a

b with a and b positive integers. Recalling (19.3), we define

F(x) := m2n f (x)−m2n−1 f ′(x)+m2n−2 f ′′(x)−·· ·+ f (2n)(x),

where n is chosen so that
n! > am2n.

Now the fact we shall use is that

d
dx

[
emxF(x)

]
= m2n+1emx f (x),

where we note that f (2n+1)(x) vanishes for all x. Hence,

S := b
∫ 1

0
m2n+1emx f (x)dx = b

[
emxF(x)

]1
0 = aF(1)−bF(0)

is an integer by Lemma 19.7(iii). However, we also have, with recourse to Lemma 19.7(ii),
that

0 < S = b
∫ 1

0
m2n+1emx f (x)dx <

bm2nem

n!
=

am2n

n!
< 1,

where the last inequality comes from our choice of n. Therefore, we are led to a contradic-
tion, thereby implying that em is irrational for every positive integer m. Finally, if there
exists a certain rational u = s

t ̸= 0 (without loss of generality, s > 0 is assumed) such that
eu is rational, then so is (eu)t = es since Q is a field. However, this contradicts what we
have proved earlier that es must be irrational. ■
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20.1 Fundamental theorem of algebra
We have seen in the previous lecture that every rational number is a root of a linear
polynomial with integer coefficients. Now our attention is turned to the roots of generic
polynomials, and we shall witness the Fundamental Theorem of Algebra, one of the mile-
stones in the history of mathematics.

Theorem 20.1 (Fundamental Theorem of Algebra). Every nonzero single-variable polyno-
mial of degree n ≥ 1 with complex coefficients has, counted with multiplicity, exactly n
complex roots.

Our proof of this theorem only relies on three facts from basic calculus:
▷ Polynomial functions are continuous.
▷ For any complex number z with |z| = 1 and any positive integer m, there exists a

complex number ζ with |ζ |= 1 such that ζ m = z. In fact, if z is written as z = e2πiθ for
a certain real θ , then ζ can be chosen as ζ = e

2πiθ
m .

▷ Cauchy’s minimum principle: A continuous real-valued function f on a compact set S
assumes a minimum in S.
The first two assertions lead us to a key result, which is now known as the d’Alembert–

Argand Lemma, due to the French mathematician Jean le Rond d’Alembert and the Swiss
amateur mathematician Jean-Robert Argand.

Lemma 20.2 (d’Alembert–Argand Lemma). Let p(z) =∑n
k=0 ckzk be a polynomial of degree

n ≥ 1 with complex coefficients. If p(a) ̸= 0 for some a ∈ C, then every disk D around
z = a contains an interior point b with |p(b)|< |p(a)|.

Proof. Without loss of generality, we may assume that a = 0 and p(a) = 1. If this is not
the case, then we simply consider the polynomial q(z) := p(z+a)

p(a) , which satisfies q(0)=1.
Now, let us write p(z) = 1+ c1z+ · · ·+ cnzn with m the smallest positive integer such

that cm ̸= 0. We further define

r1 := |cm|−
1
m and r2 :=

{ |cm|
|cm+1|+···+|cn| if m < n,

1 if m = n.
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Let r be such that 0 < r < min{1,r1,r2} and let ζ be an m-th root of − cm
|cm| where cm is the

complex conjugate of cm. Note that |− cm
|cm| |= 1. We claim that b = rζ is the desired point

as long as r is chosen to be small enough. There are two cases:
(i). If m = n, then p(z) = 1+ cnzn. Hence, p(rζ ) = 1+ cn · rn ·

(
− cn

|cn|

)
= 1−|cn|rn ∈ R.

Since 0 < r < r1, we have 0 < |cn|rn < 1, and thus |p(rζ )|< 1 = |p(0)|, as required.
(ii). If m < n, then we write p(z) = 1+cmzm + s(z). Note that 1+cm(rζ )m = 1+cm · rm ·(

− cm
|cm|

)
= 1− |cm|rm ∈ R. Again, since 0 < r < r1, we have 1− |cm|rm > 0. On the other

hand, we deduce from 0 < r < min{1,r2} and |ζ |= 1 that

|s(rζ )|=
∣∣cm+1rm+1ζ m+1 + · · ·+ cnrnζ n

∣∣
≤ |cm+1|rm+1 + · · ·+ |cn|rn

≤ (|cm+1|+ · · ·+ |cn|)rm+1

< |cm|rm.

We conclude that

|p(rζ )| ≤ |1+ cm(rζ )m|+ |s(rζ )|
= 1−|cm|rm + |s(rζ )|
< 1 = |p(0)|,

and hence complete the proof. ■

R With the knowledge of complex analysis, the d’Alembert–Argand Lemma can be
easily understood with recourse to the maximum modulus principle, asserting that
if f is a holomorphic function, then the modulus | f | cannot exhibit a strict local
maximum that is properly within the domain of f . Now, if there exists an open disk
D around z = a such that for all z ∈ D, |p(z)| ≥ |p(a)|> 0, then 1/p(z) is holomorphic
in D, and |1/p(z)| reaches its local maximum at a∈D. But this violates the maximum
modulus principle.

Now we are in a position to prove the Fundamental Theorem of Algebra.

Proof of Theorem 20.1. Let p(z) be a complex polynomial of degree n ≥ 1. It suffices to
show that p(z) has at least one root z1. Then we write p(z) = (z− z1)q(z) with q(z) a
polynomial of degree n−1, and apply induction on the degree.

To show that p(z) has at least one root, we start by observing that |p(z)| goes to
infinity as |z| goes to infinity. Hence, there exists some R1 > 0 such that |p(z)|> |p(0)| for
all complex z with |z|= R1. Now we apply Cauchy’s minimum principle to the compact set
D := {z : |z| ≤ |R1|} and assume that |p(z)| reaches the minimum at some z = z1. Further,
this z1 is in the interior of D. If p(z1) ̸= 0, then by the d’Alembert–Argand Lemma, we
may find a certain z′1 ∈ D such that |p(z′1)|< |p(z1)|, thereby violating the assumption that
|p(z1)| is the minimum. Hence, p(z1) = 0, which is our desired result. ■

20.2 Algebraic and transcendental numbers
Definition 20.1 An algebraic number is a complex number that is a root of a nonzero
polynomial in one variable with integer (or, equivalently, rational) coefficients.

■ Example 20.1 (i). Every rational number p/q is algebraic for it is the root of qz− p;
(ii). Every m-th root of unity with m a positive integer is algebraic for it is a root of
zm −1; (iii). The number

√
2+

√
3 is algebraic for it is a root of z4 −10z2 +1. ■
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Definition 20.2 Given an algebraic number, its minimal polynomial is a monic polyno-
mial (i.e. polynomial with leading coefficient 1) with rational coefficients of least degree
that has the number as a root. Further, this algebraic number is said to be of degree n
if its minimal polynomial is of degree n.

■ Example 20.2 (i). Every rational number p/q is of degree 1 since its minimal polynomial
is z− p

q ; (ii). The number e
2πi
3 = −1+

√
3i

2 is of degree 2 since its minimal polynomial is
z2 + z+1. ■

Theorem 20.3 Given an algebraic number, its minimal polynomial is unique.

Proof. Assume that α is an algebraic number of degree n with two different minimal
polynomials p1(z) and p2(z). Now, p1(z) and p2(z) are of degree n with p1(α) = p2(α) = 0.
Since p1(z) and p2(z) are monic, we know that the nonzero polynomial q(z) = p1(z)− p2(z)
with rational coefficients is of degree at most n−1. Noting that α is a root of q(z), we are
led to a contradiction as we have assumed that α is of degree n. ■

Theorem 20.4 Given an algebraic number α with minimal polynomial p(z), if f (z) is
a polynomial with rational coefficients such that f (α) = 0, then we may write f (z) =
p(z)q(z) where q(z) is also a polynomial with rational coefficients.

Proof. Noting that p(z) is the minimal polynomial of α, and that f (α) = 0, the degree
of f (z) is no smaller than the degree of p(z). Hence, we may write f (z) = p(z)q(z)+ r(z)
using the Division Algorithm with the degree of r(z) smaller than the degree of p(z). Now
we have r(α) = f (α)− p(α)q(α) = 0. To ensure that p(z) is the minimal polynomial of α,
we must have that r(z) is identical to zero, and hence that f (z) = p(z)q(z). ■

Definition 20.3 Given an algebraic number α with minimal polynomial p(z), its algebraic
conjugates, or conjugates if there is no ambiguity, are the roots of p(z). Normally, α
itself is included in the set of conjugates of α.

■ Example 20.3 The number e
2πi
3 = −1+

√
3i

2 has two conjugates e
2πi
3 = −1+

√
3i

2 and e−
2πi
3 =

−1−
√

3i
2 since its minimal polynomial z2 + z+1 has the aforementioned two roots. ■

Our next object concerns the cardinality of the set of algebraic numbers.

Theorem 20.5 The set of algebraic numbers is countable.

Proof. Consider the set of non-constant polynomials with integer coefficients

P := {cnzn + · · ·+ c1z+ c0 : c0, . . . ,cn ∈ Z, cn ̸= 0 and n ≥ 1}.

For each p(z) = cnzn + · · ·+ c1z+ c0 ∈ P, we define H(p) := n+ |cn|+ · · ·+ |c0|. Note that
H(p) ≥ 2. For every positive integer N ≥ 2, there are finitely many polynomials p in P
with H(p) = N. We label them as pN,1(z), . . . , pN,kN (z). Now arranging these polynomials
in the sequence

p2,1(z), p2,2(z), . . . , p2,k2(z), p3,1(z), p3,2(z), . . . , p3,k3(z), . . . ,

we are led to a one-to-one correspondence between polynomials in P and the set of natural
numbers. But every algebraic number corresponds to at least one of these polynomials,
and the number of algebraic numbers corresponding to any polynomial is finite by the
Fundamental Theorem of Algebra. The claim therefore follows. ■
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Definition 20.4 A complex number that is not algebraic is called transcendental.

Theorem 20.6 Almost all real and complex numbers are transcendental.

Proof. This is a direct consequence of Theorem 20.5 as both sets of real and complex
numbers are uncountable. ■

Although almost all real and complex numbers are transcendental, it is in general
not easy to determine if a given number is algebraic or transcendental. There are a few
results that can be used to prove the transcendence of certain numbers. For example, the
Lindemann–Weierstrass theorem implies that π, eα , sinα, cosα, tanα, cscα, secα, cotα
and their hyperbolic counterparts (with α algebraic and nonzero) are transcendental; the
Gelfond–Schneider theorem implies that eπ and αβ (with α algebraic but not 0 or 1, and
β irrational algebraic) are transcendental.

Note that every transcendental number is irrational, but the opposite is false. For
instance, the number

√
2 is irrational but algebraic. However, it is unknown if the

Apéry’s constant ζ (3), which is irrational, is transcendental or not. Also, as pointed
out in Sect. 19.2, the irrationality of π + e, πe, π/e, πe, 2e, logπ or the Euler–Mascheroni
constant γ is still mysterious, let alone their transcendence.

20.3 Transcendence of e

Our object in this section is the transcendence of e. The presented proof is attributed to
the German mathematician David Hilbert (Math. Ann. 43 (1893), no. 2-3, 216–219).

Theorem 20.7 e is transcendental.

Proof. We argue by contradiction and assume that e is algebraic, of degree n. Then we
may find a polynomial of degree n with integer coefficients such that

c0 + c1e+ · · ·+ cnen = 0,

where c0 and cn are nonzero.
Now we define, with p a large prime such that p > max{n, |c0|},

f (t) :=
t p−1

(
(t −1) · · ·(t −n)

)p

(p−1)!
.

We further let
F(t) := ∑

N≥0
f (N)(t),

where f (N) is the N-th derivative of f . Note that this sum is indeed terminating. Repeat-
edly integrating by parts gives ∫ ∞

x
f (t)e−tdt = e−xF(x).

Consider the two quantities:

S1 := c0

∫ ∞

0
f (t)e−tdt + c1e

∫ ∞

1
f (t)e−tdt + · · ·+ cnen

∫ ∞

n
f (t)e−tdt,

S2 := c1e
∫ 1

0
f (t)e−tdt + · · ·+ cnen

∫ n

0
f (t)e−tdt.
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Thus,

S1 +S2 = c0

∫ ∞

0
f (t)e−tdt + c1e

∫ ∞

0
f (t)e−tdt + · · ·+ cnen

∫ ∞

0
f (t)e−tdt

= (c0 + c1e+ · · ·+ cnen)
∫ ∞

0
f (t)e−tdt

= 0.

We first claim that S1 is a nonzero integer. Note that

S1 = c0F(0)+ c1F(1)+ · · ·+ cnF(n).

We shall show that F(0) ∈ Z\pZ. To see this, we write f (t) = g0(t)h0(t) where

g0(t) =
t p−1

(p−1)!
and h0(t) =

(
(t −1) · · ·(t −n)

)p
.

Now,

f (N)(0) =
N

∑
i=0

(
N
i

)
g(i)0 (0)h(N−i)

0 (0) =
(

N
p−1

)
h(N−p+1)

0 (0) ∈ Z.

Hence, F(0) = ∑N≥0 f (N)(0) ∈ Z. Further,

F(0) = ∑
N≥p−1

(
N

p−1

)
h(N−p+1)

0 (0)

≡ h0(0) = (−1)np(n!)p ̸≡ 0 (mod p),

where we make use of the fact that p > n is a prime. It follows that F(0) ̸∈ pZ, and hence
that F(0) ∈ Z\pZ. We shall also show that for 1 ≤ k ≤ n, F(k) ∈ pZ. To see this, we write
f (t) = gk(t)hk(t) where

gk(t) =
(t − k)p

(p−1)!
and hk(t) =

t p−1
(
(t −1) · · ·(t −n)

)p

(t − k)p .

Now,

f (N)(k) =
N

∑
i=0

(
N
i

)
g(i)k (k)h(N−i)

k (k) = p
(

N
p

)
h(N−p)

k (k) ∈ pZ.

Hence, F(k) = ∑N≥0 f (N)(k) ∈ pZ. At last, we have p ∤ c0 since p > |c0|. Consequently,
S1 ̸≡ 0 (mod p), which indicates that S1 is a nonzero integer.

We next claim that |S2| → 0 as p → ∞. To see this, it suffices to bound for each k with
0 ≤ k ≤ n, ∣∣∣∣ek

∫ k

0
f (t)e−tdt

∣∣∣∣≤ en
∫ n

0
| f (t)|dt ≤ en ·n · np−1(n!)p

(p−1)!
→ 0,

as p → ∞.
The above arguments imply that S1 +S2 ̸= 0 for sufficiently large p, thereby violating

the fact that S1 +S2 = 0 as obtained earlier. Hence, e is not algebraic. ■





21. Number fields

21.1 Field extensions
In the previous lecture, we already experienced the basic background of algebraic numbers.
Now we are going to look at a more abstract setting.

Definition 21.1 Let K and F be fields with F ⊂ K. Then F is called a subfield of K, and
K is called an extension field of F . We usually write K/F , denoting that K is a field
extension of F .

If a field K extends another field F , we can view K as a vector space over F . Therefore,
we may determine a set of elements in K, say B = {bi : i ∈ I} ⊂ K, where the set of indices
is not necessarily countable, such that every element y ∈ K can be uniquely written as
y = ∑i∈I xibi with xi ∈ F for all i ∈ I. This set B is called a basis for K over F .

Definition 21.2 The dimension of K as a vector space over F is called the degree of the
extension K/F , denoted by [K : F ]. In particular, [K : F ] = |B|= |I|.

Proposition 21.1 Let F ⊂K be fields with {bi : i∈ I} a basis for K over F . Then ∑i∈I xibi =
0 with xi ∈ F if and only if xi = 0 for all i.

Proof. Note that 0 = ∑i∈I 0 · bi. The desired claim follows from the uniqueness of the
representation. ■

Definition 21.3 We say K is a finite extension of F if [K : F ]< ∞.

■ Example 21.1 (i). C is a finite extension of R with [C : R] = 2, and {1, i} forms a basis.
(ii). C is an extension of Q with [C : Q] = ∞, and the basis is uncountable. ■

Definition 21.4 If L, K and F are fields with F ⊂ K ⊂ L, we say K is an intermediate
field of L and F .

Theorem 21.2 Let F ⊂ K ⊂ L be fields. If the elements {αi ∈ K : i ∈ I} form a basis for
K over F and the elements {β j ∈ L : j ∈ J} form a basis for L over K, then the elements
{αiβ j : i ∈ I, j ∈ J} form a basis for L over F .

Proof. By definition, every z ∈ L can be represented as z = ∑ j∈J y jβ j with y j ∈ K. Fur-
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ther, each y j can be represented as y j = ∑i∈I xi jαi with xi j ∈ F . Hence, z = ∑i∈I, j∈J xi jαiβ j.
Now we show the uniqueness of such representations, and it suffices to show that if
0 = ∑i∈I, j∈J x̃i jαiβ j, then x̃i j = 0 for all i and j. Noting that 0 = ∑ j∈J (∑i∈I x̃i jαi)β j and
that β j form a basis for L over K, we know from Proposition 21.1 that ∑i∈I x̃i jαi = 0 for all
j. Using Proposition 21.1 again with the fact that αi form a basis for K over F , we have
x̃i j = 0 for all i and j, as required. ■

Theorem 21.3 Let F ⊂ K ⊂ L be fields. Then [L : F ] = [L : K][K : F ].

Proof. In Theorem 21.2, we have [K : F ] = |I|, [L : K] = |J|, and [L : F ] = |I||J|. ■

Definition 21.5 Number fields are finite extensions of Q.

21.2 Algebraicity
Definition 21.6 Let F be a field. We denote by F [x] the set of polynomials in x whose
coefficients are all in F , and call it the ring of polynomials over F . Further, we denote
F(x) =

{ f (x)
g(x) : f ,g ∈ F [x], g ̸= 0

}
, and call it the field of rational functions over F .

Now we extend the concept of algebraicity discussed in Sect. 20.2.

NOTE Throughout, every field is assumed to be a subfield of C under the usual addition
and multiplication, unless otherwise specified.

Definition 21.7 Let F ⊂ C be a field. We say α ∈ C is algebraic over F if there is a
nonzero polynomial f (x)∈ F [x] such that f (α) = 0. Further, a polynomial in F [x] is said
to be a minimal polynomial of α over F if it is monic, has the lowest degree, and has
α as its root. Finally, the degree of α over F is the degree of the minimal polynomial
of α over F .

Definition 21.8 Let F ⊂C be a field. We call K/F an algebraic extension if every element
in K is algebraic over F .

We have considered some basic properties of algebraicity over Q in Sect. 20.2. Recall
that in the proofs of Theorems 20.3 and 20.4, we used no specific properties of Q other
than the fact that it is a field. Therefore, it is natural to transplant those arguments to
the algebraicity over a generic subfield of C.

Theorem 21.4 Let α be algebraic over F ⊂ C. Then its minimal polynomial is unique.

Theorem 21.5 Let α be algebraic over F ⊂C with minimal polynomial p(x). If f (x)∈F [x]
is such that f (α) = 0, then we may write f (x) = p(x)q(x) where q(x) ∈ F [x].

The next result indicates that algebraic elements over a subfield of C are not rare.

Theorem 21.6 Let F ⊂C be a field and let K/F be a finite extension. Then every element
in K is algebraic over F , of degree at most [K : F ].

Proof. Let [K : F ] = n < ∞. For any α ∈ K, we see that 1,α,α2, . . . ,αn are n+1 elements
in K. Hence, they are linearly dependent over F , meaning that there is a nontrivial linear
combination of 1,α,α2, . . . ,αn of value 0 such that the coefficients are in F . This gives a
nonzero polynomial of degree at most n in F [x] having α as a root. ■
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21.3 Algebraic conjugates
Definition 21.9 Let F be a field. A polynomial f ∈ F [x] is said to be irreducible over F
if and only if whenever f = gh with g,h ∈ F [x], we have g or h constant.

Theorem 21.7 Let F ⊂ C be a field. For every algebraic α over F , a monic polynomial
f (x) ∈ F [x] such that f (α) = 0 is the minimal polynomial of α if and only if f (x) is
irreducible over F .

Proof. We start with necessity. If f (x) is not irreducible over F , then we may write f (x) =
s(x)t(x) with s, t ∈ F [x] and 1 ≤ degs,deg t < deg p. Further, we have s(α)t(α) = f (α) = 0.
Then either s(α) = 0 or t(α) = 0, thereby violating the assumption that f (x) is the minimal
polynomial of α.

We then prove sufficiency. Assume that the minimal polynomial of α is p(x). Then by
Theorem 21.5, there exists a polynomial q ∈ F [x] such that f (x) = p(x)q(x). However, since
the monic polynomial f (x) is irreducible, we must have q(x) = 1, and hence p(x) = f (x). ■

Theorem 21.8 Let F ⊂ C be a field. If f ∈ F [x] of degree n is irreducible over F , then f
has n distinct roots in C.

Proof. By the Fundamental Theorem of Algebra, we know that f has n roots in C. Now
we show that these roots are distinct. Note that if n = 1, the statement is trivial. So we
assume that n ≥ 2. Suppose that there is a root α with multiplicity at least two. Then as
a polynomial over C, we may write f (x) = (x−α)2g(x) with g ∈C[x]. Taking the derivative
f ′(x) = 2(x−α)g(x)+(x−α)2g′(x), we observe that f ′(α) = 0. If the minimal polynomial of
α is p(x), then 1 ≤ deg p ≤ n−1 since f ′ is in F [x] and deg f ′ = deg f −1 = n−1. Recalling
that f (α) = 0, we conclude from Theorem 21.5 that f (x) = p(x)q(x) with q(x) ∈ F [x].
However, by the fact that 1 ≤ deg p ≤ n−1 so that 1 ≤ degq ≤ n−1, we find that f is not
irreducible, thereby leading to a contradiction. ■

Corollary 21.9 Let F ⊂C be a field. For every algebraic α over F of degree n, its minimal
polynomial p(x) has n distinct roots in C.

Proof. This is a direct implication of Theorems 21.7 and 21.8. ■

Now we extend the concept of conjugacy in Definition 20.3.
Definition 21.10 Let α be algebraic over F ⊂C with minimal polynomial p(x) of degree
n. Let α = α1,α2, . . . ,αn be the (distinct) roots of p(x). We call α1,α2, . . . ,αn the
algebraic conjugates or conjugates of α over F .

Corollary 21.10 If α is algebraic over F ⊂ C with minimal polynomial p(x), then so is
every conjugate α̃ of α over F . Consequently, the degree of α̃ over F equals the degree
of α over F .

Proof. By Theorem 21.7, p(x) is irreducible over F . Also, it is known that p(α̃)= 0. Hence,
with Theorem 21.7 applied again, the minimal polynomial of α̃ over F is also p(x). ■

21.4 F [α] vs F(α)
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Theorem 21.11 Let F ⊂C be a field. Let α be algebraic over F of degree n. The elements
{1,α, . . . ,αn−1} form a basis for F [α] over F .

Proof. First, we know that {1,α, . . . ,αn−1} are linearly independent over F . Otherwise,
if there exist ai ∈ F (0 ≤ i ≤ n− 1), not all zero, such that ∑n−1

i=0 aiα i = 0, then we are led
to a contradiction as the minimal polynomial of α is of degree n. Now we show that
every element in F [α] can be written as a linear combination of 1,α, . . . ,αn−1. We know
that every element in F [α] is of the form f (α) where f (x) ∈ F [x]. Assuming that the
minimal polynomial of α is p(x), we then write f (x) = p(x)q(x)+ r(x) with q,r ∈ F [x] and
degr < deg p = n. It follows that f (α) = p(α)q(α)+ r(α) = r(α). Finally, since degr < n,
we find that r(α) is a linear combination of 1,α, . . . ,αn−1, as required. ■

Before moving forward, let us briefly consider the divisibility for polynomials over F ,
as an analog to that for integers discussed in Lecture 2.

Definition 21.11 Let f ,g ∈ F [x]. We say that g divides f , denoted by g | f , if there exists
a polynomial h ∈ F [x] such that f (x) = g(x)h(x).

Definition 21.12 Let f ,g∈F [x], not both zero. There exists a unique polynomial d ∈F [x],
up to multiplying a nonzero constant in F , such that d divides both f and g, and such
that if δ ∈ F [x] divides f and g, then δ | d. This polynomial d(x) is called the greatest
common divisor of f (x) and g(x), denoted by d(x) = ( f (x),g(x)).

To get this polynomial d(x), we may still use the Euclidean Algorithm, but this time
for polynomials over F . Without loss of generality, we assume that deg f ≥ degg and g ̸= 0.
We also put r−1(x) = f (x) and r0(x) = g(x). Now we iteratively write

r−1(x) = q1(x)r0(x)+ r1(x), degr1 < degr0;

r0(x) = q2(x)r1(x)+ r2(x), degr2 < degr1;

· · ·
rk−2(x) = qk(x)rk−1(x)+ rk(x), degrk < degrk−1;

rk−1(x) = qk+1(x)rk(x)+0.

Then d(x) = rk(x) is as required.
We are also able to establish a Bézout-type identity parallel to that in Theorem 2.5.

Theorem 21.12 (Bézout’s Identity for Polynomials). Let f ,g ∈ F [x], not both zero, and
denote d(x) = ( f (x),g(x)). Then there exist polynomials u,v ∈ F [x] such that d(x) =
f (x)u(x)+g(x)v(x).

Proof. We only need the fact that the set S = { f (x)u(x)+g(x)v(x) : u,v ∈ F [x]} is closed un-
der addition and scalar multiplication (of polynomials over F). From the above Euclidean
Algorithm, we iteratively have r1(x) ∈ S, r2(x) ∈ S, . . ., and finally, d(x) = rk(x) ∈ S. ■

Theorem 21.13 Let F ⊂ C be a field. Let α be algebraic over F . We have F(α) = F [α].
In particular, if the degree of α over F is n, then F(α) = F [α] is a finite extension of F
of degree n.

Proof. It is plain that F [α]⊂F(α). Hence, we only need to show that F(α)⊂F [α]. Let θ ∈
F(α). Then θ = f (α)

g(α) with f ,g∈F [x]. Note that g(α) ̸= 0. Let p be the minimal polynomial
of α over F . By Theorem 21.7, p is irreducible over F . Also, we have that p ∤ g; if not, then
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g(x) = p(x)q(x) with q ∈ F [x], and hence g(α) = p(α)q(α) = 0, which gives a contradiction.
Hence, (p(x),g(x)) = 1, and by Theorem 21.12, there are polynomials u,v ∈ F [x] such
that p(x)u(x)+ g(x)v(x) = 1. Now, g(α)v(α) = 1, implying that θ = f (α)v(α) ∈ F [α], as
proposed.

Now noting that F(α) is a field containing F , we have that F(α) = F [α] is an extension
of F . To show that this extension is of degree n, we only need to recall from Theorem
21.11 that the dimension of F [α] as a vector space over F is n. ■

Corollary 21.14 Let F ⊂ C be a field. Let α,β , . . . ,γ be algebraic over F . Then we
have F(α,β , . . . ,γ) = F [α,β , . . . ,γ]. In particular, if the degrees of α,β , . . . ,γ over F are
nα ,nβ , . . . ,nγ , respectively, then F(α,β , . . . ,γ) = F [α,β , . . . ,γ] is a finite extension of F of
degree at most nαnβ · · ·nγ .

Proof. The first part follows from an easy exercise of induction. Let K = F(β , . . . ,γ), which
is an extension field of F . Note that F(α,β , . . . ,γ) = K(α) = K[α] by Theorem 21.13 as α
is algebraic over F , and hence also over K. Now, by the inductive assumption, we have
K = F [β , . . . ,γ], and hence K[α] = F [β , . . . ,γ][α] = F [α,β , . . . ,γ].

For the second part, let p(x) be the minimal polynomial of α over F . Then p(x) is also
over K. Therefore, the degree of α over K is at most deg p = nα . By Theorem 21.13,

[F(α,β , . . . ,γ) : K] = [K(α) : K]≤ nα .

Finally, we have

[F(α,β , . . . ,γ) : F ] = [F(α,β , . . . ,γ) : K][K : F ]≤ nα [K : F ].

It is concluded that [F(α,β , . . . ,γ) : F ]≤ nαnβ · · ·nγ by induction. ■

We are then led to the transitivity of algebraicity of field extensions.

Theorem 21.15 (Transitivity of Algebraicity). Let F ⊂ K ⊂ L be three subfields of C. If L
is algebraic over K and K is algebraic over F , then L is algebraic over F .

Proof. Let α ∈ L. Since α is algebraic over K, it is a root of anxn + · · ·+ a0 with ai ∈
K. Further, each ai is algebraic over F , and by Corollary 21.14, M := F(a0, . . . ,an) is a
finite extension of F . On the other hand, α is also algebraic over the field M. Hence,
F(a0, . . . ,an,α) = M(α) is a finite extension of M. It follows that F(a0, . . . ,an,α) is a finite
extension of F as

[F(a0, . . . ,an,α) : F ] = [F(a0, . . . ,an,α) : M][M : F ].

Finally, by Theorem 21.6, α ∈ F(a0, . . . ,an,α) is algebraic over F . ■

21.5 Field of algebraic elements
Now we are ready to claim the structure of algebraic elements over a subfield of C.

Theorem 21.16 Let F ⊂C be a field. Let α and β be algebraic over F . Then α +β and
αβ are algebraic over F . In particular, algebraic elements over F form a field.

Proof. Let K = F [α]. Then α + β and αβ are in K[β ]. We know from Theorem 21.13
that K = F [α] is a finite extension of F , and that K[β ] is a finite extension of K. Now by
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Theorem 21.3, K[β ] is a finite extension of F , and hence all elements in K[β ], including
α +β and αβ , are algebraic over F with recourse to Theorem 21.6.

To show that algebraic elements over F form a field, it remains to prove that the
additive and multiplicative inverses of any nonzero algebraic element are algebraic. Let
α ̸= 0 be algebraic over F with minimal polynomial p(x) = anxn + · · ·+ a1x+ a0. Then
anαn + · · ·+ a1α + a0 = 0, and hence (−1)nan(−α)n + · · · − a1(−α)+ a0 = 0 and an + · · ·+
a1(α−1)n−1 +a0(α−1)n = 0, yielding the algebraicity of −α and α−1. ■

The above proof of the algebraicity of α + β and αβ over F is not constructive at
all. A natural desire is finding polynomials over F having α + β or αβ as a root. For
this purpose, we need some knowledge of matrix theory, namely the Kronecker product of
matrices, named after the German mathematician Leopold Kronecker.

Definition 21.13 Let F be a field. The Kronecker product of an m×n matrix A = (ai j) ∈
Matm,n(F) and a p×q matrix B = (bi j) ∈ Matp,q(F) is the mp×nq block matrix

A⊗B =

a11B · · · a1nB
... . . . ...

am1B · · · amnB

 ∈ Matmp,nq(F).

Proposition 21.17 Let A,B,C,D be matrices, 0 be the zero column vector, and k be a
scalar. Then

(i) A⊗ (B+C) = A⊗B+A⊗C;
(ii) (B+C)⊗A = B⊗A+C⊗A;
(iii) (kA)⊗B = A⊗ (kB) = k(A⊗B);
(iv) A⊗0 = 0⊗A = 0;
(v) A⊗ (B⊗C) = (A⊗B)⊗C;
(vi) (A⊗B)(C⊗D) = (AC)⊗ (BD).

Proof. All these relations can be examined directly by the definition of Kronecker product.
In particular, we show (vi). First, it follows from A = (aih) and C = (ch j) that A⊗B = (aihB)
and C⊗D = (ch jD). Hence, the (i, j)-th block of (A⊗B)(C⊗D) is

n

∑
h=1

(aihB)(ch jD) =

(
n

∑
h=1

aihch j

)
BD.

On the other hand, the (i, j)-th entry of AC is ∑n
h=1 aihch j, thereby implying that the (i, j)-th

block of (AC)⊗ (BD) is also
(
∑n

h=1 aihch j
)

BD. ■

Now let
f (x) = c0 + c1x+ · · ·+ cn−1xn−1 + xn

be a monic polynomial over F . Its companion matrix is given by

C( f ) =


0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

... . . . ...
...

0 0 · · · 1 −cn−1

 .

It is plain to verify that the characteristic polynomial of C( f ) is f (x).
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Lemma 21.18 Let A be an m×m matrix and B an n× n matrix. If u is an eigenvector
of A for eigenvalue α and v is an eigenvector of B for eigenvalue β , then u⊗ v is an
eigenvector of A⊗B for eigenvalue αβ , and u⊗ v is an eigenvector of A⊗ In + Im ⊗B for
eigenvalue α +β , where Ik is the k× k identity matrix.

Proof. Note that Au = αu and Bv = βv. For the first part, we have

(A⊗B)(u⊗ v) = (Au)⊗ (Bv) = (αu)⊗ (βv) = (αβ )(u⊗ v).

Also,

(A⊗ In + Im ⊗B)(u⊗ v) = (A⊗ In)(u⊗ v)+(Im ⊗B)(u⊗ v)

= (Au)⊗ (Inv)+(Imu)⊗ (Bv)

= (αu)⊗ v+u⊗ (βv)

= (α +β )(u⊗ v),

confirming the second part. ■

Theorem 21.19 Let F ⊂C be a field. Let α and β be algebraic over F , of degree m and
n, respectively. For f (x) and g(x) monic polynomials over F such that f (α) = 0 and
g(β ) = 0, we denote by A and B the companion matrix of f (x) and g(x), respectively.
Then the characteristic polynomial s(x) (resp. p(x)) of A⊗ In + Im ⊗B (resp. A⊗B) is
monic over F such that s(α +β ) = 0 (resp. p(αβ ) = 0).

Proof. The claim that s(x) and p(x) are monic over F is plain since A and B are over the
field F , so are A⊗ In + Im ⊗B and A⊗B. Further, f (α) = 0 and g(β ) = 0 imply that α
is an eigenvalue of A and that β is an eigenvalue of B. We thus obtain s(α +β ) = 0 and
p(αβ ) = 0 from Lemma 21.18. ■

■ Example 21.2 Let α =
√

2 and β = 3
√

3. Then f (x) = x2 −2 and g(x) = x3 −3, and hence,

A =

(
0 2
1 0

)
and B =

0 0 3
1 0 0
0 1 0

 .

We further compute that

A⊗ I3 + I2 ⊗B =



0 0 3 2 0 0
1 0 0 0 2 0
0 1 0 0 0 2
1 0 0 0 0 3
0 1 0 1 0 0
0 0 1 0 1 0

 and A⊗B =



0 0 0 0 0 6
0 0 0 2 0 0
0 0 0 0 2 0
0 0 3 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

,

and hence that s(x) = x6 −6x4 −6x3 +12x2 −36x+1 and p(x) = x6 −72. Finally, it is easy
to verify that s(

√
2+ 3

√
3) = 0 and p(

√
2 · 3

√
3) = 0. ■

R The above construction can be found at a Stackexchange post of Robert Israel:

https://math.stackexchange.com/q/1283161

Israel attributed this folklore to Dave Boyd, Olga Taussky, and Richard Dedekind,
in chronological order.

https://math.stackexchange.com/q/1283161




22. Embeddings

22.1 Embeddings
Definition 22.1 Let R and S be fields (resp. rings). A field (resp. ring) homomorphism
is a map σ : R → S such that for all a,b ∈ R, the map σ is

(i) addition preserving: σ(a+b) = σ(a)+σ(b);
(ii) multiplication preserving: σ(ab) = σ(a)σ(b);
(iii) multiplicative identity preserving: σ(1R) = 1S.

R There are several basic facts about field or ring homomorphisms:
(i) σ(0R) = 0S. This is because σ(0R) = σ(0R +0R) = σ(0R)+σ(0R).
(ii) σ(−a) =−σ(a). This is because σ(−a)+σ(a) = σ(−a+a) = σ(0R) = 0S.
(iii) Every field homomorphism is injective. In particular, we have σ(a) = 0S if and

only if a = 0R. Otherwise suppose that there are two distinct a,b ∈ R such that
σ(a) = σ(b). If we put c = a−b ̸= 0R, then σ(c) = σ(a−b) = σ(a)−σ(b) = 0S.
Now, 1S = σ(1R) = σ(cc−1) = σ(c)σ(c−1) = 0S. However, in the field S, we have
required that the additive identity 0S and the multiplicative identity 1S are
different.

Lemma 22.1 Let F ⊂ C be a field and let K/F be an extension. Let α ∈ K be algebraic
over F of degree n with minimal polynomial xn + an−1xn−1 + · · ·+ a0. For σ a field
homomorphism of K in C, σ(α) is a root of xn +σ(an−1)xn−1 + · · ·+σ(a0).

Proof. We have

0 = σ(0) = σ
(
αn +an−1αn−1 + · · ·+a0

)
= σ(α)n +σ(an−1)σ(α)n−1 + · · ·+σ(a0),

as required. ■

Definition 22.2 Let R and S be fields (resp. rings). An injective field (resp. ring) homo-
morphism σ : R → S is said to be an embedding of R in S.
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Theorem 22.2 Let F ⊂C be a field. Let α be algebraic over F of degree n with minimal
polynomial p(x) = xn + an−1xn−1 + · · ·+ a0 ∈ F [x]. Then every embedding σ of F in C
extends to exactly n distinct embeddings σ1, . . . ,σn of F(α) in C, and each σi sends α
to one of the n distinct roots of q(x) = xn +σ(an−1)xn−1 + · · ·+σ(a0) in C.

In particular, if α has conjugates α1, . . . ,αn over F , then there are exactly n embed-
dings τ1, . . . ,τn of F(α) in C that fix F , and each τi sends α to αi.

Proof. Note that by Theorem 21.7, p(x) is irreducible over F , and hence q(x) is irreducible
over the field σ(F). It follows from Theorem 21.8 that q(x) has n distinct roots β1, . . . ,βn

in C. For each βi, we get a field homomorphism σi by sending α to βi, and hence,

σi : F(α) = F [α] → C
∑ j c jα j 7→ ∑ j σ(c j)β j

i

We have obtained n distinct extensions of σ to embeddings of F(α) in C. Further, there
are no other such embeddings by Lemma 22.1, which tells us that α must be sent to a
root of q(x).

For the second part, we take σ to be the trivial embedding id : F →C with id(x) = x for
every x ∈ F . Then for each coefficient ai ∈ F of p(x), we have σ(ai) = id(ai) = ai, and hence
q(x) = p(x). Now, the roots of q(x) in C are the conjugates α1, . . . ,αn of α over F . ■

Theorem 22.3 Let F ⊂ C be a field and let K be a finite extension of F . Then every
embedding σ of F in C extends to exactly [K : F ] distinct embeddings of K in C.

Proof. We apply induction on [K : F ] = N. The statement is trivial if N = 1. Now we
assume that N ≥ 2. Let α = K\F and assume that the degree of α over F is n. Note that
n> 1 since α ̸∈ F . We know from Theorem 22.2 that there are exactly n distinct extensions
σ1, . . . ,σn of σ to embeddings of F(α) in C. Further, since [K : F(α)] = N

n < N as n > 1,
we derive from the inductive hypothesis that each σi has exactly N

n distinct extensions to
embeddings of K in C and so we have exactly n× N

n = N distinct embeddings of K in C
extending σ . ■

Definition 22.3 Let F ⊂ C be a field and let K be a finite extension of F . If σ is an
embedding of K in C that fixes F , i.e. σ is extended by the embedding id : F →C with
id(x) = x for every x ∈ F , then we say σ is an embedding of K in C over F .

Corollary 22.4 Let F ⊂C be a field and let K be a finite extension of F . Then there are
exactly [K : F ] distinct embeddings of K in C over F .

Proof. In Theorem 22.3, we take σ = id. ■

22.2 Finite extensions are simple
Now we are in a position to show that every finite extension of F ⊂C is simple, that is, it
is generated by the adjunction of a single element.

Theorem 22.5 Let F ⊂ C be a field and let K/F be a finite extension. Then there is an
element θ ∈ K such that K = F(θ).

Proof. Since K/F is a finite extension, there exist algebraic elements α1, . . . ,αn over F such
that K = F(α1, . . . ,αn). By induction, it suffices to show the case where n = 2.
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Suppose that K = F(α,β ) with α,β algebraic over F . Let α = α1,α2, . . . ,αr be the
conjugates of α over F and β = β1,β2, . . . ,βs be the conjugates of β over F . Note that F
is infinite since Q ⊂ F . We may choose some c ∈ F such that c ̸= −α1−αi

β1−β j
for all 1 ≤ i ≤ r

and 2 ≤ j ≤ s. Put θ = α + cβ = α1 + cβ1. It is trivial that F(θ)⊂ F(α,β ).
Now we show that F(α,β )⊂ F(θ) and hence obtain the desired θ . Note that it suffices

to prove that α,β ∈ F(θ). Further, since α = θ −cβ , we only need to prove that β ∈ F(θ).
Let p(x) be the minimal polynomial of α over F and let q(x) be the minimal polynomial

of β over F . Considering polynomials p(θ − cx) and q(x), we observe that x = β = β1 is a
common root of them. If there is a common root x0 ∈ C other than β = β1, then it must
be x0 = βk for some 2 ≤ k ≤ s since q(x0) = 0. Further, p(θ − cx0) = p(θ − cβ j) = 0 implies
that θ − cβ j = αi for some 1 ≤ i ≤ r. Then c = −α1−αi

β1−β j
, thereby violating our choice of c.

Hence, x = β = β1 is the only common root of p(θ − cx) and q(x). By Corollary 21.9, the
roots of q(x) are distinct. Hence, (p(θ − cx),q(x)) = x−β over C.

On the other hand, we find that the polynomials p(θ − cx) and q(x) are in F(θ)[x].
Let f (x) be the minimal polynomial of β over F(θ). Then by Theorem 21.5, f (x) divides
p(θ − cx) and q(x) over F(θ), and thus over C.

Finally, we know from Definition 21.12 that f (x) | (p(θ − cx),q(x)) = (x−β ) over C.
Since deg f ≥ 1 and f (x) is monic, it follows that f (x) = x−β . However, f (x) ∈ F(θ)[x],
thereby indicating that we must have β ∈ F(θ). ■

■ Example 22.1 Consider Q(
√

2, 3
√

3). We find that the minimal polynomial of
√

2 over Q
is x2 − 2, and hence its conjugates are

√
2 and −

√
2. Similarly, the minimal polynomial

of 3
√

3 over Q is x3 − 3, and its conjugates are 3
√

3, ω 3
√

3 and ω2 3
√

3 where ω = e2πi/3.
It is plain that 1 is not equal to any of −

√
2−(±

√
2)

3√3−(ω 3√3)
and −

√
2−(±

√
2)

3√3−(ω2 3√3)
. Thus, we have

Q(
√

2, 3
√

3) =Q(
√

2+ 3
√

3). ■

22.3 Automorphisms of a field extension
Definition 22.4 Let R and S be fields (resp. rings). A homomorphism σ : R → S is called
an isomorphism if it is bijective. In addition, an isomorphism from a field or a ring to
itself is called an automorphism.

Definition 22.5 Let K be an algebraic extension of a field F ⊂ C. Denote by Aut(K/F)
the set of automorphisms σ : K → K leaving elements in F fixed, namely, σ(x) = x
whenever x ∈ F .

R Aut(K/F) forms a group under composition.

Proposition 22.6 Let F ⊂C be a field and let K/F be an algebraic extension. Let α ∈ K
with minimal polynomial p(x) over F . Then for any σ ∈ Aut(K/F), σ(α) is a root of
p(x) in K.

Proof. This is a direct application of Lemma 22.1 with the fact that σ fixes F , and hence
all coefficients of p(x). ■

Theorem 22.7 Let F ⊂ C be a field and let K/F be a finite extension. We have
|Aut(K/F)| ≤ [K : F ].

Proof. We know from Theorem 22.5 that there is an element θ ∈ K such that K = F(θ).
Also, by Theorem 21.13, the degree of θ over F is [F(θ) : F ] = [K : F ] =: n. Since K =F(θ) =
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F [θ ], we may write every x ∈ K as x = ∑i ciθ i with ci ∈ F , and hence for σ ∈ Aut(K/F),
the value of σ(x) = ∑i ciσ(θ)i is uniquely determined by σ(θ). Finally, Proposition 22.6
asserts that there are at most n possibilities of σ(θ). Here, we shall use “at most” as there
might be roots of the minimal polynomial of θ over F falling outside of K. ■

Theorem 22.8 Let F ⊂C be a field. Let α be algebraic over F . If σ is an embedding of
F(α) in C over F such that σ(α) ∈ F(α), then σ ∈ Aut(F(α)/F).

Proof. Let p(x) be the minimal polynomial of α over F . Lemma 22.1 tells us that σ(α)
is also a root of p(x) since σ fixes F . Hence, by Corollary 21.10, σ(α) also has minimal
polynomial p(x) over F . It is then a consequence of Theorem 21.13 that [F(σ(α)) : F ] =
deg p = [F(α) : F ]. Since σ(α) ∈ F(α), we have F(σ(α))⊂ F(α). Thus,

[F(α) : F(σ(α))] =
[F(α) : F ]

[F(σ(α)) : F ]
= 1,

yielding that F(σ(α)) = F(α).
To show that σ ∈ Aut(F(α)/F), it is sufficient to prove that σ is onto F(α). Note that

every x ∈ F(α) = F(σ(α)) = F [σ(α)] can be written as x = ∑i ciσ(α)i with ci ∈ F . It turns
out that

x = ∑
i

ciσ(α)i = ∑
i

σ(ci)σ(α)i = σ

(
∑

i
ciα i

)
.

Finally, we have ∑i ciα i ∈ F(α), and hence x ∈ σ(F(α)), as proposed. ■

22.4 Normal extensions
Definition 22.6 Let F ⊂ C be a field. We call K/F a normal extension if K is closed
under the process of taking conjugates over F , namely, whenever α ∈ K, we have α̃ ∈ K
for all conjugates α̃ of α over F .

Theorem 22.9 Let F ⊂C be a field and let K/F be a finite extension. Then K is normal
over F if and only if every embedding of K in C over F is in Aut(K/F).

Proof. We start with necessity. It is known that there is an element θ ∈ K such that
K = F(θ). Let σ be an arbitrary embedding of K in C over F . By Lemma 22.1, σ(θ) is a
conjugate of θ over F , and thus σ(θ) ∈ K since K/F is normal. It follows from Theorem
22.8 that σ ∈ Aut(K/F).

We then prove sufficiency. Let α ∈ K and assume that α̃ is an arbitrary conjugate of α
over F . Note that F ⊂ F(α)⊂ K. We know from Theorem 22.2 that there is an embedding
τ of F(α) in C over F such that τ(α) = α̃. We further extend τ to an embedding σ of
K in C. By our assumption, σ ∈ Aut(K/F). Noting that α ∈ F(α), we conclude that
α̃ = τ(α) = σ(α) ∈ K, as required. ■

Theorem 22.10 Let F ⊂ C be a field. Let α,β , . . . ,γ be in C with α,β , . . . ,γ algebraic
over F . If the conjugates of α,β , . . . ,γ over F are in F(α,β , . . . ,γ), then F(α,β , . . . ,γ) is
normal over F .

Proof. We know from Corollary 21.14 that F(α,β , . . . ,γ) = F [α,β , . . . ,γ]. Let us write
K = F(α,β , . . . ,γ). Recall that there is an element θ ∈ K such that K = F(θ). Meanwhile,
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θ = f (α,β , . . . ,γ) with f ∈ F [xα ,xβ , . . . ,xγ ] a multivariate polynomial over F . Letting σ be
an arbitrary embedding of K in C over F , we have

σ(θ) = σ
(

f (α,β , . . . ,γ)
)
= f
(
σ(α),σ(β ), . . . ,σ(γ)

)
.

By Lemma 22.1, σ(α) is a conjugate of α over F , so it is in K. The same argument also
works for β , . . . ,γ. As a consequence, σ(θ) ∈ K = F(θ). We conclude from Theorem 22.8
that σ ∈ Aut(K/F), and further from Theorem 22.9 that K/F is normal by recalling that
σ is arbitrarily chosen. ■

Theorem 22.11 Let F ⊂ C be a field and let K/F be a finite extension. Then there is a
finite extension L of K such that L is normal over F .

Proof. We still assume that the element θ ∈ K is such that K = F(θ). Now let θ1, . . . ,θn

be all conjugates of θ over F . Then L = F(θ1, . . . ,θn) is the desired extension of K that is
normal over F by Theorem 22.10. ■

■ Example 22.2 Consider the extension Q( 3
√

3)/Q. Since 3
√

3 has conjugates 3
√

3, ω 3
√

3 and
ω2 3

√
3 over Q where ω = e2πi/3, we know that Q( 3

√
3)/Q is not normal over Q for ω 3

√
3 ̸∈

Q( 3
√

3). However, we may then extend Q( 3
√

3) to Q( 3
√

3,ω 3
√

3,ω2 3
√

3) to arrive at a normal
extension of Q. Observe that Q( 3

√
3,ω 3

√
3,ω2 3

√
3) =Q( 3

√
3,ω 3

√
3) since ω2 3

√
3 = (ω 3√3)2

3√3
. ■

22.5 Galois extensions
We have shown in Theorem 22.7 that for K/F a finite extension, |Aut(K/F)| ≤ [K : F ]. We
are in particular interested in the case where |Aut(K/F)| reaches the largest possible value.

Definition 22.7 Let F ⊂ C be a field and let K/F be a finite extension. We call K/F
a Galois extension if |Aut(K/F)| = [K : F ]. In this case, Aut(K/F) is called the Galois
group of K/F , denoted by Gal(K/F).

Theorem 22.12 Let F ⊂C be a field and let K/F be a finite extension. Then K is Galois
over F if and only if K is normal over F .

Proof. Note that by Corollary 22.4, there are exactly [K : F ] distinct embeddings of K in C
over F . Now it follows from Theorem 22.9 that K/F is normal if and only if |Aut(K/F)|=
[K : F ], i.e. K/F is Galois. ■

R The validity of Theorem 22.12 relies entirely on our assumption in Sect. 21.2 that
every field is assumed to be a subfield of C under the usual addition and multipli-
cation. This assumption ensures that the minimal polynomial of every algebraic α
over F has distinct roots (Corollary 21.9), and hence that there are exactly [K : F ]
distinct embeddings of K in C over F (Corollary 22.4).

The French mathematician Évariste Galois established a profound theory on the con-
nection between field theory and group theory, known as the Galois theory, in which one
of the most significant results is the Fundamental Theorem of Galois Theory. In its most
basic form, the following statement is asserted, but we will not cover the proof in this
series of notes.
Fundamental Theorem of Galois Theory There is a one-to-one correspondence between
the intermediate fields of a Galois extension and the subgroups of its Galois group.
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22.6 Comments on separability
In general, we may consider finite extensions K over a generic field F . We still say K/F is
Galois if |Aut(K/F)|= [K : F ]. Now K/F is Galois if and only if

(i) K/F is normal: for every α ∈ K, its minimal polynomial over F has all roots in K;
(ii) and K/F is separable: for every α ∈ K, its minimal polynomial over F has all

roots distinct in an algebraic closure of F .
Note that given a field F with additive identity 0 and multiplicative identity 1, we call

the largest integer n such that
1+1+ · · ·+1︸ ︷︷ ︸

n terms

= 0

the characteristic of F . If it exists, then n is a prime (e.g. Fp = Z/pZ); if it does not exist,
we say F has characteristic 0 (e.g. Q, R, C).

It is known that every algebraic extension of a field of characteristic zero is separable,
and that every algebraic extension of a finite field is separable. The first claim explains
why we are allowed to remove the separability condition in Theorem 22.12.

However, there do exist extensions that are not separable. One simple example is
as follows. Let Fp(x) be the field of rational functions in the indeterminate x over Fp.
Consider the extension K/F = Fp(x)/Fp(xp). The element x ∈ K has minimal polynomial
f (X) = X p − xp ∈ F [X ] of degree p over F . However, over the extension field K, we also
have X p − xp = (X − x)p. Hence, as a polynomial in K[X ] of degree p, f (X) has p repeated
roots X = x. Thus, the extension K/F = Fp(x)/Fp(xp) is inseparable.
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23.1 Integrality
In the previous lectures, rational numbers have been generalized to algebraic elements over
a field. Now we shall focus on the analogy of integers. For example, if K is a number field,
which elements in K should be viewed as “integral”?

Let us first introduce the concept of module, which can be viewed as a generalization
of the notion of vector space in which the field of scalars is replaced by a ring.

Definition 23.1 Let R be a ring with 1 its multiplicative identity. A (left) R-module M
consists of an abelian group (M,+) and an operation ◦ : R×M → M such that for all
r,s ∈ R and x,y ∈ M,

(i) r ◦ (x+ y) = r ◦ x+ r ◦ y;
(ii) (r+ s)◦ x = r ◦ x+ s◦ x;
(iii) (rs)◦ x = r ◦ (s◦ x);
(iv) 1◦ x = x.

The operation ◦ is called scalar multiplication. Often the symbol ◦ is omitted.

Definition 23.2 An R-module M is finitely generated if there exist finitely many elements
x1, . . . ,xn ∈ M such that every x ∈ M can be written as x = ∑n

i=1 aixi with ai ∈ R.

■ Example 23.1 The set of 2-dimensional row vectors over Z, {(x,y) : x,y ∈ Z}, forms a
Z-module. Also, it is finitely generated by {(1,0),(0,1)}. ■

Theorem 23.1 Let A ⊂ B ⊂C be three rings. If C is a finitely generated B-module and B
is a finitely generated A-module, then C is a finitely generated A-module.

Proof. Since C is a finitely generated B-module, we can find elements γ1, . . . ,γm ∈ C such
that every c ∈ C can be written as c = ∑m

j=1 b jγ j with b j ∈ B. Also, since B is a finitely
generated A-module, we can find elements β1, . . . ,βn ∈ B such that each b j can be written
as b j = ∑n

i=1 ai jβi with ai j ∈ A. Hence, c = ∑n
i=1 ∑m

j=1 ai j(βiγ j). That is, C is generated by
the finitely many elements {βiγ j ∈C : 1 ≤ i ≤ n, 1 ≤ j ≤ m} over A. ■

Definition 23.3 Let R be a ring. An element α is said to be integral over R if α is a
root of a monic polynomial over R.
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Theorem 23.2 (Criteria of Integrality). Let R be an integral domain and let A be a subring
of R. Let α ∈ R. Then the following statements are equivalent:

(i) α is integral over A;
(ii) The ring A[α] is a finitely generated A-module;
(iii) There is a finitely generated nonzero A-module B ⊂ R such that αB ⊂ B.

Proof. (i) ⇒ (ii): Assume that α is a root of xn +an−1xn−1 + · · ·+a0 ∈ A[x]. It is plain to
see that A[α] is generated by {1,α, . . . ,αn−1} over A by the fact that we can write αn as
αn =−an−1αn−1 −·· ·−a0 where ai ∈ A.

(ii) ⇒ (iii): Choose B = A[α].
(iii) ⇒ (i): Let b1, . . . ,bm be elements in B such that B = Ab1+ · · ·+Abm. Note that not

all bi are zero since B is nonzero. Now αB ⊂ B implies that αbi = ∑m
j=1 ai jb j with ai j ∈ A

for all i and j. In matrix form we havea11 · · · a1m
... . . . ...

am1 · · · amm


b1

...
bm

= α

b1
...

bm

 . (23.1)

We may extend the integral domain R to its quotient field K (e.g. extending Z to Q), and
regard (23.1) with entries in K. The reason for doing so is that eigensystems are in general
considered in the setting of vector spaces over a field. It follows that (b1, . . . ,bm)

T is an
eigenvector of (ai j) for eigenvalue α. Then α is a root of the characteristic polynomial of
(ai j), i.e. det

(
xIm − (ai j)

)
, which is monic over A since ai j ∈ A. So α is integral over A. ■

Theorem 23.3 Let R be an integral domain and let A be a subring of R. Then the set of
elements in R that are integral over A forms a ring.

Proof. It is plain that the additive inverse of any integral element over A is also integral.
Now let α,β ∈ R be integral over A. It is sufficient to show that α + β and αβ are
integral over A. By assumption, A[α] is a finitely generated A-module. Also, β integral
over A implies that β is integral over A[α] ⊂ R, and hence that A[α,β ] = A[α][β ] is a
finitely generated A[α]-module. It follows from Theorem 23.1 that A[α,β ] is a finitely
generated A-module. Finally, the finitely generated A-module A[α,β ] ⊂ R is such that
(α +β )A[α,β ] ⊂ A[α,β ] and (αβ )A[α,β ] ⊂ A[α,β ]. We conclude that α +β and αβ are
integral over A. ■

R For a constructive proof, the argument for Theorem 21.19 still works. For instance, in
Example 21.2, α =

√
2 and β = 3

√
3 are indeed integral over Z. Further, s(

√
2+ 3

√
3)= 0

and p(
√

2 · 3
√

3) = 0 where s(x) = x6 −6x4 −6x3 +12x2 −36x+1 and p(x) = x6 −72 are
monic over Z. It turns out that

√
2+ 3

√
3 and

√
2 · 3

√
3 are also integral over Z.

Definition 23.4 Let R be a ring. A set S is said to be integral over R if every element in
S is integral over R.

Theorem 23.4 Let R be an integral domain and let A be a subring of R. If α ∈ R is
integral over A, then the ring A[α] is integral over A.

Proof. This is an immediate consequence of Theorem 23.3. ■

We also have a parallel result to the transitivity of algebraicity of field extensions as
described in Theorem 21.15.
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Theorem 23.5 (Transitivity of Integrality). Let R be an integral domain. Let A ⊂ B ⊂ C
be three subrings of R. If C is integral over B and B is integral over A, then C is integral
over A.

Proof. Let c ∈ C. Since c is integral over B, it is a root of xn + bn−1xn−1 + · · ·+ b0 with
bi ∈ B. Further, each bi is integral over A, and as a consequence, A[b0, . . . ,bn−1] is a finitely
generated A-module. On the other hand, c is also integral over A[b0, . . . ,bn−1]. Hence,
A[b0, . . . ,bn−1,c] = A[b0, . . . ,bn−1][c] is a finitely generated A[b0, . . . ,bn−1]-module. By Theo-
rem 23.1, A[b0, . . . ,bn−1,c] is a finitely generated A-module. Finally, since A[b0, . . . ,bn−1,c]⊂
R is such that cA[b0, . . . ,bn−1,c]⊂A[b0, . . . ,bn−1,c], we conclude that c is integral over A. ■

23.2 Algebraic integers
Definition 23.5 Let K be a number field. The set of all elements in K that are integral
over Z forms a ring, denoted by OK or ZK , called the ring of (algebraic) integers of K.

We check some basic properties of OK .

Proposition 23.6 We have OQ = Z.

Proof. It is clear that if n ∈ Z, then n is a root of x−n, and hence n is integral over Z. So
n ∈ OQ, thereby implying that Z ⊂ OQ. On the other hand, if α ∈ OQ, i.e. α ∈ Q and α
is a root of a monic polynomial over Z, then by Theorem 19.5, α ∈ Z. That is, OQ ⊂ Z.
Consequently, OQ = Z. ■

Proposition 23.7 Let K be a number field. Then OK is integrally closed in K, i.e. if α ∈ K
is integral over OK , then α ∈ OK .

Proof. Note that Z⊂ OK ⊂ OK [α]. Further, OK is integral over Z by definition and OK [α]
is integral over OK by Theorem 23.4. Thus, Theorem 23.5 tells us that OK [α] is integral
over Z, and hence α ∈ OK [α]⊂ K is integral over Z, i.e. α ∈ OK . ■

Proposition 23.8 Let K be a number field and let L be a finite extension of K. Then
OL ⊃ OK and OL ∩K = OK . In particular, OK ∩Q= OQ = Z.

Proof. We first have OL ⊃ OK since L ⊃ K. Also, α ∈ OL ∩K if and only if α is integral
over Z, α ∈ L (for α ∈ OL) and α ∈ K. However, the simultaneous inclusion that α ∈ L
and α ∈ K is equivalent to α ∈ L∩K = K. Hence, α ∈ OL ∩K if and only if α ∈ OK . For
the final relation, we use the extension K/Q for L/K and apply Proposition 23.6. ■

Theorem 23.9 Let α be an algebraic number. Then there is a nonzero integer n ∈Z such
that nα is integral over Z.

Proof. Since α is algebraic over Q, we assume that the minimal polynomial of α over Q
is p(x) = xm +am−1xm−1 + · · ·+a0. Write each ai in the irreducible expression ai =

si
ri

with
ri > 0 and (si,ri) = 1. Let n = lcm(r0, . . . ,rm−1), so ri | n for every i. Define f (x) = nm p

( x
n

)
.

Then

f (x) = nm
(

xm

nm +am−1
xm−1

nm−1 + · · ·+a0

)
= xm +

sm−1n
rm−1

xm−1 + · · ·+ s0nm

r0
∈ Z[x].

Further, f (nα) = nm p(α) = 0. Hence, nα is integral over Z. ■
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Corollary 23.10 Let K be a number field. Then K =
{α

n : α ∈ OK , n ∈ Z\{0}
}

.

Proof. We write OK
Z :=

{α
n : α ∈ OK , n ∈ Z\{0}

}
. If α

n ∈ OK
Z , then α

n ∈ K since K is a field,
while α ∈ OK ⊂ K and n ∈ Z\{0} ⊂ K\{0}. If β ∈ K, then we may find a nonzero n ∈ Z
such that nβ ∈ OK . Now, β = nβ

n ∈ OK
Z . Hence, K = OK

Z . ■

Theorem 23.11 Let K be a number field. If α is integral over Z, so is every α̃ conjugate
to α over K. Also, the minimal polynomial of α over K is in OK [x].

Proof. It is plain that α is algebraic over K. Let p(x) = xm + am−1xm−1 + · · ·+ a0 ∈ K[x]
be the minimal polynomial of α over K. Then p(α̃) = 0 as α̃ is conjugate to α over K.
Since α is integral over Z, there is a polynomial f (x) = xn +bn−1xn−1 + · · ·+b0 ∈ Z[x] such
that f (α) = 0. Note that f (x) is also in K[x]. By Theorem 21.5, we can find a polynomial
q(x) ∈ K[x] such that f (x) = p(x)q(x). Now, f (α̃) = p(α̃)q(α̃) = 0, thereby implying that
α̃ is integral over Z.

Let α1, . . . ,αm be the roots of p(x) in C, that is, α1, . . . ,αm are the conjugates of α
over K, so that they are integral over Z. Note that xm + am−1xm−1 + · · ·+ a0 = p(x) =
(x−α1) · · ·(x−αm). Hence, each coefficient ai can be written as ai = gi(α1, . . . ,αm) where
gi is a certain multivariate polynomial in Z[x1, . . . ,xm]. It follows from Theorem 23.3 that
ai is also integral over Z for every i. However, p(x) ∈ K[x] means that ai ∈ K. Finally, by
definition we have ai ∈ OK , and thus p(x) ∈ OK [x]. ■

Corollary 23.12 Let α be integral over Z. Then so is any α̃ conjugate to α over Q, and
the minimal polynomial of α over Q is in Z[x].

Proof. We take K =Q in Theorem 23.11. ■

23.3 Trace and norm
Definition 23.6 Let K be a number field and let L be a finite extension of K of degree
n. Let σ1, . . . ,σn be the n embeddings of L in C over K. For α ∈ L, we define the trace
and norm of α over K as

TrL/K(α) :=
n

∑
i=1

σi(α), (23.2)

NL/K(α) :=
n

∏
i=1

σi(α). (23.3)

The following properties are immediate by definition.

Proposition 23.13 Let K be a number field and let L be a finite extension of K of degree
n. For any α,β ∈ L and δ ∈ K, we have

(i) TrL/K(α +β ) = TrL/K(α)+TrL/K(β );
(ii) NL/K(αβ ) = NL/K(α)NL/K(β );
(iii) TrL/K(δα) = δ TrL/K(α);
(iv) NL/K(δα) = δ n TrL/K(α).

Proof. Let σ be an arbitrary embedding of L in C over K. For (i) and (ii), we use the
facts that σ(α +β ) = σ(α)+σ(β ) and σ(αβ ) = σ(α)σ(β ). For (iii) and (iv), we use the
fact that σ(δα) = σ(δ )σ(α) = δσ(α) since σ fixes K. ■
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Now we consider further expressions of the trace and norm.

Lemma 23.14 Let K be a number field. Let α be algebraic over K with minimal poly-
nomial p(x) = xr +ar−1xr−1 + · · ·+a0. Then

TrK(α)/K(α) =−ar−1 (23.4)

and

NK(α)/K(α) = (−1)ra0. (23.5)

In particular, TrK(α)/K(α) and NK(α)/K(α) are in K.

Proof. By Theorem 22.2, the [K(α) : K] = r embeddings τ1, . . . ,τr of K(α) in C over K are
those such that τi(α) = αi where α1, . . . ,αr are the conjugates of α over K. Note that

p(x) = xr +ar−1xr−1 + · · ·+a0 (ai ∈ K)

= (x−α1) · · ·(x−αr) (αi ∈ C).

Hence,
TrK(α)/K(α) =

r

∑
i=1

τi(α) =
r

∑
i=1

αi =−ar−1

and
NK(α)/K(α) =

r

∏
i=1

τi(α) =
r

∏
i=1

αi = (−1)ra0,

as desired. ■

Theorem 23.15 Let K be a number field and let L be a finite extension of K of degree n.
Let α ∈ L with minimal polynomial p(x) = xr +ar−1xr−1 + · · ·+a0 over K. Then

TrL/K(α) = [L : K(α)]TrK(α)/K(α) =−nar−1

r
(23.6)

and

NL/K(α) = NK(α)/K(α)[L:K(α)] = (−1)nan/r
0 . (23.7)

Consequently, TrL/K(α) and NL/K(α) are in K.
Furthermore, if α ∈ OL, then TrL/K(α) and NL/K(α) are in OK . In this case, we

further have that TrL/Q(α) and NL/Q(α) are in Z.
Finally, NL/K(α) = 0 if and only if α = 0.

Proof. Note that K ⊂ K(α)⊂ L. With the same notation as in the proof of Lemma 23.14,
we extend each embedding τi to [L : K(α)] = n

r embeddings τi,1, . . . ,τi, n
r

of L in C by Theorem
22.3. Now, for every i and j, τi, j(α) = τi(α) since α ∈ K(α). Hence,

TrL/K(α) =
r

∑
i=1

n/r

∑
j=1

τi, j(α) =
r

∑
i=1

n/r

∑
j=1

τi(α) =
n
r

r

∑
i=1

αi =−nar−1

r

and

NL/K(α) =
r

∏
i=1

n/r

∏
j=1

τi, j(α) =
r

∏
i=1

n/r

∏
j=1

τi(α) =

(
r

∏
i=1

αi

)n/r

=
(
(−1)ra0

)n/r
= (−1)nan/r

0 .
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We further note that α ∈ OL means that α is integral over Z. By Theorem 23.11, the
minimal polynomial p(x) of α over K is in OK [x], and hence a0 and ar−1 are in OK . It
follows that TrL/K(α) and NL/K(α) are in OK as n

r = [L : K(α)] is an integer.
Finally, NL/K(α) = 0 if and only if a0 = 0. However, in this case, we observe that

p(x) = xr +ar−1xr−1+ · · ·+a1x is divisible by x over K. Since p(x) is irreducible over K, the
only possibility is p(x) = x, which is equivalent to α = 0. ■

Theorem 23.16 Let K, L and M be number fields with K ⊂ L ⊂ M. Then for all α ∈ M,

TrM/K(α) = TrL/K
(

TrM/L(α)
)

(23.8)

and

NM/K(α) = NL/K
(
NM/L(α)

)
. (23.9)

Proof. Suppose that [M : L] = m with embeddings of M in C over L given by σ1, . . . ,σm,
and that [L : K] = n with embeddings of L in C over K given by τ1, . . . ,τn. Given α ∈ M,
we have

TrL/K
(

TrM/L(α)
)
= TrL/K

(
m

∑
i=1

σi(α)

)
=

n

∑
j=1

τ j

(
m

∑
i=1

σi(α)

)

and

NL/K
(
NM/L(α)

)
= NL/K

(
m

∏
i=1

σi(α)

)
=

n

∏
j=1

τ j

(
m

∏
i=1

σi(α)

)
.

We would like to compose τ j and σi, but we cannot do so directly since the image of
σi may not lie in the domain of τ j. To overcome this issue, we need to find a finite Galois
extension G/K such that M ⊂ G. This is doable by Theorem 22.11. Now, all embeddings
of G in C over K are given by elements in Gal(G/K). Let us extend σi to an embedding σ̃i

of G in C over L (and hence over K) for each i and extend τ j to an embedding τ̃ j of G in
C over K for each j. Then σ̃i, τ̃ j ∈ Gal(G/K), and thus we can compose τ̃ j with σ̃i, thereby
getting a new embedding of G in C over K, namely, τ̃ j ◦ σ̃i.

By Corollary 22.4, there are [M : K] = mn embeddings of M in C over K. We claim
that they are given by the mn restricted embeddings τ̃ j ◦ σ̃i

∣∣
M for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

For this, it is sufficient to show that these restricted embeddings are distinct. Supposing
τ̃ j ◦ σ̃i

∣∣
M = τ̃ j′ ◦ σ̃i′

∣∣
M, we want to show that i = i′ and j = j′. Let x ∈ L be arbitrary.

Recalling that σ̃i and σ̃i′ fix L, we have

τ j(x) = τ̃ j(x) = τ̃ j ◦ σ̃i(x) = τ̃ j ◦ σ̃i
∣∣
M (x) = τ̃ j′ ◦ σ̃i′

∣∣
M (x) = τ̃ j′ ◦ σ̃i′(x) = τ̃ j′(x) = τ j′(x).

Hence, j = j′. Now let y ∈ M be arbitrary. Since

τ̃ j ◦ σ̃i(y) = τ̃ j ◦ σ̃i
∣∣
M (y) = τ̃ j′ ◦ σ̃i′

∣∣
M (y) = τ̃ j ◦ σ̃i′

∣∣
M (y) = τ̃ j ◦ σ̃i′(y),

and τ̃ j ∈ Gal(G/K) is one-to-one, we have σ̃i(y) = σ̃i′(y) and hence i = i′.
In conclusion,

TrL/K
(

TrM/L(α)
)
=

n

∑
j=1

τ̃ j

(
m

∑
i=1

σ̃i(α)

)
=

n

∑
j=1

m

∑
i=1

τ̃ j ◦ σ̃i(α) =
n

∑
j=1

m

∑
i=1

τ̃ j ◦ σ̃i
∣∣
M (α) = TrM/K(α)
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and

NL/K
(
NM/L(α)

)
=

n

∏
j=1

τ̃ j

(
m

∏
i=1

σ̃i(α)

)
=

n

∏
j=1

m

∏
i=1

τ̃ j ◦ σ̃i(α) =
n

∏
j=1

m

∏
i=1

τ̃ j ◦ σ̃i
∣∣
M (α) = NM/K(α),

as proposed. ■





24. Discriminant

24.1 Discriminant
Definition 24.1 Let K ⊂ C be a field and let L be a finite extension of K of degree n.
Let σ1, . . . ,σn be the n embeddings of L in C over K. Given α1, . . . ,αn ∈ L, we define the
discriminant of the n-tuple (α1, . . . ,αn) by

disc(α1, . . . ,αn) :=

det

σ1(α1) · · · σ1(αn)
... . . . ...

σn(α1) · · · σn(αn)




2

.

R Observe that disc(α1, . . . ,αn) is independent of the order of α1, . . . ,αn, as well as the
order of the embeddings σ1, . . . ,σn.

Let α be algebraic over K ⊂ C, of degree n. We know from Theorem 21.11 that
{1,α, . . . ,αn−1} forms a basis for K(α) over K.

Definition 24.2 Let K ⊂ C be a field. Let α be algebraic over K of degree n. Let
σ1, . . . ,σn be the n embeddings of K(α) in C over K. We define the discriminant of α
by

disc(α) = disc(1,α, . . . ,αn−1).

Theorem 24.1 Let K ⊂C be a field. Let α be algebraic over K of degree n with minimal
polynomial p(x) ∈ K[x]. Then

disc(α) = (−1)
n(n−1)

2 NK(α)/K
(

p′(α)
)
, (24.1)

where p′(x) is the derivative of p(x).

Proof. Assume that α1, . . . ,αn are the conjugates of α over K. Then the n embeddings
σ1, . . . ,σn of K(α) in C over K send α to α1, . . . ,αn, respectively. Now,

disc(α) =
(

det
(
σi(αk)

))2
=
(

det
(
αk

i
))2

.
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Noting that the n×n square matrix

(
αk

i
)
=


1 α1 · · · αn−1

1
1 α2 · · · αn−1

2
...

... . . . ...
1 αn · · · αn−1

n


is a Vandermonde matrix, we have

disc(α) =

(
∏

1≤i< j≤n
(α j −αi)

)2

= (−1)
n(n−1)

2 ∏
1≤i, j≤n

i̸= j

(αi −α j).

Recall that p(x) = (x−α1) · · ·(x−αn). We have

p′(αi) = lim
x→αi

p(x)
x−αi

= ∏
1≤ j≤n

j ̸=i

(αi −α j).

Thus,

disc(α) = (−1)
n(n−1)

2 ∏
1≤i≤n

p′(αi) = (−1)
n(n−1)

2 ∏
1≤i≤n

σi
(

p′(α)
)
= (−1)

n(n−1)
2 NK(α)/K

(
p′(α)

)
,

as desired. ■

■ Example 24.1 Let K =Q and α = 3
√

2. The minimal polynomial of 3
√

2 over Q is p(x) =
x3 −2. Then p′(x) = 3x2. So

disc( 3
√

2) = (−1)
3(3−1)

2 NQ( 3√2)/Q
(

p′( 3
√

2)
)
=−NQ( 3√2)/Q

(
3 · ( 3

√
2)2)

=−27NQ( 3√2)/Q
( 3
√

2
)2

=−27
( 3
√

2 · 3
√

2e
2πi
3 · 3

√
2e

4πi
3
)2

=−27 ·4.

Hence, disc( 3
√

2) =−108. ■

Theorem 24.2 Let K ⊂ C be a field and let L be a finite extension of K of degree n. Let
α1, . . . ,αn ∈ L. Then

disc(α1, . . . ,αn) = det

TrL/K(α1α1) · · · TrL/K(α1αn)
... . . . ...

TrL/K(αnα1) · · · TrL/K(αnαn)

 . (24.2)

Consequently, disc(α1, . . . ,αn)∈ K. Further, if α1, . . . ,αn ∈OL, then disc(α1, . . . ,αn)∈OK .

Proof. We shall use the fact that for any square matrix A, detAT = detA. Let σ1, . . . ,σn be
the n embeddings of L in C over K. Then

disc(α1, . . . ,αn) = det
(
σi(α j)

)2
= det

(
σi(α j)

)T det
(
σi(α j)

)
= det

(
σi(α j)

)T(σi(α j)
)
= det

(
σ j(αi)

)(
σi(α j)

)
.

Note that the (i, j)-th entry of the matrix product
(
σ j(αi)

)(
σi(α j)

)
is

n

∑
h=1

σh(αi)σh(α j) =
n

∑
h=1

σh(αiα j) = TrL/K(αiα j).

The desired result then follows. ■
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Theorem 24.3 Let K ⊂ C be a field and let L be a finite extension of K of degree n. Let
α1, . . . ,αn ∈ L. If β1, . . . ,βn ∈ L are such that

(
β1, . . . ,βn

)
=
(
α1, . . . ,αn

)c11 · · · c1n
... . . . ...

cn1 · · · cnn

 , (24.3)

where
(
ci j
)

1≤i, j≤n ∈ Matn,n(K), then

disc(β1, . . . ,βn) =
(
det
(
ci j
))2 ·disc(α1, . . . ,αn). (24.4)

Proof. Let σ1, . . . ,σn be the n embeddings of L in C over K. For each i, applying σi to
(24.3) and recalling that σi fixes K, we have

(
σi(β1), . . . ,σi(βn)

)
=
(
σi(α1), . . . ,σi(αn)

)c11 · · · c1n
... . . . ...

cn1 · · · cnn

 .

Hence, σ1(β1) · · · σ1(βn)
... . . . ...

σn(β1) · · · σn(βn)

=

σ1(α1) · · · σ1(αn)
... . . . ...

σn(α1) · · · σn(αn)


c11 · · · c1n

... . . . ...
cn1 · · · cnn

 .

The desired relation follows from the definition of the discriminant. ■

24.2 Linear independence of elements in a field extension
Discriminant serves as a useful tool to characterize the linear independence of elements in
a field extension.
Theorem 24.4 Let K ⊂ C be a field and let L be a finite extension of K of degree
n. Let α1, . . . ,αn ∈ L. Then α1, . . . ,αn are linearly dependent over K if and only if
disc(α1, . . . ,αn) = 0.

Proof. Let σ1, . . . ,σn be the n embeddings of L in C over K.
We start with necessity. Suppose that α1, . . . ,αn are linearly dependent over K. Then

there exist a1, . . . ,an ∈ K, not all zero, such that

a1α1 + · · ·+anαn = 0.

Applying σi for each i to the above and noting that σi fixes K, we have

a1σi(α1)+ · · ·+anσi(αn) = 0.

In matrix form, we obtainσ1(α1) · · · σ1(αn)
... . . . ...

σn(α1) · · · σn(αn)


a1

...
an

=

0
...
0

 .

Recall that (a1, . . . ,an)
T is a nonzero column vector. Hence, det

(
σi(α j)

)
= 0, namely,

disc(α1, . . . ,αn) = 0.
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We then prove sufficiency. It is known from Theorem 24.2 that disc(α1, . . . ,αn) =
det
(

TrL/K(αiα j)
)
. Supposing that α1, . . . ,αn are linearly independent over K, we shall

show that disc(α1, . . . ,αn) ̸= 0. Our starting point is the map

(·, ·) : L×L → K
(α,β ) 7→ TrL/K(αβ )

Note that (·, ·) is K-bilinear (i.e. (a1α1 + a2α2,b1β1 + b2β2) = a1b1(α1,β1)+ a1b2(α1,β2)+
a2b1(α2,β1) + a2b2(α2,β2) for all a1,a2,b1,b2 ∈ K and α1,α2,β1,β2 ∈ L) and symmetric
(i.e. (α,β ) = (β ,α) for all α,β ∈ L). We call this map a pairing. Observe that this pairing
in nondegenerate, that is, for any β ∈ L\{0}, there exists α ∈ L such that (α,β ) ̸= 0. For
instance, we can take α = β−1 and get (α,β ) = (β−1,β ) = TrL/K(β−1β ) = TrL/K(1) = n ̸= 0
by Theorem 23.15. Since we have assumed that α1, . . . ,αn are linearly independent over
K, then given any α,β ∈ L, we can uniquely write{

α = a1α1 + · · ·+anαn,

β = b1α1 + · · ·+bnαn.

Define the matrix A =
(

TrL/K(αiα j)
)

1≤i, j≤n. Then

(α,β ) =
(
a1, . . . ,an

)
A

b1
...

bn

 .

If disc(α1, . . . ,αn) = detA = 0 where we make use of Theorem 24.2, then there exists a

column vector

b1
...

bn

 ̸=

0
...
0

 such that A

b1
...

bn

=

0
...
0

. Now for β = b1α1+ · · ·+bnαn ̸= 0,

we have (α,β ) = 0 for all α ∈ L. But this contradicts the nondegenerancy of (·, ·). ■

24.3 Integral bases
Let K be a number field of degree n over Q. Then K as a vector space over Q can be
spanned by a basis {α1, . . . ,αn} where α1, . . . ,αn ∈ K are linearly independent.

Lemma 24.5 Let K be a number field. There is a basis for K over Q such that its
elements are in OK .

Proof. Let θ ∈K be such that K =Q(θ). Note that θ is algebraic over Q. By Theorem 23.9,
there is a certain nonzero m ∈Z such that ζ := mθ ∈OK . Then Q(ζ ) =Q(mθ) =Q(θ) = K.
Assuming that n = [K : Q], then {1,ζ , . . . ,ζ n−1} is a desired basis. ■

Theorem 24.6 Let K be a number field of degree n over Q. There is a basis {ω1, . . . ,ωn}
for K over Q with ωi ∈ OK for all i such that every γ ∈ OK has a unique representation
γ = m1ω1 + · · ·+mnωn with mi ∈ Z for all i.

Proof. For any basis {α1, . . . ,αn} for K over Q with elements in OK , which exists by Lemma
24.5, we know from Theorem 24.2 that disc(α1, . . . ,αn) ∈ OQ = Z. Also, since α1, . . . ,αn

are linearly independent, we have disc(α1, . . . ,αn) ̸= 0 by Theorem 24.4. Assume that
{ω1, . . . ,ωn} is such a basis with |disc(ω1, . . . ,ωn)| minimal. We claim that this basis is as
desired.
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For any γ ∈ OK , since {ω1, . . . ,ωn} is a basis for K over Q, we may uniquely write
γ = m1ω1 + · · ·+mnωn with mi ∈Q for all i. We shall show that these mi are indeed in Z.
If not, we assume, without loss of generality, that m1 ̸∈ Z. Then we write m1 = m+ r with
0 < r < 1; here m = ⌊m1⌋, the largest integer not exceeding m1. Now we put

ω ′
1 := γ −mω1 = (m1 −m)ω1 +m2ω2 + · · ·+mnωn

and for 2 ≤ i ≤ n,
ω ′

i := ωi.

Note that {ω ′
1, . . . ,ω ′

n} also forms a basis for K over Q with elements in OK . Further,

(
ω ′

1,ω ′
2, . . . ,ω ′

n
)
=
(
ω1,ω2, . . . ,ωn

)


m1 −m 0 · · · 0
m2 1 · · · 0
...

... . . . ...
mn 0 · · · 1

 .

Noting that the determinant of the above square matrix is m1 −m = r, we deduce from
Theorem 24.3 that

disc(ω ′
1, . . . ,ω ′

n) = r2 disc(ω1, . . . ,ωn).

However, since 0< r < 1, we have |disc(ω ′
1, . . . ,ω ′

n)|= r2|disc(ω1, . . . ,ωn)|< |disc(ω1, . . . ,ωn)|,
violating the minimality of |disc(ω1, . . . ,ωn)|. Thus, we must have mi ∈ Z for all i. ■

Definition 24.3 Let K be a number field of degree n over Q. If a basis {ω1, . . . ,ωn} for K
over Q is such that ωi ∈OK for all i, and that every γ ∈OK has a unique representation
γ = m1ω1 + · · ·+mnωn with mi ∈ Z for all i, then {ω1, . . . ,ωn} is called an integral basis
for OK .

Theorem 24.7 Let K be a number field. All integral bases for OK have the same discrim-
inant.

Proof. Let {α1, . . . ,αn} and {β1, . . . ,βn} be two integral bases for OK . By definition, there
are two matrices A,B ∈ Matn,n(Z) such that(

β1, . . . ,βn
)
=
(
α1, . . . ,αn

)
·A,(

α1, . . . ,αn
)
=
(
β1, . . . ,βn

)
·B.

Hence, (
α1, . . . ,αn

)
=
(
α1, . . . ,αn

)
·AB,

yielding that AB = In. It follows that detA · detB = 1. Since A,B ∈ Matn,n(Z) and hence
detA,detB ∈Z, we find that detA = detB =±1. Finally, by Theorem 24.3, we conclude that

disc(β1, . . . ,βn) = (detA)2 ·disc(α1, . . . ,αn) = (±1)2 disc(α1, . . . ,αn) = disc(α1, . . . ,αn),

as required. ■

Integral bases allow us to define an invariant for a number field.
Definition 24.4 Let K be a number field. We define the discriminant of K, denoted by
dK , as the discriminant of an integral basis for OK . In particular, dK ∈ Z\{0}.

24.4 Real and complex embeddings
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Definition 24.5 Let K be a number field. An embedding σ of K in C over Q is called a
real embedding if σ(α) ∈ R for all α ∈ K. Otherwise, it is called a complex embedding.

Proposition 24.8 Let K be a number field. Let θ ∈ K be such that K =Q(θ). Then an
embedding σ of K in C over Q is real if and only if σ(θ) ∈ R.

Proof. The necessity is trivial. To prove sufficiency, we note that every α ∈ K can be
written as α = a0 + a1θ + · · ·+ an−1θ n−1 with ai ∈ Q for all i. Now, recalling that σ fixes
Q, we have σ(α) = a0 +a1σ(θ)+ · · ·+an−1σ(θ)n−1 ∈ R since σ(θ) ∈ R. ■

Lemma 24.9 Let α = a+b
√
−1 ∈C be algebraic over Q. Then its complex conjugate

α = a−b
√
−1 is a conjugate of α over Q.

Proof. Let p(x) ∈ Q[x] be the minimal polynomial of α over Q. We have p(α) = p(α) =
0 = 0, and hence obtain the desired claim. ■

For K a number field, if σ is an embedding of K in C over Q, we define a homomorphism
σ : K → C given by

σ(α) = σ(α),

the complex conjugate of σ(α) for all α ∈ K. Let θ ∈ K be such that K =Q(θ). Then
by Theorem 22.2 and Lemma 24.9, the three numbers θ , σ(θ) and σ(θ) are conjugates of
each other over Q, and hence σ is also an embedding of K in C over Q.

Definition 24.6 Let K be a number field. For an embedding σ of K in C over Q, the
embedding σ : K → C given by

σ(α) = σ(α)

for all α ∈ K is called the complex conjugate of σ .

Note that the two embeddings σ and σ are complex conjugates of one another. In
particular, if σ is real, then σ = σ , and if σ is complex, then σ ̸= σ . It turns out that
there are an even number of complex embeddings of K in C over Q. Assuming that there
are r1 real and 2r2 complex embeddings of K in C over Q so that r1+2r2 = [K : Q], we may
group these embeddings as follows:

{σ1}, . . . ,{σr1},{σr1+1,σr1+2}, . . . ,{σr1+2r2−1,σr1+2r2}, (24.5)
where σ1, . . . ,σr1 are real and σr1+1, . . . ,σr1+2r2 are complex with σr1+2k−1 and σr1+2k complex
conjugates of one another for 1 ≤ k ≤ r2.

Theorem 24.10 Let K be a number field with exactly 2r2 complex embedding in C over
Q. The sign of the discriminant dK ∈ Z\{0} of K is (−1)r2 .

Proof. Let the n = r1 +2r2 = [K : Q] embeddings of K in C over Q be labeled as in (24.5).
Let {ω1, . . . ,ωn} be an integral basis for OK . Then dK =

(
det
(
σi(ω j)

))2. Note also that

det
(
σi(ω j)

)
= det

(
σi(ω j)

)
= det

(
σi(ω j)

)
= (−1)r2 det

(
σi(ω j)

)
.

The last equality holds as there are r2 row exchanges between the matrices
(
σi(ω j)

)
and(

σi(ω j)
)
, namely, the rows regarding σr1+2k−1 and σr1+2k are exchanged for 1 ≤ k ≤ r2.

Finally,

dK =
(
det
(
σi(ω j)

))2
= (−1)r2 det

(
σi(ω j)

)
det
(
σi(ω j)

)
= (−1)r2

∣∣det
(
σi(ω j)

)∣∣2 .
Noting that

∣∣det
(
σi(ω j)

)∣∣2 ∈ Z>0 gives the desired result. ■



25. Factorization in a ring of integers

25.1 Divisibility and congruences
Now we briefly discuss some basic factorization properties for a ring of algebraic integers.
Throughout, let K be a number field and let OK be its ring of integers. We first define
divisibility and congruences in OK in analogy to what we have done in Z.

Definition 25.1 Let α,β ∈ OK . We say β divides α, or α is divisible by β , denoted by
β | α, if there is an element ξ ∈ OK such that α = βξ .

Definition 25.2 Let µ ∈ OK with µ ̸= 0. For any α,β ∈ OK , we say that α is congruent
to β modulo µ if µ | (α −β ). We write α ≡ β (mod µ). If µ ∤ (α −β ), we write α ̸≡ β
(mod µ).

The following properties are immediate.

Theorem 25.1 Assume that all variables in this theorem are in OK .
(i) If α | β , then α | βγ ;
(ii) If α | β and β | γ, then α | γ;
(iii) If α | β , then αγ | βγ ;
(iv) If α | βi for i = 1, . . . ,r, then α | (ν1β1 + · · ·+νrβr).

Theorem 25.2 Assume that all variables in this theorem are in OK with µ ̸= 0.
(i) α ≡ α (mod µ);
(ii) If α ≡ β (mod µ), then β ≡ α (mod µ);
(iii) If α ≡ β (mod µ) and β ≡ γ (mod µ), then α ≡ γ (mod µ);
(iv) If α1 ≡ β1 (mod µ) and α2 ≡ β2 (mod µ), then

α1 +α2 ≡ β1 +β2 (mod µ),
α1α2 ≡ β1β2 (mod µ);

(v) If α ≡ β (mod µ), then for any positive integer k,

αk ≡ β k (mod µ);
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(vi) If f (x1,x2, . . .) is a multivariate polynomial with coefficients in OK , and α1 ≡ β1
(mod µ), α2 ≡ β2 (mod µ), ..., then

f (α1,α2, . . .)≡ f (β1,β2, . . .) (mod µ).

25.2 Units, irreducible elements and prime elements
Recall from Theorem 23.15 that NK/Q(α) ∈ Z for every α ∈ OK .

Proposition 25.3 Let α,β ∈ OK . If β | α, then NK/Q(β ) divides NK/Q(α) in Z.

Proof. Let us write α = βγ for some γ ∈ OK . By Proposition 23.13, we have NK/Q(α) =
NK/Q(β )NK/Q(γ). Noting that NK/Q(α), NK/Q(β ) and NK/Q(γ) are in Z, we are done. ■

Definition 25.3 An element u ∈ OK is called a unit if there is an element v ∈ OK such
that uv = 1.

Theorem 25.4 An element u ∈ OK is a unit if and only if NK/Q(u) =±1.

Proof. We start with necessity. If u is a unit of OK , then there is an element v ∈ OK such
that uv = 1. Now, NK/Q(u)NK/Q(v) = NK/Q(uv) = NK/Q(1) = 1. Since NK/Q(u) and NK/Q(v)
are in Z, we must have NK/Q(u) =±1.

We then prove sufficiency. Suppose NK/Q(u) = ±1. We know from Theorem 23.15
that NK/Q(u) = NQ(u)/Q(u)[K:Q(u)]. Since NQ(u)/Q(u) ∈ Z, we have NQ(u)/Q(u) = ±1. Let
u = u1,u2, . . . ,ur be the conjugates of u over Q. By Corollary 23.12, they are integral over
Z. Now we choose v = NQ(u)/Q(u) ·u2 · · ·ur, which is also integral over Z. Then

uv = u1 ·
(
NQ(u)/Q(u) ·u2 · · ·ur

)
= NQ(u)/Q(u) ·u1u2 · · ·ur = NQ(u)/Q(u)

2 = (±1)2 = 1.

Finally, noting that v = u−1 ∈ K, we have v ∈ OK . Hence, u is a unit of OK . ■

Definition 25.4 Let α ∈ OK . An element β ∈ OK is called an associate of α in OK if
β = uα with u a unit of OK .

Definition 25.5 A nonzero nonunit element α ∈OK is called irreducible if β ∈OK dividing
α implies that either β is a unit of OK , or β is an associate of α in OK .

Proposition 25.5 Let α ∈ OK . If |NK/Q(α)| is a prime in Z, α is irreducible in OK .

Proof. Since |NK/Q(α)| is a prime integer, α is neither zero nor a unit of OK . If α is not
irreducible, we may write α = βγ with β ,γ ∈ OK nonzero and nonunit. By Theorem 25.4,
we know that |NK/Q(β )| and |NK/Q(γ)| are integers greater than 1. However, |NK/Q(α)|=
|NK/Q(βγ)| = |NK/Q(β )||NK/Q(γ)| is assumed to be a prime integer, and we are led to a
contradiction. ■

Theorem 25.6 Every nonzero nonunit element in OK is a finite product of irreducible
elements in OK .

Proof. Let α ∈ OK be nonzero and nonunit. Then |NK/Q(α)| ≥ 2 is in Z. We apply
induction on |NK/Q(α)|. If |NK/Q(α)|= 2, then α itself is irreducible by Proposition 25.5.
Now for |NK/Q(α)| ≥ 2, if α is irreducible, then we are done. If not, we may find nonzero
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nonunit elements β ,γ ∈OK such that α = βγ . Noting that NK/Q(α) = NK/Q(β )NK/Q(γ), we
have 2 ≤ |NK/Q(β )|, |NK/Q(γ)|< |NK/Q(α)|. By the inductive hypothesis, β and γ are finite
products of irreducible elements in OK , and so is α = βγ . ■

Now a natural question is whether the finite product factorization in Theorem 25.6
unique, up to reordering and associates? Unfortunately, the answer is negative for generic
OK . An instance will be presented in Sect. 26.2. Recalling that one crucial ingredient in
our proof of the Fundamental Theorem of Arithmetic in Z is Corollary 2.7. In analogy,
we shall define prime elements in OK .

Definition 25.6 A nonzero nonunit element π ∈ OK is called a prime element if the
Euclid Condition holds: π | αβ implies that π | α or π | β for any α,β ∈ OK .

R Prime elements in OQ = Z are exactly prime integers and their additive inverse. In
particular, we shall call prime integers rational primes to avoid ambiguity.

Proposition 25.7 Every prime element in OK is irreducible.

Proof. Let π be a prime element in OK and suppose that π = αβ is a factorization of π
with α,β ∈ OK . Then π divides one of α and β , say, π | α by definition. Now writing
α = πγ with γ ∈ OK gives π = αβ = (πγ)β = π(βγ), and hence βγ = 1. So β is a unit,
thereby implying the irreducibility of π. ■

Theorem 25.8 Let π be a prime element in OK . Then π divides a unique rational prime.

Proof. Assume that π = π1,π2, . . . ,πr are the conjugates of π over Q. By Corollary 23.12,
they are integral over Z. Let π ′ = π2 · · ·πr, which is also integral over Z. Note that
ππ ′ = π1π2 · · ·πr = NQ(π)/Q(π)∈Z. We have π ′ = π−1NQ(π)/Q(π)∈ K, yielding that π ′ ∈OK .
Hence, π divides |NQ(π)/Q(π)| ∈ Z>0. Recall that π ∤ 1 as π is nonunit. Let p ≥ 2 be the
smallest positive integer such that π | p. Then p must be a rational prime since π is prime
in OK . Otherwise, if p = p1 p2 with 2 ≤ p1, p2 < p, then π divides one of p1 and p2, thereby
violating the minimality of p. Finally, if π divides two different rational primes p and p′,
then by Theorem 2.5, there exist a,a′ ∈Z such that ap+a′p′ = 1. Hence, π | (ap+a′p′) = 1,
which gives a contradiction. ■

Now there is a dilemma: if we factor elements in a ring OK of integers with irreducible
elements, then such factorizations might not be unique; if we factor elements in OK with
prime elements, then such factorizations might not exist. Both issues may happen for the
same OK ; see Sect. 26.2. Fortunately, we are not at a dead end. With prime elements in
OK , it is still able to recover unique factorization by passing to ideals. Such a brilliant idea
is due to the German mathematician Richard Dedekind. However, this highly algebraic
topic will not be covered in the current series of notes.

25.3 Fundamental theorem of arithmetic revisited
We shall say more about rings of integers in which the Fundamental Theorem of Arithmetic
remains valid.

Definition 25.7 Let K be a number field and let OK be its ring of integers. We say OK is
a unique factorization domain if every nonzero nonunit element in OK has a unique (up
to reordering and associates) representation as a finite product of irreducible elements
in OK . This property is called the Fundamental Theorem of Arithmetic in OK .
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Recall from Theorem 25.6 that every nonzero nonunit element in OK is a finite product
of irreducible elements in OK . Also, Proposition 25.7 tells us that every prime element in
OK is irreducible, but the converse may be false. Interestingly, we can determine if OK is
a unique factorization domain from this perspective.

Theorem 25.9 Let K be a number field. Then OK is a unique factorization domain if
and only if every irreducible element in OK is prime.

Proof. The sufficiency can be proved in a similar way to that for the Fundamental Theorem
of Arithmetic in Z. Recall that if π is a prime element in OK , then π | α or π | β for any
α,β ∈ OK whenever π | αβ . Now, if π | π1 · · ·πk with π1, . . . ,πk prime in OK , then π is an
associate of π j for at least one j. Assume that a nonzero nonunit element α ∈ OK has
factorizations

α = π1 · · ·πk = π ′
1 · · ·π ′

ℓ

with πi and π ′
j irreducible, and hence prime by assumption, in OK . Then without loss

of generality, we have π1 = uπ ′
1 with u a unit of OK . Thus, uπ2 · · ·πk = π ′

2 · · ·π ′
ℓ. We may

tacitly rename uπ2 by π2 as they are associates of one another. In other words, we get
π2 · · ·πk = π ′

2 · · ·π ′
ℓ. Repeating this process implies the unique factorization.

We then prove the necessity. Let ξ be an irreducible element in a unique factorization
domain OK . Suppose ξ | αβ where α,β ∈ OK . If one of α,β is 0 or a unit, then it is
plain that ξ | α or ξ | β . Now assume that both α,β are nonzero and nonunit. We factor
α = α1 · · ·αr and β = β1 · · ·βs with αi and β j irreducible. Recall that ξ is irreducible and
that ξ | αβ . By the uniqueness of factorization of αβ , it is known that ξ is associated with
some αi or β j, thereby implying that ξ | α or ξ | β . So ξ is a prime element in OK . ■

25.4 Norm-Euclidean number fields
Now we are facing the demand of examining the equivalence between irreducible elements
and primes in a given OK . Let us recall that in our proof of such an equivalence in
Z, namely, Corollary 2.7, a key ingredient is the greatest common divisor, which comes
from the Euclidean Algorithm. Further, the Euclidean Algorithm is built on the Division
Algorithm: for any integers a,b ∈ Z= OQ with b ̸= 0, there are integers q,r ∈ Z such that

a = qb+ r, |r|< |b|. (25.1)

We also note that for any a ∈Q, we have NQ/Q(a) = a. The above discussions suggest the
following analogy.

Definition 25.8 Let K be a number field. We say K is Norm-Euclidean if for any
α,β ∈ OK with β ̸= 0, there are η ,ρ ∈ OK such that

α = ηβ +ρ, |NK/Q(ρ)|< |NK/Q(β )|. (25.2)

We may also transplant the definition of the greatest common divisor.
Definition 25.9 Let K be a norm-Euclidean number field. Let α,β ∈OK , not both zero.
There exists a unique algebraic integer δ ∈ OK , up to associates, such that δ divides
both α and β , and such that if δ ′ ∈ OK divides α and β , then δ ′ | δ . This algebraic
integer δ ∈OK is called the greatest common divisor of α and β , denoted by δ = (α,β ).

To get this algebraic integer δ ∈ OK , we shall still use the Euclidean Algorithm as
follows. Without loss of generality, we assume that |NK/Q(α)| ≥ |NK/Q(β )| and β ̸= 0.
Recall that for ρ ∈ OK , we have NK/Q(ρ) ∈ Z while NK/Q(ρ) = 0 if and only if ρ = 0. Let
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us put ρ−1 = α and ρ0 = β . Now we iteratively write

ρ−1 = η1ρ0 +ρ1, 0 < |NK/Q(ρ1)|< |NK/Q(ρ0)|;
ρ0 = η2ρ1 +ρ2, 0 < |NK/Q(ρ2)|< |NK/Q(ρ1)|
ρ1 = η3ρ2 +ρ3, 0 < |NK/Q(ρ3)|< |NK/Q(ρ2)|;

· · ·
ρk−2 = ηkρk−1 +ρk, 0 < |NK/Q(ρk)|< |NK/Q(ρk−1)|;
ρk−1 = ηk+1ρk +0.

Then δ = ρk is as required.
We establish a Bézout-type identity analogous to Theorem 2.5.

Theorem 25.10 (Bézout’s Identity for Norm-Euclidean Number Fields). Let K be a norm-
Euclidean number field. Let α,β ∈ OK , not both zero, and denote δ = (α,β ). Then
there exist µ,ν ∈ OK such that δ = αµ +βν .

Proof. We only need the fact that the set S= {αµ+βν : µ,ν ∈OK} is closed under addition
and scalar multiplication (of elements in OK). From the above Euclidean Algorithm, we
iteratively have ρ1 ∈ S, ρ2 ∈ S, . . ., and finally, δ = ρk ∈ S. ■

Theorem 25.11 Let K be a norm-Euclidean number field. Then every irreducible element
in OK is prime. Consequently, OK is a unique factorization domain.

Proof. We shall show that for any irreducible π ∈ OK , if π | αβ with α,β ∈ OK , then π | α
or π | β . If π | α, then we are done. If π ∤ α, then (π,α) = 1 since π is irreducible. By
Theorem 25.10, we choose elements µ,ν ∈ OK such that 1 = πµ +αν . Then

β = β ·1 = β (πµ +αν) = π · (β µ)+(αβ ) ·ν .

It follows that π | β . Hence, π is prime. Finally, we know from Theorem 25.9 that OK is
a unique factorization domain. ■

R We should point out that there do exist non-norm-Euclidean number fields K with
OK a unique factorization domain.

Finally, we note that the Division Algorithm (25.1) is equivalent to the claim that for
all x ∈Q, there is an integer n ∈ Z such that

|x−n|< 1.

We have a parallel result for norm-Euclidean number fields.

Theorem 25.12 Let K be a number field. Then K is norm-Euclidean if and only if for
all ξ ∈ K, there is an integer η ∈ OK such that∣∣NK/Q(ξ −η)

∣∣< 1. (25.3)

Proof. We start with necessity. Assume that K is norm-Euclidean. It is known from
Theorem 23.9 that there is a nonzero integer n ∈ Z such that nξ ∈ OK . Now since K is
norm-Euclidean, we choose η ,ρ ∈ OK such that

nξ = ηn+ρ, |NK/Q(ρ)|< |NK/Q(n)|.
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Thus, ∣∣NK/Q(ξ −η)
∣∣= ∣∣NK/Q(

ρ
n )
∣∣< 1.

We then prove sufficiency. Assume the condition (25.3). Let α,β ∈ OK be arbitrary
with β ̸= 0. We choose η ∈OK such that |NK/Q(κ)|< 1 where κ = α

β −η . Now, α =ηβ +κβ .
Finally, we note that∣∣NK/Q(κβ )

∣∣= ∣∣NK/Q(κ)
∣∣ ∣∣NK/Q(β )

∣∣< ∣∣NK/Q(β )
∣∣ ,

as required. ■



26. Quadratic fields

26.1 Quadratic fields
Now we shall use quadratic fields as concrete examples to illustrate ideas in the previous
lectures.

Definition 26.1 A quadratic field is a number field of degree 2 over Q.

Recall that a nonzero integer d is called squarefree if no integer squares other than 1
divide d.
Theorem 26.1 Let K be a quadratic field. Then there exists a unique squarefree integer
d ̸= 1 such that K =Q(

√
d).

Proof. Suppose that θ ∈ K is such that K = Q(θ). Then the minimal polynomial p(x)
of θ over Q is of degree 2, say p(x) = x2 + a1x + a0 with a0,a1 ∈ Q. Solving p(x) = 0
gives two solutions θ1,2 = −a1±

√
∆

2 where ∆ = a2
1 − 4a0; we shall require that

√
∆ is not

rational to ensure that p(x) is irreducible over Q. Now, K =Q(θ) =Q(
√

∆). Noting that
a2

1 − 4a0 is in Q and is nonzero, we write a2
1 − 4a0 =

s
t with s ̸= 0 and t > 0 in Z. Thus,√

∆ =
√ s

t =
√

st
t = r

√
d

t where we further write st = r2d with d squarefree. In particular,
d ̸= 1 since

√
st is not rational as assumed.

To show the uniqueness of d, it suffices to prove that if d1 ̸= 1 and d2 ̸= 1 are two
distinct squarefree integers, then Q(

√
d1) ̸= Q(

√
d2). Here, we only need to show that 1,√

d1 and
√

d2 are linearly independent over Q. If not, then we have a
√

d1 +b
√

d2 = c with
a,b,c ∈ Q not all zero. It is plain that 1 and

√
d are linearly independent over Q, where

d ̸= 1 is squarefree. This is because if d < 0 then
√

d is purely imaginary and if d > 1 then
we recall Example 19.7. Hence, a,b ̸= 0. Squaring both sides of a

√
d1 +b

√
d2 = c implies

that
√

d1d2 ∈Q. However, if d1 and d2 have different signs, then
√

d1d2 is purely imaginary,
which is not in Q. If d1 and d2 have the same sign, then we note that there is a prime p
such that p | d1d2 and p2 ∤ d1d2 for d1 ̸= d2 are squarefree. Recalling Example 19.7 again
implies that in this case

√
d1d2 is not in Q. We are therefore led to a contradiction. ■

Definition 26.2 Let d ̸= 1 be a squarefree integer in Z. The quadratic field Q(
√

d) is
called real if d > 0, and imaginary if d < 0.

Let us collect some basic facts about quadratic fields.
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Fact 26.2 Let d ̸= 1 be a squarefree integer in Z.
(i) Q(

√
d) =Q[

√
d]. Also, {1,

√
d} forms a basis for Q(

√
d) over Q. In what follows,

we write elements in Q(
√

d) as a+b
√

d with a,b ∈Q.
(ii) The minimal polynomial of a+b

√
d over Q is p(x) = x2 −2ax+(a2 −db2). Futher,

a+b
√

d has two conjugates over Q, namely, a+b
√

d and a−b
√

d.
(iii) TrQ(

√
d)/Q(a+b

√
d) = 2a ∈Q.

(iv) NQ(
√

d)/Q(a+b
√

d) = a2 −db2 ∈Q. In particular, NQ(
√

d)/Q(a+b
√

d)≥ 0 if d < 0.
(v) There are exactly two embeddings σ1 and σ2 of Q(

√
d) in C over Q given by

σ1(a+ b
√

d) = a+ b
√

d and σ2(a+ b
√

d) = a− b
√

d for all a+ b
√

d ∈ Q(
√

d). If
d > 0, then both σ1 and σ2 are real; if d < 0, then both σ1 and σ2 are complex.

(vi) The quadratic extension Q(
√

d)/Q is Galois.

We then study the ring OQ(
√

d) of integers of Q(
√

d).

Theorem 26.3 Let d ̸= 1 be a squarefree integer in Z.

(i) OQ(
√

d) =

{
Z[
√

d], if d ≡ 2 or 3 (mod 4),

Z[1+
√

d
2 ], if d ≡ 1 (mod 4).

(ii) If d ≡ 2 or 3 (mod 4), then {1,
√

d} forms an integral basis for OQ(
√

d); if d ≡ 1

(mod 4), then {1, 1+
√

d
2 } forms an integral basis for OQ(

√
d).

(iii) dQ(
√

d) =

{
4d, if d ≡ 2 or 3 (mod 4),
d, if d ≡ 1 (mod 4).

Proof. (i). We shall prove that

OQ(
√

d) =

{
{a+b

√
d : a,b ∈ Z}, if d ≡ 2 or 3 (mod 4),

{a+b
√

d
2 : a,b ∈ Z and a ≡ b mod 2}, if d ≡ 1 (mod 4).

Consider a+b
√

d ∈Q(
√

d) where a,b ∈Q. We know from Corollary 23.12 that a+b
√

d ∈
OQ(

√
d) if and only if its minimal polynomial over Q,

p(x) = x2 −2ax+(a2 −db2),

is in Z[x], i.e. 2a and a2 −db2 are simultaneously in Z. If a ∈ Z, then db2 ∈ Z implies that
b ∈ Z as d is squarefree. The other possibility is that a ∈ Z+ 1

2 so that db2 ∈ Z+ 1
4 . Since

d is squarefree, we must have b ∈ Z+ 1
2 , which further requires that d ≡ 1 (mod 4).

(ii). This is a direct consequence of Part (i).
(iii). If d ≡ 2 or 3 (mod 4), we have

dQ(
√

d) = disc(1,
√

d) =
(

det
(

1
√

d
1 −

√
d

))2

= 4d.

If d ≡ 1 (mod 4), we have

dQ(
√

d) = disc(1, 1+
√

d
2 ) =

(
det

(
1 1+

√
d

2
1 1−

√
d

2

))2

= d,

as desired. ■

Finally, we determine the units of the ring of integers of a quadratic field. Let us begin
with the imaginary quadratic fields.
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Theorem 26.4 (Units of Imaginary Quadratic Fields). Let d < 0 be a squarefree integer in
Z. Then the units of OQ(

√
d) are

±1,±
√
−1, if d =−1,

±1, ±1±
√
−3

2 , if d =−3,
±1, otherwise.

Proof. If d ≡ 2 or 3 (mod 4), elements in OQ(
√

d) are of the form a+ b
√

d with a,b ∈ Z.
Also, if it is a unit, then by Theorem 25.4, NQ(

√
d)/Q(a+b

√
d) = a2 −db2 =±1. If d =−1,

we have solutions (a,b) = (±1,0) and (0,±1); if d <−1, we have solutions (a,b) = (±1,0).
If d ≡ 1 (mod 4), elements in OQ(

√
d) are of the form a+b

√
d

2 with a,b ∈ Z and a ≡ b

(mod 2). If it is a unit, then NQ(
√

d)/Q(
a+b

√
d

2 ) = a2−db2

4 =±1. If d =−3, we have solutions
(a,b) = (±2,0) and (±1,±1); if d <−3, we have solutions (a,b) = (±2,0). ■

For real quadratic fields, units have a very different character.

Units of Real Quadratic Fields Let d > 1 be a squarefree integer in Z. Then the units of
OQ(

√
d) are real. Further, there exists a unique unit ε > 1 such that all units of OQ(

√
d)

are of the form ±εn with n ∈ Z.

Its proof will be postponed until a later lecture in Sect. 30.4. Here we only prepare a
lemma a future use.
Lemma 26.5 Let d > 1 be a squarefree integer in Z. Then the set of units of OQ(

√
d) is

given by {
a+b

√
d : a,b ∈ 1

2Z and a2 −db2 =±1
}
.

Proof. It is plain that all units of OQ(
√

d) are in the given set. Now it suffices to show that
all elements in this set are units of OQ(

√
d), and in fact, it is enough to show that these

elements are in OQ(
√

d). Since a2−db2 =±1 while d is squarefree, we find that a and b are
simultaneously in Z or simultaneously in Z+ 1

2 . Hence, the case where d ≡ 1 (mod 4) is
automatically proved. For d ≡ 2,3 (mod 4), we shall show that the situation that a and b
are simultaneously in Z+ 1

2 will never happen. However, if this is the case, then there are
u,v ∈ Z such that (

2u+1
2

)2

−d
(

2v+1
2

)2

=±1,

that is,
(2u+1)2 −d(2v+1)2 =±4.

But we have (2u+1)2−d(2v+1)2 ≡ 1−d ̸≡ 0 (mod 4), thereby yielding a contradiction. ■

26.2 Quadratic field Q(
√
−5)

As we had promised in Sect. 25.2, here we shall use the field Q(
√
−5) to illustrate number

fields in which the Fundamental Theorem of Arithmetic is false.

Claim 26.6 Consider the quadratic field Q(
√
−5) where OQ(

√
−5) = Z[

√
−5].

(i) The numbers 2, 3 and 1±
√
−5 are irreducible in Z[

√
−5].
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(ii) The number 6 can be factored in two different ways by irreducible elements in
Z[
√
−5], namely, 6 = 2×3 = (1+

√
−5)× (1−

√
−5). Here, 2 and 3 are not asso-

ciates of 1±
√
−5.

(iii) The numbers 2, 3 and 1±
√
−5 are not prime in Z[

√
−5].

Proof. Note that the norms of 2, 3, 1+
√
−5 and 1−

√
−5 to Q are 4, 9, 6 and 6, respec-

tively, and hence that 2 and 3 are not associates of 1±
√
−5.

If any of them is not irreducible, then Z[
√
−5] would contain an element a+ b

√
−5

with a,b ∈ Z such that NQ(
√
−5)/Q(a+b

√
−5) = a2 +5b2 ∈ {±2,±3}. However, we cannot

find such a and b.
Finally, we recall that 2 | (1+

√
−5)(1−

√
−5). If 2 divides 1±

√
−5, so does the norm

to Q. But 4 ∤ 6, and we have a contradiction. Hence, 2 is not prime in Z[
√
−5]. Similarly,

we can show that 3 and 1±
√
−5 are not prime in Z[

√
−5]. ■

26.3 Norm-Euclidean imaginary quadratic number fields
Our next object is to determine all imaginary quadratic number fields that are norm-
Euclidean.
Theorem 26.7 There are exactly 5 norm-Euclidean imaginary quadratic number fields,
namely, Q(

√
−1), Q(

√
−2), Q(

√
−3), Q(

√
−7) and Q(

√
−11).

Proof. We only need to consider Q(
√

d) with d < 0 a squarefree integer. Recall that for
any α = a+b

√
d ∈Q(

√
d) with a,b ∈Q, we have NQ(

√
d)/Q(α) = a2 −db2.

For convenience, we introduce two auxiliary functions on R. First, we define I(x) :=
min{|x− n| : n ∈ Z}, namely, the minimal distance between x ∈ R and an integer in Z.
Next, we define H(x) := min{|x− (n+ 1

2)| : n ∈ Z}, namely, the minimal distance between
x ∈ R and a half-integer in Z+ 1

2 . It is plain that for all x ∈ R, we have 0 ≤ I(x) ≤ 1
2 and

0 ≤ H(x)≤ 1
2 . Also, I(x)+H(x) = 1

2 .
(i). Assume that d ≡ 2 or 3 (mod 4). Then OQ(

√
d) = Z[

√
d]. Now,

min
{∣∣∣NQ(

√
d)/Q(α −η)

∣∣∣ : η ∈ OQ(
√

d)

}
= I(a)2 + I(b)2|d|.

If d =−1 or −2, then the right-hand side of the above is at most (1
2)

2 +( 1
2)

2|d|= 1+|d|
4 < 1

for all α ∈ Q(
√

d). If d ≤ −5, then we choose α = 1
2 +

1
2

√
d so that the right-hand side

of the above becomes (1
2)

2 +(1
2)

2|d| = 1+|d|
4 ≥ 1. Applying Theorem 25.12 confirms that

Q(
√
−1) and Q(

√
−2) are the only norm-Euclidean number fields in this case.

(ii). Assume that d ≡ 1 (mod 4). Then OQ(
√

d) = Z[1+
√

d
2 ]. Now,

min
{∣∣∣NQ(

√
d)/Q(α −η)

∣∣∣ : η ∈ OQ(
√

d)

}
= min

{
I(a)2 + I(b)2|d|,H(a)2 +H(b)2|d|

}
= min

{
I(a)2 + I(b)2|d|,(1

2 − I(a))2 +(1
2 − I(b))2|d|

}
.

If d = −3, −7 or −11, then the right-hand side of the above is at most (1
2)

2 +(1
4)

2|d| =
4+|d|

16 < 1 for all α ∈Q(
√

d). If d ≤−15, then we choose α = 1
4 +

1
4

√
d so that the right-hand

side of the above becomes (1
4)

2+(1
4)

2|d|= 1+|d|
16 ≥ 1. By Theorem 25.12, Q(

√
−3), Q(

√
−7)

and Q(
√
−11) are the only norm-Euclidean number fields in this case. ■
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R For norm-Euclidean real quadratic number fields, it is known that there are exactly
16 of them, namely, Q(

√
d) with

d ∈ {2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73}.

This result is essentially due to Harold Chatland and Harold Davenport (Canad. J.
Math. 2 (1950), 289–296). Also, there are exactly 4 non-norm-Euclidean imaginary
quadratic number fields that are unique factorization domains, namely, Q(

√
d) with

d ∈ {−19,−43,−67,−163}.

Hans Heilbronn and Edward Linfoot (Quart. J. Math. Oxford Ser. 5 (1934), 150–
160 & 293–301) first proved that there would be at most one more instance other
than the above choices. Harold Stark (Michigan Math. J. 14 (1967), 1–27) further
removed this fabricated field. The case of non-norm-Euclidean real quadratic number
fields is more intricate. One example is Q(

√
14); see Malcolm Harper’s Ph.D. thesis.

26.4 Quadratic field Q(
√
−1)

Let us adopt the conventional notation i =
√
−1. Recall that OQ(

√
−1) = Z[i].

Fact 26.8 Z[i] is a unique factorization domain, i.e. every nonzero nonunit element in
Z[i] has a unique (up to reordering and associates) representation as a finite product of
irreducible (or equivalently, prime) elements in Z[i].

Now it remains to determine all irreducible (or equivalently, prime) elements in Z[i].
We know from Theorem 25.8 that prime elements in Z[i] are nonunit factors of rational
primes p. Note that NQ(

√
−1)/Q(p) = p2. Also, if a nonunit α = a+bi ∈ Z[i] with a,b ∈ Z is

such that α | p and that α is not an associate of p, then NQ(
√
−1)/Q(α) = p, and hence,

p = a2 +b2. (26.1)

For a given rational prime p, if such an α does not exist, i.e. (26.1) has no integer solution
(a,b), then p itself is irreducible and hence prime in Z[i], and in this case we have irreducible
elements in Z[i] given by p and its associates. If such an α exists, we assume that β ∈ Z[i]
is such that p = αβ , and therefore that NQ(

√
−1)/Q(β ) = p. Thus, α and β are prime (and

hence irreducible) elements in Z[i] by Proposition 25.5, and the factorization of p = αβ
by irreducible elements in Z[i] is unique, up to reordering and associates. So in this case
we have irreducible elements in Z[i] given by α, β and their associates, with duplicates
removed.

Let us first recover a special case of Jacobi’s two-square formula (12.5).

Theorem 26.9 Let p ≡ 1 (mod 4) be a rational prime. Then the Diophantine equation

p = m2 +n2 (26.2)

has exactly 8 solutions for m,n ∈ Z.

Proof. It is known from Theorem 6.10 that
(−1

p

)
= 1 for p ≡ 1 (mod 4), and hence that

there is an integer x ∈ Z such that p | (x2 +1). Further, in Z[i], we have the factorization
x2 +1 = (x+ i)(x− i). We claim that p is not prime (and hence not irreducible) in Z[i]. If
not, then p | (x+ i) or p | (x− i). But this is impossible as x±i

p ̸∈Z[i]. Thus, we may uniquely
factor p = αβ with α,β ∈ Z[i] nonunit. In particular, if α = a+ bi, then β = a− bi, and
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it is plain that |a| ̸= |b| and that a,b are nonzero. Recalling from Theorem 26.4 that the
units of Z[i] are ±1 and ±i, we see that β is not an associate of α. It turns out that (26.2)
has exactly 8 solutions, determined by the 4 associates of α and the 4 associates of β . ■

Theorem 26.10 The irreducible (or equivalently, prime) elements in Z[i] are:
(i) 1+ i and its associates;
(ii) rational primes p and their associates for p ≡ 3 (mod 4);
(iii) nonunit and nonassociate factors a+ bi of rational primes p for p ≡ 1 (mod 4),

i.e. a,b ∈ Z are such that p = a2 +b2.

Proof. There are three cases: (i). If p = 2, then we have the factorization 2 = (1+ i)(1− i)
where 1+ i and 1− i are associates of one another; (ii). If p ≡ 3 (mod 4), then (26.1) has
no solution as −1 is a quadratic non-residue of such a prime p by Theorem 6.10; (iii). If
p ≡ 1 (mod 4), then we already made an investigation in Theorem 26.9. ■

26.5 Quadratic field Q(
√
−3)

In this section, we put ρ = 1+
√
−3

2 . Recall that OQ(
√
−3) = Z[ρ].

Fact 26.11 Z[ρ] is a unique factorization domain, i.e. every nonzero nonunit element in
Z[ρ] has a unique (up to reordering and associates) representation as a finite product
of irreducible (or equivalently, prime) elements in Z[ρ].

Let us characterize all irreducible (or equivalently, prime) elements in Z[ρ]. Again, it
suffices to consider nonunit factors of rational primes p in Z[ρ]. Note that NQ(

√
−3)/Q(p) =

p2. Also, if a nonunit α = a+bρ ∈ Z[ρ] with a,b ∈ Z is such that α | p and that α is not
an associate of p, then NQ(

√
−3)/Q(α) = p, and hence,

p = a2 +ab+b2, (26.3)

or equivalently,

4p = (2a+b)2 +3b2. (26.4)

For a given rational prime p, if such an α does not exist, i.e. (26.3) or (26.4) has no integer
solution (a,b), then we have irreducible elements in Z[ρ] given by p and its associates. If
such an α exists, we assume that β ∈ Z[ρ] is such that p = αβ , and in this case we have
irreducible elements in Z[ρ] given by α, β and their associates, with duplicates removed.

Theorem 26.12 Let p ≡ 1 (mod 6) be a rational prime. Then the Diophantine equation

p = m2 +mn+n2 (26.5)

has exactly 12 solutions for m,n ∈ Z.

Proof. By Theorem 7.7,
(−3

p

)
= 1 for p≡ 1 (mod 6), and hence there is an integer x∈Z such

that p | (x2 +3). Further, in Z[ρ], we have the factorization x2 +3 = (x+
√
−3)(x−

√
−3),

thereby implying that p is not prime (and hence not irreducible) in Z[ρ]. Thus, we may
uniquely factor p = αβ with α,β ∈ Z[ρ] nonunit. In particular, if α = a+ bρ, then it is
plain that |a| ̸= |b|, that a,b are nonzero, and that neither of α,β are purely real or purely
imaginary.
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Recall from Theorem 26.4 that the units of Z[ρ] are ±1 and ±1±
√
−3

2 . We claim that
β is not an associate of α. If not, then α2 = up where u is a unit of Z[ρ]. Further, since
α is not purely real or purely imaginary, α2 is not real, and hence u = ε1

2 + ε2
2

√
−3 with

ε1,ε2 ∈ {±1}. Note that

α2 = (a+bρ)2 =
(
(a+ b

2)+
b
2

√
−3
)2

=
(
a2 +ab− b2

2

)
+
(
ab+ b2

2

)√
−3.

Thus, {
a2 +ab− b2

2 = ε1 p
2

ab+ b2

2 = ε2 p
2

⇐⇒

{
a2 −b2 = (ε1−ε2)p

2

a2 +2ab = (ε1+ε2)p
2

.

Since |a| ̸= |b| and hence a2 − b2 ̸= 0, we only have two possibilities (ε1,ε2) = (1,−1) or
(−1,1). Thus, a2 + 2ab = 0. Since a ̸= 0, we get a+ 2b = 0. Therefore, ±p = (ε1−ε2)p

2 =
a2 −b2 = 3b2. But this is impossible.

We conclude that (26.5) has exactly 12 solutions, determined by the 6 associates of α
and the 6 associates of β . ■

Theorem 26.13 The irreducible (or equivalently, prime) elements in Z[ρ] are:
(i)

√
−3 and its associates;

(ii) rational primes p and their associates for p = 2 or p ≡ 5 (mod 6);
(iii) nonunit and nonassociate factors a+ bρ of rational primes p for p ≡ 1 (mod 6),

i.e. a,b ∈ Z are such that p = a2 +ab+b2.

Proof. There are four cases: (i). If p= 3, then we have the factorization 3=(
√
−3)(−

√
−3)

where
√
−3 and −

√
−3 are associates of one another; (ii-a). If p = 2, then it is plain that

(26.4) has no solution; (ii-b). If p ≡ 5 (mod 6), then (26.4) has no solution as −3 is a
quadratic non-residue of such a prime p by Theorem 7.7; (iii). If p ≡ 1 (mod 6), then we
already made an investigation in Theorem 26.12. ■





27. Continued fractions

27.1 Continued fractions and convergents
Definition 27.1 Let {a0,a1,a2, . . . ,aN} be a finite sequence of numbers. We describe

a0 +
1

a1 +
1

a2 + . . .
+

1
aN

as a finite continued fraction. If the sequence {a0,a1,a2, . . .} is infinite, we say

a0 +
1

a1 +
1

a2 + . . .

is an infinite continued fraction. Finite and infinite continued fractions together are
called continued fractions. We usually adopt the compact notations:

a0 +
1
a1 +

1
a2 + · · · +

1
aN

and a0 +
1
a1 +

1
a2 + · · ·

or

⟨a0,a1,a2, . . . ,aN⟩ and ⟨a0,a1,a2, . . .⟩.

Further, given a continued fraction ⟨a0,a1,a2, . . .⟩, finite or infinite, we call an the n-th
(partial) quotient, tn := ⟨an,an+1, . . .⟩ the n-th complete quotient, and cn := ⟨a0,a1, . . . ,an⟩
the n-th convergent.

R Throughout, if we say ⟨a0,a1,a2, . . .⟩ is a continued fraction, it could be either finite
or infinite unless otherwise specified. In the finite case, we usually assume that
this continued fraction terminates at aN , namely, it is given by ⟨a0,a1,a2, . . . ,aN⟩.
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Further, when we refer to the index of an expression (e.g., partial quotient, complete
quotient, convergent, etc.) related to a finite continued fraction ⟨a0,a1,a2, . . . ,aN⟩, it
is automatically understood that this index takes value at most N.

The following proposition is immediate by definition.

Proposition 27.1 Given a continued fraction ⟨a0,a1, . . .⟩ and an index n, we have

⟨a0,a1, . . .⟩= ⟨a0,a1, . . . ,an−1,⟨an,an+1, . . .⟩⟩.

We start with an expression for convergents to a continued fraction.

Theorem 27.2 Let ⟨a0,a1, . . .⟩ be a continued fraction. We put

p0 = a0, p1 = a0a1 +1,

q0 = 1, q1 = a1.

Further, for k ≥ 2, we define

pk = ak pk−1 + pk−2,

qk = akqk−1 +qk−2.

Then for n ≥ 0,

⟨a0,a1, . . . ,an⟩=
pn

qn
. (27.1)

Proof. We argue by induction on n. It is plain that the relation is true for n = 0 and
1. Now assume that it holds for 0, . . . ,n− 1 with n ≥ 2. By Proposition 27.1, we have
⟨a0,a1, . . . ,an−2,an−1,an⟩= ⟨a0,a1, . . . ,an−2,⟨an−1,an⟩⟩= ⟨a0,a1, . . . ,an−2,an−1+

1
an
⟩ where the

last expression has n partial quotients. We then deduce from the inductive hypothesis that

⟨a0,a1, . . . ,an−2,an−1,an⟩= ⟨a0,a1, . . . ,an−2,an−1 +
1
an
⟩

=

(
an−1 +

1
an

)
pn−2 + pn−3(

an−1 +
1
an

)
qn−2 +qn−3

=
an(an−1 pn−2 + pn−3)+ pn−2

an(an−1qn−2 +qn−3)+qn−2

=
an pn−1 + pn−2

anqn−1 +qn−2

=
pn

qn
,

as required. ■

Notation 27.2 Given a continued fraction ⟨a0,a1, . . .⟩, whenever we say its n-th conver-
gent is pn

qn
, the numbers pn and qn are as in Theorem 27.2.

We collect some properties of the numbers pn and qn.

Theorem 27.3 For n ≥ 1, we have

pnqn−1 − pn−1qn = (−1)n−1, (27.2)
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and equivalently,

pn

qn
− pn−1

qn−1
=

(−1)n−1

qnqn−1
. (27.3)

Proof. This relation simply follows by induction on n. Note that it is trivial for n = 1.
Further, we find that for n ≥ 2,

pnqn−1 − pn−1qn = (an pn−1 + pn−2)qn−1 − pn−1(anqn−1 +qn−2)

= pn−2qn−1 − pn−1qn−2

= (−1) · (pn−1qn−2 − pn−2qn−1),

thereby yielding the desired result. ■

Theorem 27.4 For n ≥ 2, we have

pnqn−2 − pn−2qn = (−1)nan, (27.4)

and equivalently,

pn

qn
− pn−2

qn−2
=

(−1)nan

qnqn−2
. (27.5)

Proof. We have

pnqn−2 − pn−2qn = (an pn−1 + pn−2)qn−2 − pn−2(anqn−1 +qn−2)

= an(pn−1qn−2 − pn−2qn−1)

= an · (−1)n−2,

where (27.2) is applied. ■

Now we shall consider continued fractions with all partial quotients (except a0) positive.

Theorem 27.5 Let ⟨a0,a1, . . .⟩ be a continued fraction where an > 0 for n ≥ 1 while a0 is
an arbitrary real number. Then

(i) The even-indexed convergents c2k are strictly monotonically increasing, and the
odd-indexed convergents c2k+1 are strictly monotonically decreasing.

(ii) Every odd-indexed convergent is greater than any even-indexed convergent.

Proof. It is a trivial observation that qn > 0 for all n ≥ 0 since an > 0 for n ≥ 1.
(i). By (27.5), the sign of cn − cn−2 is determined by (−1)n, and hence the first part

follows.
(ii). By (27.3), the sign of cn − cn−1 is determined by (−1)n−1. It follows that

cn

{
< cn−1 if n is even,
> cn−1 if n is odd.

(27.6)

Assume that there exist an even-indexed convergent c2i and an odd-indexed convergent
c2 j+1 such that c2i ≥ c2 j+1. If 2i > 2 j+ 1 so that 2 j+ 1 ≤ 2i− 1, then c2 j+1 ≥ c2i−1 since
the sequence {c2k+1} strictly decreases. Hence, c2i ≥ c2i−1, but this violates (27.6). On the
other hand, if 2i < 2 j+ 1 so that 2i ≤ 2 j, then c2i ≤ c2 j since the sequence {c2k} strictly
increases. We then get c2 j+1 ≤ c2 j, thereby arriving at a contradiction to (27.6) as well. ■
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27.2 Simple continued fractions
Definition 27.3 We say ⟨a0,a1, . . .⟩ is a simple continued fraction if its partial quotients
a1,a2, . . . are positive integers while a0 is an arbitrary integer. If the sequence of
partial quotients is finite, then the simple continued fraction is called finite; otherwise,
it is called infinite. Note that if pn

qn
is the n-th convergent, then pn and qn are integers,

and in particular, qn is positive.

We begin with some quantitative properties for the convergents to a simple continued
fraction.
Theorem 27.6 Let ⟨a0,a1, . . .⟩ be a simple continued fraction with pn

qn
the n-th convergent.

We have qn ≥ qn−1 for n ≥ 1, where the inequality is strict for n ≥ 2. In particular, qn ≥ n
for n ≥ 0, where the inequality is strict for n = 0 and n ≥ 4.

Proof. First, we note that q0 = 1 and q1 = a1 ≥ 1. Further, for n ≥ 2,

qn = anqn−1 +qn−2 ≥ qn−1 +qn−2.

The claims follow as immediate consequences of the above as qn’s are positive integers. ■

Our next object is the value of simple continued fractions.

Theorem 27.7 Every finite simple continued fraction ⟨a0,a1, . . . ,aN⟩ equals a rational
number x, which is called the value of ⟨a0,a1, . . . ,aN⟩.

Further, the value of ⟨a0,a1, . . . ,aN⟩ is greater than any of its even-indexed conver-
gents and less than any of its odd-indexed convergents, except that it equals the last
convergent.

Proof. Let cn =
pn
qn

be the n-th convergent. For the first part, we note that x = cN = pN
qN

.
Since pN and qN are integers, we conclude that x is rational.

For the second part, we know from Theorem 27.5(i) that cN is the maximum among
the sequence {c2k} if N is even, and the minimum among the sequence {c2k+1} if N is odd.
The desired statement is a direct consequence of Theorem 27.5(ii). ■

Recall that a rational number x= u
v with u,v integers and v> 0 is irreducible if (u,v)= 1.

Lemma 27.8 Every convergent to a simple continued fraction is an irreducible rational
number.

Proof. Let pn
qn

be the n-th convergent, and write d = (pn,qn). Recalling (27.2), we have
d | (pnqn−1 − pn−1qn) = (−1)n−1. Thus, d = 1, thereby implying that pn

qn
is irreducible. ■

Regarding infinite simple continued fractions, an important issue that has not yet been
considered is their well-definedness.
Theorem 27.9 Every infinite simple continued fraction ⟨a0,a1, . . .⟩ converges to an irra-
tional number ξ , which is called the value of ⟨a0,a1, . . .⟩.

Further, the value of ⟨a0,a1, . . .⟩ is greater than any of its even-indexed convergents
and less than any of its odd-indexed convergents.

Proof. Let cn be the n-th convergent. We shall see from Theorem 27.5 that {c2k}k≥0 is
a strictly increasing sequence with an upper bound c2k < c1, and that {c2k+1}k≥0 is a
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strictly decreasing sequence with a lower bound c2k+1 > c0. Hence, the two sequences are
convergent by the monotone convergence theorem. Further, for each k ≥ 0, we have

c2k < limsup
k→∞

c2k = lim
k→∞

c2k =: ξe

and
c2k+1 > liminf

k→∞
c2k+1 = lim

k→∞
c2k+1 =: ξo.

Now we recall Theorems 27.3 and 27.6, and obtain that∣∣∣∣ p2k+1

q2k+1
− p2k

q2k

∣∣∣∣= 1
q2k+1q2k

≤ 1
2k(2k+1)

→ 0

as k → ∞, that is, the sequence {c2k+1 − c2k}k≥0 converges to 0. Thus,

ξo = lim
k→∞

c2k+1 = lim
k→∞

(c2k+1 − c2k)+ lim
k→∞

c2k = 0+ lim
k→∞

c2k = ξe,

thereby yielding the convergence of {ck}k≥0 with

lim
k→∞

ck = ξe = ξo =: ξ .

By the above arguments, we also have c2k < ξe = ξ and c2k+1 > ξo = ξ for all k ≥ 0. Finally,
the irrationality of ξ will be shown in Corollary 27.17. ■

We close this section by bounding the value of simple continued fractions.

Theorem 27.10 Let X = ⟨a0,a1, . . .⟩ be a simple continued fraction. Then a0 ≤ X ≤ a0+1,
where the equality X = a0 occurs if and only if the continued fraction is of the form ⟨a0⟩,
and the equality X = a0 + 1 occurs if and only if the continued fraction is of the form
⟨a0,1⟩. Consequently, X equals an integer if and only if the continued fraction is either
⟨a0⟩ or ⟨a0,1⟩.

Proof. We start with the finite case x = ⟨a0,a1, . . . ,aN⟩, and we shall use induction on N.
If N = 0, then x = ⟨a0⟩= a0. If N = 1, then x = a0 +

1
a1

, and thus a0 < x ≤ a0 +1 as a1 is a
positive integer. Also, x = a0 +1 if and only if a1 = 1. For N ≥ 2, note that

x = ⟨a0,a1, . . . ,aN⟩= a0 +
1

⟨a1, . . . ,aN⟩
.

Let us write x′ = ⟨a1, . . . ,aN⟩, which contains at least two partial quotients. Then x′ > a1 ≥ 1
by the inductive hypothesis. It turns out that a0 < x = a0 +

1
x′ < a0 +1.

For infinite simple continued fractions ξ = ⟨a0,a1, . . .⟩, we take advantage of the con-
vergents c0 = ⟨a0⟩ and c1 = ⟨a0,a1⟩. By Theorem 27.9, we have c0 < ξ < c1. Also, the finite
case above tells us that a0 ≤ c0,c1 ≤ a0 +1. Thus, a0 < ξ < a0 +1 follows. ■

27.3 Simple continued fractions of the same value
We begin with finite simple continued fractions.

Definition 27.4 Let a0, . . . ,aN be integers with a1, . . . ,aN > 0. We say
(i) the simple continued fractions ⟨a0⟩ and ⟨a0−1,1⟩ are companions of one another;
(ii) the simple continued fractions ⟨a0, . . . ,aN−1,aN⟩ and ⟨a0, . . . ,aN−1,aN − 1,1⟩ are

companions of one another whenever N ≥ 1 and aN ≥ 2.
Note that every finite simple continued fraction is in exactly one of the four forms.
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Proposition 27.11 If two finite simple continued fractions are companions of one another,
then they have the same value.

Proof. There are two cases: (i). If the two simple continued fractions are ⟨a0⟩ and ⟨a0 −
1,1⟩, then it is plain that their values are both a0. (ii). If the two simple continued
fractions are ⟨a0, . . . ,aN−1,aN⟩ and ⟨a0, . . . ,aN−1,aN −1,1⟩ with N ≥ 1 and aN ≥ 2, then we
note that ⟨aN −1,1⟩= (aN −1)+ 1

1 = aN , and hence that

⟨a0, . . . ,aN−1,aN −1,1⟩= ⟨a0, . . . ,aN−1,⟨aN −1,1⟩⟩= ⟨a0, . . . ,aN−1,aN⟩,

as required. ■

Definition 27.5 Two finite simple continued fractions ⟨a0,a1, . . . ,aN⟩ and ⟨b0,b1, . . . ,bM⟩
are called identical if N = M and ai = bi for all 0 ≤ i ≤ N.

Theorem 27.12 If two finite simple continued fractions have the same value, then they
are either identical or companions of one another.

Proof. Suppose that the two finite simple continued fractions are written as ⟨a0,a1, . . . ,aN⟩
and ⟨b0,b1, . . . ,bM⟩, and that they are equal to the same value x. Without loss of generality,
we assume that N ≤ M. Let us apply induction on N.

If N = 0, then x = ⟨a0⟩= a0 is an integer. Note that in this case, finite simple continued
fractions of value equal to x are exactly ⟨x⟩ and ⟨x−1,1⟩ by Theorem 27.10. It is plain to
get the desired claim.

Assume that the claim is true for 0, . . . ,N −1 with N ≥ 1. We shall prove the claim for
N. In particular, we may assume that x is not an integer for the case where x is an integer
was already considered above. Now, again by Theorem 27.10, we have a0 < x < a0 +1 and
b0 < x < b0 +1, indicating that a0 = b0. Noting that

x = ⟨a0,a1, . . . ,aN⟩= a0 +
1

⟨a1, . . . ,aN⟩

= ⟨b0,b1, . . . ,bM⟩= b0 +
1

⟨b1, . . . ,bM⟩
,

we have ⟨a1, . . . ,aN⟩= ⟨b1, . . . ,bM⟩. By the inductive hypothesis, we know that ⟨a1, . . . ,aN⟩
and ⟨b1, . . . ,bM⟩ are either identical or companions of one another, thereby implying the
required statement. ■

For infinite simple continued fractions, the consideration is even simpler.
Definition 27.6 Two infinite simple continued fractions ⟨a0,a1, . . .⟩ and ⟨b0,b1, . . .⟩ are
called identical if ai = bi for all i ≥ 0.

Theorem 27.13 If two infinite simple continued fractions have the same value, then they
are identical.

Proof. The proof is similar to the second half of that for the finite case in Theorem 27.12.
Suppose that the two infinite simple continued fractions are written as ⟨a0,a1, . . .⟩ and
⟨b0,b1, . . .⟩, and that they are equal to the same value ξ . By Theorem 27.10, we have
a0 < ξ < a0 +1 and b0 < ξ < b0 +1, indicating that a0 = b0. Further,

ξ = a0 +
1

⟨a1,a2, . . .⟩
= b0 +

1
⟨b1,b2, . . .⟩

.
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Hence, ⟨a1,a2, . . .⟩ and ⟨b1,b2, . . .⟩ have the same value. Repeating the same process gives
ai = bi for all i ≥ 0. ■

27.4 Distance from a simple continued fraction to its convergents
It remains unproved in Theorem 27.9 that the value of any infinite simple continued
fraction is irrational. For this purpose, a crucial step is to bound the difference between a
simple continued fraction and its convergents. We first establish the following relation.

Theorem 27.14 Let ⟨a0,a1, . . .⟩ be a continued fraction with pn
qn

the n-th convergent and
tn the n-th complete quotient. Then for n ≥ 2,

⟨a0,a1, . . .⟩=
tn pn−1 + pn−2

tnqn−1 +qn−2
. (27.7)

Proof. Note from Proposition 27.1 that ⟨a0,a1, . . .⟩ = ⟨a0,a1, . . . ,an−1, tn⟩. For the latter
continued fraction, we assume that p′k

q′k
is its k-th convergent. It is immediate that pk = p′k

and qk = q′k for 0 ≤ k ≤ n−1. Now, by Theorem 27.2,

⟨a0,a1, . . . ,an−1, tn⟩=
p′n
q′n

=
tn p′n−1 + p′n−2

tnq′n−1 +q′n−2
=

tn pn−1 + pn−2

tnqn−1 +qn−2
,

which is exactly the expected relation. ■

Throughout, let X = ⟨a0,a1, . . .⟩ be a simple continued fraction with cn =
pn
qn

the n-th
convergent and tn the n-th complete quotient. In addition, if the simple continued fraction
is finite, we write it as ⟨a0,a1, . . . ,aN⟩, and add an extra assumption that N ≥ 2.

Theorem 27.15 For n ≥ 1 (or 1 ≤ n ≤ N −1 in the finite case),

X − pn

qn
=

(−1)n

qn(tn+1qn +qn−1)
. (27.8)

Proof. Recalling Theorem 27.14 with n replaced by n+1, we have

X − pn

qn
=

tn+1 pn + pn−1

tn+1qn +qn−1
− pn

qn
=

pn−1qn − pnqn−1

qn(tn+1qn +qn−1)
=

(−1)n

qn(tn+1qn +qn−1)
,

where we further make use of (27.2) in the last equality. ■

Theorem 27.16 For n ≥ 1,

1
qn+2

< |pn −qnX |< 1
qn+1

. (27.9)

In the finite case, the same inequalities hold for 1 ≤ n ≤ N −2 with the only exception
that if n = N −2 and aN = 1, then 1

qN
= |pN−2 −qN−2X |< 1

qN−1
.

Proof. We first deduce from (27.8) that

|pn −qnX |= 1
tn+1qn +qn−1

.

Therefore, we need to bound tn+1qn +qn−1. Note that tn+1 = ⟨an+1,an+2, . . .⟩.
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If n = N −2 and aN = 1, then tN−1 = ⟨aN−1,1⟩= aN−1 +1. Thus,

tN−1qN−2 +qN−3 = (aN−1 +1)qN−2 +qN−3

= (aN−1qN−2 +qN−3)+qN−2

= qN−1 +qN−2

= aNqN−1 +qN−2

= qN .

For |pN−2 −qN−2X |= 1
qN

< 1
qN−1

, we further recall Theorem 27.6 since N ≥ 2.
Now we consider the remaining cases. By Theorem 27.10, we always have an+1 < tn+1 <

an+1 +1. Hence,

tn+1qn +qn−1 > an+1qn +qn−1

= qn+1.

Also,

tn+1qn +qn−1 < (an+1 +1)qn +qn−1

= qn+1 +qn

≤ an+2qn+1 +qn

= qn+2.

The desired inequalities therefore follow. ■

Corollary 27.17 The value of any infinite simple continued fraction is an irrational num-
ber.

Proof. Let ⟨a0,a1, . . .⟩ be an infinite simple continued fraction of value ξ , and assume that
its convergents are pn

qn
. We shall prove that ξ is irrational by contradiction. If ξ is rational,

we may find integers u and v with v > 0 such that ξ = u
v . It follows from (27.9) that for

all n ≥ 1,
v

qn+2
< |vpn −uqn|<

v
qn+1

.

Further, by Theorem 27.6, we know that qn is a positive integer with qn ≥ n for every
n ≥ 0. In the above, if we take n = v, then

0 < |vpv −uqv|< 1.

However, |vpv −uqv| is an integer, and therefore we arrive at a contradiction. ■



28. Representing real numbers by a simple
continued fraction

28.1 Representing rational numbers
From Theorem 27.7, it is known that the value of each finite simple continued fraction
equals a rational number. We are also interested in the opposite direction, namely, given
an arbitrary rational number, can we express it as a finite simple continued fraction?

Theorem 28.1 Every rational number can be represented as a unique finite simple con-
tinued fraction, up to companion.

Proof. The uniqueness has been shown by Theorem 27.12. It suffices to confirm the
existence of such a representation as a finite simple continued fraction. Let x = u

v be a
rational number where u,v are integers and v> 0. Recall the Euclidean Algorithm in which
we first put r−1 = u and r0 = v:

r−1 = a0r0 + r1, 0 < r1 < r0;

r0 = a1r1 + r2, 0 < r2 < r1;

· · ·
rN−2 = aN−1rN−1 + rN , 0 < rN < rN−1;

rN−1 = aNrN +0.

It is immediate that a0, . . . ,aN are integers with a1, . . . ,aN > 0. We shall prove that

x =
u
v
= ⟨a0,a1, . . . ,aN⟩. (28.1)

Let tn = ⟨an,an+1, . . . ,aN⟩ be the n-th complete quotient of ⟨a0,a1, . . . ,aN⟩. Our object
is to show that for 0 ≤ n ≤ N,

tn =
rn−1

rn
. (28.2)

Note first that tN = ⟨aN⟩ = aN = rN−1
rN

, confirming (28.2) for n = N. Suppose that (28.2)
holds for n+1, . . . ,N with n ≤ N −1. Now we have

tn = an +
1

⟨an+1, . . . ,aN⟩
= an +

1
tn+1

= an +
rn+1

rn
=

anrn + rn+1

rn
=

rn−1

rn
,
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as required.
Finally, we take n = 0 in (28.2), and find that

⟨a0,a1, . . . ,aN⟩= t0 =
r−1

r0
=

u
v
= x,

thereby establishing (28.1). ■

■ Example 28.1 Consider the finite simple continued fraction representation of 1071
462 . First,

the Euclidean Algorithm gives us

1071 = 2×462+147;

462 = 3×147+21;

147 = 7×21+0.

It follows that
1071
462

= ⟨2,3,7⟩= 2+
1

3+
1
7

=
51
22

.

Also, the companion of ⟨2,3,7⟩ is ⟨2,3,6,1⟩, which also has value 51
22 = 1071

462 . ■

28.2 Representing irrational numbers
A similar treatment can be applied to the representation of irrational numbers by an
infinite simple continued fraction, as suggested by Theorem 27.9.

Theorem 28.2 Every irrational number can be represented as a unique infinite simple
continued fraction.

Proof. The uniqueness has been shown by Theorem 27.13, and here we only need to
examine the existence. Our strategy is a variant of the Euclidean Algorithm used in the
rational case, and it is usually called the Continued Fraction Algorithm. In particular, we
note that each step except the last one in the Euclidean Algorithm can be reformulated
as rn−2

rn−1
= an−1 +

rn

rn−1
, 0 <

rn

rn−1
< 1.

Let ξ be an irrational number. We may iteratively compute, with ξ0 = ξ , that

ξ0 = a0 +
1
ξ1

, ξ1 > 1;

ξ1 = a1 +
1
ξ2

, ξ2 > 1;

· · ·

ξn = an +
1

ξn+1
, ξn+1 > 1;

· · ·

Here a0,a1,a2 . . . are integers, and moreover, a1,a2 . . . are positive. It should be immediately
clear that for each n ≥ 0, we have an = ⌊ξn⌋. Yet another observation is that this procedure
will never terminate. This is because if it ends with ξN = aN +0, then ξN is rational. Pulling
back, we find that ξN−1, . . ., and eventually ξ0 are rational, thereby getting a contradiction.
Now we shall prove that

ξ = ⟨a0,a1, . . .⟩. (28.3)
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We start by showing that for n ≥ 0,

ξ = ⟨a0,a1, . . . ,an,ξn+1⟩. (28.4)

It is clear that the above relation holds when n = 0. Assuming that it is true for n−1 with
n ≥ 1, then

ξ = ⟨a0,a1, . . . ,an−1,ξn⟩= ⟨a0,a1, . . . ,an−1,⟨an,ξn+1⟩⟩= ⟨a0,a1, . . . ,an,ξn+1⟩,

thereby establishing (28.4) for n. Letting pk
qk

be the k-th convergent to ⟨a0,a1, . . .⟩, then it
is also the k-th convergent to ⟨a0,a1, . . . ,an,ξn+1⟩ whenever 0 ≤ k ≤ n. By Theorem 27.2,
we have

ξ = ⟨a0,a1, . . . ,an,ξn+1⟩=
ξn+1 pn + pn−1

ξn+1qn +qn−1
.

Now, by (27.2),

ξ − pn

qn
=

ξn+1 pn + pn−1

ξn+1qn +qn−1
− pn

qn
=

pn−1qn − pnqn−1

qn(ξn+1qn +qn−1)
=

(−1)n

qn(ξn+1qn +qn−1)
.

Recalling Theorem 27.6 and noting that ξn+1 > 1, we further get∣∣∣∣ξ − pn

qn

∣∣∣∣= 1
qn(ξn+1qn +qn−1)

<
1
n2 → 0,

as n → ∞. It follows that
ξ = lim

n→∞

pn

qn
= ⟨a0,a1, . . .⟩.

Thus, (28.3) is established and the existence of an infinite simple continued fraction of
value ξ is confirmed. ■

■ Example 28.2 Consider the infinite simple continued fraction representation of
√

3. First,
the Continued Fraction Algorithm gives us

√
3 = 1+

1
1
2(1+

√
3)

;

1
2
(1+

√
3) = 1+

1
1+

√
3

;

1+
√

3 = 2+
1

1
2(1+

√
3)

;

1
2
(1+

√
3) = 1+

1
1+

√
3

;

1+
√

3 = 2+
1

1
2(1+

√
3)

;

· · ·

It follows that √
3 = ⟨1,1,2,1,2, . . .⟩= ⟨1,1,2⟩.

Note that in this infinite simple continued fraction, there is a repeating portion 1,2. ■

28.3 Periodic simple continued fractions
As we have seen in Example 28.2, the infinite simple continued fraction representation of√

3 contains a repeating portion. Now we shall give a systematic study of such continued
fractions.
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Definition 28.1 A periodic simple continued fraction is a simple continued fraction
that eventually repeats. More precisely, if ⟨a0,a1, . . .⟩ is periodic, then there exist an
index r and a positive integer m such that ai = a j whenever i, j ≥ r and i ≡ j (mod m).
Furthermore, if

⟨a0,a1, . . . ,ar−1,ar, . . . ,ar+m−1,ar, . . . ,ar+m−1, . . .⟩

is a periodic simple continued fraction with ar, . . . ,ar+m−1 repeating, we write it as

⟨a0,a1, . . . ,ar−1,ar, . . . ,ar+m−1⟩.

R Note that given a periodic simple continued fraction, there are different ways to
express it. For instance, for ⟨1,2,3,2,3,2,3 . . .⟩ with 2,3 repeating, we can write it as

⟨1,2,3,2,3,2,3 . . .⟩= ⟨1,2,3⟩= ⟨1,2,3,2,3⟩= ⟨1,2,3,2⟩= ⟨1,2,3,2,3⟩= · · · .

Definition 28.2 Given a periodic simple continued fraction, its period is the smallest
possible number of partial quotients in a repeating portion. So in the above instance,
the period is 2.

Theorem 28.3 Let ⟨a0,a1, . . .⟩ be a periodic simple continued fraction of period m0. If it
is expressed as

⟨a0,a1, . . . ,ar1−1,ar1 , . . . ,ar1+m1−1⟩,

then we have m0 | m1.

Proof. Since ⟨a0,a1, . . .⟩ has period m0, we may also express it as

⟨a0,a1, . . . ,ar0−1,ar0 , . . . ,ar0+m0−1⟩.

Let us put r = max{r0,r1} and m = (m0,m1). We shall show that in ⟨a0,a1, . . .⟩, there is a
repeating portion that contains m partial quotients. Now since m0 is the smallest length
of any choice of repeating portions, we should have m0 ≤ m = (m0,m1), thereby implying
that m0 | m1.

To prove the above claim, we shall show that for i ≥ r and k ≥ 0, it is always true that
ai = ai+km. Noting that m = (m0,m1), by Theorem 2.5 there exist integers u and v such that
m = um0+vm1. In particular, at least one of u and v is positive. If u is positive, then noting
that i+ km ≥ r ≥ r1, that i+ kum0 ≥ r ≥ r1 and that i+ km = i+ k(um0 + vm1) ≡ i+ kum0
(mod m1), we have ai+km = ai+kum0 . Further, we have i ≥ r ≥ r0 and i+kum0 ≥ r ≥ r0, while
i+ kum0 ≡ i (mod m0). Hence, ai = ai+kum0 = ai+km, as required. For the case where v is
positive, we proceed with a similar analysis. ■

We say an irrational number is quadratic if it is a root of a quadratic polynomial with
rational coefficients. In other words, its minimal polynomial over Q is of degree 2, and
thus itself is of degree 2 over Q. Based on the discussions in Sect. 26.1, we know that
such a number can be expressed as u+v

√
d where d > 1 is squarefree and u,v are rational

numbers.
Theorem 28.4 The value of any periodic simple continued fraction is a quadratic irra-
tional number.

Proof. Let
ξ = ⟨a0,a1, . . . ,ar−1,b0, . . . ,bm−1⟩
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be a periodic simple continued fraction, and put

η = ⟨b0, . . . ,bm−1⟩.

Note that
ξ = ⟨a0,a1, . . . ,ar−1,η⟩.

As long as we can show that η ∈ Q(
√

d) for a certain squarefree d > 1, it is immediate
that ξ ∈Q(

√
d), thereby establishing the desired result.

It is known that η is irrational by Theorem 27.9. Now we show that η is of degree 2
over Q, and hence confirm the claim. To see this, we observe that

η = ⟨b0, . . . ,bm−1⟩= ⟨b0, . . . ,bm−1,b0, . . . ,bm−1,b0, . . . ,bm−1⟩
= ⟨b0, . . . ,bm−1,b0, . . . ,bm−1,η⟩. (28.5)

Here we tacitly repeat the portion b0, . . . ,bm−1 twice in the last continued fraction in (28.5)
as we want to make sure that there are at least two partial quotients before the last η .
Let pn

qn
be the n-th convergent to ⟨b0, . . . ,bm−1⟩. Then

η =
η p2m−1 + p2m−2

ηq2m−1 +q2m−2
.

Thus, η is a root of the following quadratic polynomial over Q:

q2m−1η2 +(q2m−2 − p2m−1)η − p2m−2 = 0.

Since η is irrational, and hence is not of degree 1 over Q, we arrived at the desired
claim. ■

28.4 Representing quadratic irrational numbers
One may again ask if the infinite simple continued fraction representation of a quadratic
irrational number is periodic or not. The object of the current section is to answer this
question.

Theorem 28.5 Every quadratic irrational number can be represented as a unique periodic
simple continued fraction.

Proof. Note that by Theorem 28.2, the infinite simple continued fraction representation
of any quadratic irrational number is unique. Hence it is sufficient to show that this
continued fraction is periodic.

Let ξ = u+v
√

d be a quadratic irrational number where d > 1 is squarefree and u,v∈Q.
Assume that it satisfies

c2x2 + c1x+ c0 = 0. (28.6)

The above quadratic equation has two irrational roots: u+ v
√

d and u− v
√

d.
Suppose that the infinite simple continued fraction representation of ξ is given by

ξ = ⟨a0,a1, . . .⟩,

with pn
qn

the n-th convergent and tn the n-th complete quotient.
Throughout, let n ≥ 3. By (27.7),

ξ =
tn pn−1 + pn−2

tnqn−1 +qn−2
.
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Substituting the above into (28.6) gives

Ant2
n +Bntn +Cn = 0, (28.7)

where

An = c2 p2
n−1 + c1 pn−1qn−1 + c0q2

n−1,

Bn = 2c2 pn−1 pn−2 + c1 pn−1qn−2 + c1 pn−2qn−1 +2c0qn−1qn−2,

Cn = c2 p2
n−2 + c1 pn−2qn−2 + c0q2

n−2.

In particular,
An =Cn+1.

Note that An ̸= 0 for n ≥ 2 since otherwise

c2 p2
n−1 + c1 pn−1qn−1 + c0q2

n−1 = 0,

then
c2

(
pn−1

qn−1

)2

+ c1

(
pn−1

qn−1

)
+ c0 = 0,

thereby contradicting the fact that the solutions to (28.6) are irrational.
Now our goal is to bound |An|, |Bn| and |Cn| by constants independent of n. First, we

deduce from (27.9) that for k ≥ 1,∣∣∣∣ξ − pk

qk

∣∣∣∣< 1
qkqk+1

<
1
q2

k
.

Hence, we shall write
ξ − pk

qk
=− εk

q2
k
,

where |εk|< 1 depends on k. It turns out that

Cn = q2
n−2

c2

(
ξ +

εn−2

q2
n−2

)2

+ c1

(
ξ +

εn−2

q2
n−2

)
+ c0


= q2

n−2(c2ξ 2 + c1ξ + c0)+2c2εn−2ξ +
c2ε2

n−2

q2
n−2

+ c1εn−2

= 2c2εn−2ξ +
c2ε2

n−2

q2
n−2

+ c1εn−2.

Thus,

|Cn| ≤ 2|c2ξ |+ |c2|+ |c1|.

Recalling that An =Cn+1, we also have

|An| ≤ 2|c2ξ |+ |c2|+ |c1|.

Finally, we compute that

B2
n −4AnCn =

(
c2

1 −4c0c2
)(

pn−1qn−2 − pn−2qn−1
)2

= c2
1 −4c0c2,
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where we make use of (27.2). It follows that

B2
n ≤ |c2

1 −4c0c2|+4|AnCn|

≤ |c2
1 −4c0c2|+4

(
2|c2ξ |+ |c2|+ |c1|

)2
.

Since |An|, |Bn| and |Cn| are uniformly bounded, it follows from the pigeonhole principle
that there must exist three distinct n1,n2,n3 ≥ 3 such that

(An1 ,Bn1 ,Cn1) = (An2 ,Bn2 ,Cn2) = (An3 ,Bn3 ,Cn3)

and that at least two of tn1 , tn2 and tn3 are equal. Assuming that tn1 = tn2 with n1 < n2, that
is,

⟨an1 ,an1+1, . . .⟩= ⟨an2 ,an2+1, . . .⟩,

then by Theorem 27.13, we have an1+k = an2+k for all k ≥ 0. It turns out that

ξ = ⟨a0,a1, . . . ,an1−1,an1 , . . . ,an2−1⟩,

which is periodic, as required. ■

28.5 Purely periodic simple continued fractions
We close this lecture by investigating a special type of periodic simple continued fractions.

Definition 28.3 A periodic simple continued fraction is called purely periodic if the initial
non-repeating block is not present. That is, the continued fraction is of the form

⟨a0,a1, . . . ,am−1⟩.

The following result is due to Évariste Galois (Ann. Math. Pures Appl. [Ann. Ger-
gonne] 19 (1828/29), 294–301).

Theorem 28.6 (Galois). Let ξ = u+ v
√

d be a quadratic irrational number where d > 1
is squarefree and u,v ∈ Q and put ξ ′ = u− v

√
d, the conjugate of ξ over Q. Then ξ

is represented by a purely periodic simple continued fraction if and only if ξ > 1 and
−1 < ξ ′ < 0.

Proof. We start with necessity. Assume that the purely periodic simple continued fraction
representation of ξ is given by

ξ = ⟨a0,a1, . . . ,am−1⟩.

Then a0 ≥ 1 as it appears again in the continued fraction. By Theorem 27.10, we have
ξ > a0 ≥ 1. Letting pn

qn
be the n-th convergent to ⟨a0,a1, . . . ,am−1⟩, then from the proof of

Theorem 28.4, we see that ξ is a root of

f (x) = q2m−1x2 +(q2m−2 − p2m−1)x− p2m−2 ∈ Z[x].

Since ξ ′ is conjugate to ξ over Q, we know that it is also a root of f (x). Now it suffices to
show that f (x) has a root in the interval (−1,0). To see this, we simply note that

f (−1) = (p2m−1 − p2m−2)+(q2m−1 −q2m−2)> 0,

and that
f (0) =−p2m−2 < 0.
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For sufficiency, we argue by contradiction. Suppose on the contrary that the periodic
simple continued fraction representation of ξ is not purely periodic and write it as

ξ = ⟨a0,a1, . . .⟩
= ⟨a0,a1, . . . ,ar−1,ar, . . . ,ar+m−1⟩,

where r ≥ 1 and ar−1 ̸= a(r−1)+m. Letting η = ⟨ar, . . . ,ar+m−1⟩, then ξ = ⟨a0,a1, . . . ,ar−1,η⟩.
It follows that η ∈ Q(

√
d) since ξ ∈ Q(

√
d). Further, if tn denotes the n-th complete

quotient of ⟨a0,a1, . . . ,ar−1,ar, . . . ,ar+m−1⟩, then there is an index ℓ≥ n such that

tn = ⟨an, . . . ,aℓ,ar, . . . ,ar+m−1⟩= ⟨an, . . . ,aℓ,η⟩,

and hence tn ∈Q(
√

d). Let us write tn = un + vn
√

d with un,vn ∈Q and put t ′n = un − vn
√

d,
the conjugate of tn over Q. Since tn = ⟨an,an+1, . . .⟩= ⟨an, tn+1⟩, we have

tn = an +
1

tn+1
.

Taking conjugates over Q on both sides of the above gives

t ′n = an +
1

t ′n+1

so that
t ′n+1 =

1
t ′n −an

.

Noting that t0 = ξ and hence that t ′0 = ξ ′, we have −1 < t ′0 < 0. Since an ≥ 1 for all n ≥ 0
as ξ > 1, we inductively get −1 < t ′n < 0 for all n. Finally, since

tr = tr+m = ⟨ar, . . . ,ar+m−1⟩,

we have

tr−1 − t(r−1)+m =

(
ar−1 +

1
tr

)
−
(

a(r−1)+m +
1

tr+m

)
= ar−1 −a(r−1)+m.

Hence, tr−1 − t(r−1)+m is a nonzero integer, and so is its conjugate t ′r−1 − t ′(r−1)+m over Q.
However, we have shown that −1 < t ′r−1, t

′
(r−1)+m < 0, thereby indicating that −1 < t ′r−1 −

t ′(r−1)+m < 1. This leads to a contradiction. ■

■ Example 28.3 (i). Consider the simple continued fraction representation of 3+
√

13. Note
that 3+

√
13 > 1 and −1 < 3−

√
13 < 0. The Continued Fraction Algorithm gives us that

3+
√

13 = ⟨6,1,1,1,1⟩,

which is purely periodic.
(ii). Consider the simple continued fraction representation of 5 +

√
22. Note that

5+
√

22 > 1 but 5−
√

22 > 0. The Continued Fraction Algorithm gives us that

5+
√

22 = ⟨9,1,2,4,2,1,8⟩,

which is periodic but not purely periodic. ■



29. Approximations of irrational numbers

29.1 Approximation exponents
It is known that rational numbers are dense in real numbers. In other words, given any
x ∈R, we may always find a rational number p

q with p,q integers and q> 0 such that |x− p
q |

is arbitrarily small. On the other hand, for rational numbers p
q with a fixed denominator

q, it is always possible to find a numerator p such that |x− p
q | <

1
q . This is because the

disjoint intervals
[ p

q ,
p+1

q

)
(p ∈Z) cover R, and x falls into exactly one of these intervals. In

the case where x is a rational number, say in the irreducible expression a
b with a,b integers,

b > 0 and (a,b) = 1, if we assume that q is not a multiple of b, then x ̸= p
q for any choice

of p. The above arguments imply that for any real x, there exist infinitely many integer
pairs (p,q) with q > 0 such that

0 <

∣∣∣∣x− p
q

∣∣∣∣< 1
q
. (29.1)

Usually, if we want to approximate x by a rational number p
q , we shall expect that the

approximation behaves better than simply satisfying (29.1). To measure how rapid an
approximation is, we introduce the concept of approximation exponent.

Definition 29.1 Let x be a real number. The approximation exponent, also known as
the irrationality exponent, of x, denoted by µ(x), is defined to be the supremum of the
set of real numbers µ such that the inequalities

0 <

∣∣∣∣x− p
q

∣∣∣∣< 1
qµ (29.2)

hold for an infinite number of integer pairs (p,q) with q > 0.

R Here we exclude the zero-error case, i.e. we require that |x− p
q |> 0 as we do not want

to approximate a rational number by itself. For instance, if x = a
b is rational and

irreducible, we may find infinitely many integer pairs (p,q) = (ka,kb) with k positive
integers such that |x− p

q |= 0 < 1
qµ for any real µ. But then all p

q point to the same
value a

b = x, and such approximations do not make too much sense. An anecdote
regarding this issue is due to Arnold Ross, of the Ohio State University, who used to
ask, “What is an approximation to 5?” and then answer, “Any number other than
5.”
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Note that the discussions regarding (29.1) can be paraphrased as follows.

Proposition 29.1 Let x be a real number.
(i) We have µ(x)≥ 1.
(ii) For every µ ≥ 1, if we fix q > 0 an integer, then there are at most two integers p

such that (29.2) holds.

It is easy to determine the approximation exponent for rational numbers.

Theorem 29.2 Every rational number has approximation exponent equal to 1.

Proof. Let a
b be a rational number with a,b integers and b > 0. Assume that ε > 0 is

arbitrary. We want to determine all rational approximations p
q to a

b such that

0 <

∣∣∣∣ab − p
q

∣∣∣∣< 1
q1+ε . (29.3)

Note that ∣∣∣∣ab − p
q

∣∣∣∣= |aq−bp|
bq

≥ 1
bq

.

Hence,
1

q1+ε >
1
bq

,

that is,
q < b

1
ε ,

which is bounded. Further, for each q, there are at most two p such that (29.3) holds.
Thus, µ(a

b)< 1+ ε for any ε > 0, thereby implying that µ(a
b) = 1. ■

As we have seen above, the approximation to a rational number is almost trivial and
hence less interesting. But what happens when we approximate an irrational number? Is
there a criterion for its approximation exponent? Further, if in (29.2), µ is taken to be the
approximation exponent, can we determine the corresponding approximations p

q ? Such
questions bring about a now flourishing area in Number Theory known as the Theory of
Diophantine Approximations.

Throughout, let ξ be irrational unless otherwise specified.

29.2 Approximations by convergents
Assume that ξ has the infinite simple continued fraction representation ⟨a0,a1, . . .⟩ with pn

qn
its n-th convergent. The following result is an immediate implication of Theorem 27.16.

Theorem 29.3 For n ≥ 1,

0 <

∣∣∣∣ξ − pn

qn

∣∣∣∣< 1
q2

n
. (29.4)

Consequently, for every irrational number ξ , we have µ(ξ )≥ 2.

We shall show that the above approximation by convergents is in some sense the best.



29.2 Approximations by convergents 201

Theorem 29.4 Let n ≥ 2. For any rational number p
q ̸= pn

qn
with 0 < q ≤ qn, we have

|pn −qnξ |< |p−qξ | (29.5)

and ∣∣∣∣ξ − pn

qn

∣∣∣∣< ∣∣∣∣ξ − p
q

∣∣∣∣ . (29.6)

Proof. Note that (29.5) implies (29.6). This is because if we assume (29.5), then∣∣∣∣ξ − pn

qn

∣∣∣∣< |p−qξ |
qn

≤ |p−qξ |
q

=

∣∣∣∣ξ − p
q

∣∣∣∣ .
Now we prove (29.5). Our starting point is Theorem 27.16, which tells us that

|pn −qnξ |< 1
qn+1

< |pn−1 −qn−1ξ |.

Hence, it suffices to show (29.5) for qn−1 < q ≤ qn. We further assume that (p,q) = 1 as if
(p,q) = d > 1, we have |p−qξ |= d|p′−q′ξ |> |p′−q′ξ | where p = d p′ and q = dq′.

If q = qn, then since p
q ̸= pn

qn
, we have p ̸= pn. Hence,

|pn − p| ≥ 1.

On the other hand, we know from Theorems 27.6 and 27.16 that

|pn −qnξ |< 1
qn+1

<
1
2
.

It follows that

|p−qξ |= |p−qnξ | ≥ |pn − p|− |pn −qnξ |> 1
2
> |pn −qnξ |.

Now suppose that qn−1 < q < qn. Recall from Lemma 27.8 that both pn
qn

and pn−1
qn−1

are
in the irreducible expression. Also, p

q is irreducible as we have assumed that (p,q) = 1.
By the uniqueness of irreducible expressions in Theorem 19.2, we know that the three
numbers p

q , pn
qn

and pn−1
qn−1

are distinct. Assuming that u and v are such that{
p = upn + vpn−1,

q = uqn + vqn−1,

and recalling from (27.2) that pnqn−1 − pn−1qn = (−1)n−1, we solve the above system and
get {

u = (−1)n−1
(

pqn−1 − pn−1q
)
,

v = (−1)n
(

pqn − pnq
)
.

Thus, u and v are nonzero integers. Since 0< qn−1 < q= uqn+vqn−1 < qn, we find that u and
v have different signs. Further, by Theorem 27.9, the numbers pn −qnξ and pn−1 −qn−1ξ
have different signs. So u · (pn − qnξ ) and v · (pn−1 − qn−1ξ ) have the same sign. Now we
have

p−qξ = (upn + vpn−1)− (uqn + vqn−1)ξ = u · (pn −qnξ )+ v · (pn−1 −qn−1ξ ),

so that
|p−qξ |= |u · (pn −qnξ )|+ |v · (pn−1 −qn−1ξ )|> |pn −qnξ |,

as required. ■
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We are also able to further elaborate the upper bound in (29.4).

Theorem 29.5 For n ≥ 0, at least one of pn
qn

and pn+1
qn+1

is such that

0 <

∣∣∣∣ξ − p
q

∣∣∣∣< 1
2q2 . (29.7)

Proof. We start by noting from (27.2) that∣∣∣∣ pn+1

qn+1
− pn

qn

∣∣∣∣= ∣∣∣∣ pn+1qn − pnqn+1

qnqn+1

∣∣∣∣= ∣∣∣∣ (−1)n

qnqn+1

∣∣∣∣= 1
qnqn+1

.

Supposing on the contrary that∣∣∣∣ξ − pn

qn

∣∣∣∣≥ 1
2q2

n
and

∣∣∣∣ξ − pn+1

qn+1

∣∣∣∣≥ 1
2q2

n+1
,

and noting that ξ − pn
qn

and ξ − pn+1
qn+1

have different signs, we have

1
qnqn+1

=

∣∣∣∣ pn+1

qn+1
− pn

qn

∣∣∣∣= ∣∣∣∣ξ − pn

qn

∣∣∣∣+ ∣∣∣∣ξ − pn+1

qn+1

∣∣∣∣≥ 1
2q2

n
+

1
2q2

n+1
.

Thus,
(qn −qn+1)

2 ≤ 0.

The only possibility is n = 0 and q0 = q1 = 1, from which we get a1 = 1. However, in this
case we still have

0 <

∣∣∣∣ξ − p1

q1

∣∣∣∣= ∣∣∣∣⟨a0,1,a2,a3, . . .⟩−
a0 +1

1

∣∣∣∣
=

∣∣∣∣∣a0 +
1

1+ 1
⟨a2,a3,...⟩

− (a0 +1)

∣∣∣∣∣
= 1− 1

1+ 1
⟨a2,a3,...⟩

<
1
2
=

1
2q2

1
,

where we use the fact that ⟨a2,a3, . . .⟩> 1. ■

Finally, we show that the bounds in (29.7) indeed provide a characterization of con-
vergents.

Theorem 29.6 If an irreducible rational number p
q is such that

0 <

∣∣∣∣ξ − p
q

∣∣∣∣< 1
2q2 , (29.8)

then p
q is a convergent to the simple continued fraction representation of ξ .

Proof. Write

ξ − p
q
=

(−1)mθ
q2 , (0 < θ < 1

2).
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Recall from Theorem 28.1 that p
q has exactly two finite simple continued fraction repre-

sentations, and that they are companions of one another so that the numbers of partial
quotients in the two continued fractions differ by 1. We may choose one representation

p
q
= ⟨a0,a1, . . . ,aN⟩

such that (−1)N = (−1)m.
Let η be a real number such that

ξ = ⟨a0,a1, . . . ,aN ,η⟩.

If we can show that η > 1, then in the simple continued fraction representation of η , say
η = ⟨b0,b1, . . .⟩, we must have b0 > 0 by the Continued Fraction Algorithm as b0 = ⌊η⌋.
Thus, ξ is represented by the simple continued fraction

ξ = ⟨a0,a1, . . . ,aN ,⟨b0,b1, . . .⟩⟩= ⟨a0,a1, . . . ,aN ,b0,b1, . . .⟩,

which is also the unique representation by Theorem 28.2. Further, p
q is the convergent pN

qN
.

Now we prove that η > 1. If N = 0 so that (−1)m = (−1)N = 1, then ξ = p
q +

θ
q2 . Also,

p
q = ⟨a0⟩ = a0 is an integer. Thus, η = q2

θ > 1, as required. Suppose that N ≥ 1 in what
follows. By Theorem 27.2,

ξ =
η pN + pN−1

ηqN +qN−1
,

so that
η =−ξ qN−1 − pN−1

ξ qN − pN
.

Recalling that ξ = p
q +

(−1)mθ
q2 = pN

qN
+ (−1)Nθ

q2
N

, we have

η =−(−1)NθqN−1 +qN(pNqN−1 − pN−1qN)

(−1)NθqN

=−(−1)NθqN−1 +qN(−1)N−1

(−1)NθqN

=
qN −θqN−1

θqN

=
1
θ
− qN−1

qN

> 1,

where we use the facts that 0 < θ < 1
2 and that qN ≥ qN−1 > 0 in the last inequality. ■

29.3 Dirichlet’s approximation theorem
Let us repeat the statement in Theorem 29.3.

Theorem 29.7 For any irrational number ξ , there exist infinitely many rational numbers
p
q such that

0 <

∣∣∣∣ξ − p
q

∣∣∣∣< 1
q2 . (29.9)

This result is originally due to Dirichlet, who provided an ingenious proof based on
the following approximation theorem.
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Theorem 29.8 (Dirichlet’s Approximation Theorem). For any real number x and any inte-
ger Q ≥ 1, there exist integers p and q with 1 ≤ q ≤ Q such that∣∣∣∣x− p

q

∣∣∣∣≤ 1
q(Q+1)

. (29.10)

Consequently, by casting out all common factors of p and q, the above inequality also
holds with the additional condition that (p,q) = 1.

Proof. We start by dividing the interval [0,1) into Q+1 disjoint intervals

Ik :=
[

k−1
Q+1

,
k

Q+1

)
, (1 ≤ k ≤ Q+1).

Consider the Q numbers
{x},{2x}, . . . ,{Qx},

where {x} = x−⌊x⌋. It is known that each number falls into exactly one of the above
intervals. There are three cases:

(i). Suppose that there exists an integer q with 1 ≤ q ≤ Q such that {qx} ∈ I1, i.e. 0 ≤
qx−⌊qx⌋< 1

Q+1 . Then we take p = ⌊qx⌋ and find that (29.10) holds.
(ii). Suppose that there exists an integer q with 1 ≤ q ≤ Q such that {qx} ∈ IQ+1,

i.e. Q
Q+1 ≤ qx−⌊qx⌋< 1. Then we take p = ⌊qx⌋+1 and find that (29.10) holds.
(iii). Suppose that none of the integers q with 1 ≤ q ≤ Q are such that {qx} ∈ I1 ∪ IQ+1

so the Q numbers distribute over the remaining Q−1 intervals. Then by the pigeonhole
principle, there exist two distinct integers q1 and q2 with 1 ≤ q1 < q2 ≤ Q such that {q1x}
and {q2x} fall into the same interval. Hence, |{q2x}−{q1x}| < 1

Q+1 . Noting that {q2x}−
{q1x}= (q2 −q1)x− (⌊q2x⌋−⌊q1x⌋), we choose q = q2 −q1 and p = ⌊q2x⌋−⌊q1x⌋, and find
that (29.10) holds. ■

Now we are in a position to reproduce Dirichlet’s proof of Theorem 29.7.

Dirichlet’s Proof of Theorem 29.7. Since ξ is irrational, we know that |ξ − p
q |> 0 for any

rational number p
q . It is also clear from Theorem 29.8 that there exists at least one p

q such
that (29.9) holds, for the reason that we may choose an arbitrary Q ≥ 1 together with a
rational p

q with 1 ≤ q ≤ Q such that |ξ − p
q | ≤

1
q(Q+1) <

1
q2 .

Now assuming that we are given a list of distinct rational numbers { p1
q1
, . . . , pn

qn
} where

each number satisfies (29.9), our object is to construct a new rational number pn+1
qn+1

different
from any in the previous list so that (29.9) is still valid, thereby yielding the infinitude of
such rational numbers. To do so, we choose an integer Q∗ where

Q∗ > max

{∣∣∣∣ξ − p1

q1

∣∣∣∣−1

, . . . ,

∣∣∣∣ξ − pn

qn

∣∣∣∣−1
}
.

By Theorem 29.8, we can find a rational number pn+1
qn+1

with 1 ≤ qn+1 ≤ Q∗ such that∣∣∣∣ξ − pn+1

qn+1

∣∣∣∣≤ 1
qn+1(Q∗+1)

<
1

q2
n+1

.

It remains to show that pn+1
qn+1

is distinct from any number in { p1
q1
, . . . , pn

qn
}. But this is trivial

since for any 1 ≤ k ≤ n, we have∣∣∣∣ξ − pn+1

qn+1

∣∣∣∣≤ 1
qn+1(Q∗+1)

<
1

Q∗ <

∣∣∣∣ξ − pk

qk

∣∣∣∣ .
Therefore, pn+1

qn+1
̸= pk

qk
for any 1 ≤ k ≤ n. ■
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29.4 Liouville’s approximation theorem
Dirichlet’s approximation theorem presents us with a lower bound for the approximation
exponent of irrational numbers. For the opposite direction, we have an important result
due to the French mathematician Joseph Liouville which bounds from above the approxi-
mation exponent of algebraic numbers.

Recall that an algebraic number is a root of a polynomial with integer coefficients, and
its degree is the degree of its minimal polynomial.

Theorem 29.9 (Liouville’s Approximation Theorem). Let ξ be an algebraic number of
degree n. Then there is a positive constant c, depending only on ξ , such that∣∣∣∣ξ − p

q

∣∣∣∣> c
qn , (29.11)

whenever p,q are integers, q > 0 and p
q ̸= ξ , while if n ≥ 2, the last condition can be

omitted. Consequently, we have µ(ξ )≤ n.

Proof. Let f (x) = anxn + · · ·+a1x+a0 ∈ Z[x] be such that f (ξ ) = 0. There are two cases.
(i). If |ξ − p

q |> 1, we may choose c1 = 1 so that∣∣∣∣ξ − p
q

∣∣∣∣> 1 ≥ 1
qn =

c1

qn .

(ii). If 0 < |ξ − p
q | ≤ 1, we start with the observation that qn f ( p

q ) is an integer. It is
also plain that f ( p

q ) ̸= 0. Suppose on the contrary that f ( p
q ) = 0. Then (x− p

q ) divides f (x)
in Q[x], and hence we get a polynomial of degree n−1, given by

f (x)
x− p/q

∈Q[x],

such that ξ is also its root as we have assumed that ξ ̸= p
q . But this violates the fact that

ξ is of degree n. Thus,
qn
∣∣∣∣ f ( p

q

)∣∣∣∣≥ 1.

On the other hand, we know from the mean value theorem that there exists a number η
between ξ and p

q such that

f ′(η) =
f (ξ )− f ( p

q )

ξ − p
q

=−
f ( p

q )

ξ − p
q
,

where we use f (ξ ) = 0. Since 0 < |ξ − p
q | ≤ 1, we further find that η is in the closed

interval [ξ −1,ξ +1]. Obviously, f ′(x) is bounded on this interval for f ′(x) is continuous.
In particular, we may assume that | f ′(x)|< M for all x ∈ [ξ −1,ξ +1] where M > 0 depends
only on ξ . Hence, | f ′(η)|< M. It follows that∣∣∣∣ξ − p

q

∣∣∣∣>
∣∣∣ f ( p

q )
∣∣∣

M
≥ 1

Mqn =
c2

qn ,

where we put c2 =
1
M .

Combining the two cases, we may choose the constant c as c = min{c1,c2}, which
depends only on ξ , such that (29.11) holds. ■
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Corollary 29.10 Every quadratic irrational number has approximation exponent equal
to 2.

Proof. Dirichlet’s approximation theorem asserts that the approximation exponent of any
irrational number is at least 2, while from Liouville’s approximation theorem, the approx-
imation exponent of any quadratic algebraic number is at most 2. The claim therefore
follows. ■

Can we say more about the approximation exponent of an arbitrary algebraic num-
ber? Along this direction one shall encounter a highlight in the Theory of Diophantine
Approximations, which is due to the British mathematician Klaus Roth (Mathematika 2
(1955), 1–20). For this contribution, Roth was awarded the Fields Medal in 1958.

Roth’s Theorem Every algebraic number that is not rational has approximation exponent
equal to 2.

29.5 Transcendence revisited
One important application of Liouville’s approximation theorem concerns the construction
of transcendental numbers. Here we give an instance.

Theorem 29.11 The number
κ = ∑

m≥0

1
2m!

is transcendental.

Proof. Suppose on the contrary that κ is an algebraic number of degree n. By Liouville’s
approximation theorem, there is a constant c such that for all rational numbers p

q ̸= κ,∣∣∣∣κ − p
q

∣∣∣∣> c
qn .

Now consider the numbers p(M)
q(M) for M positive integers where

p(M) =
M

∑
m=0

2M!−m! and q(M) = 2M!.

We find that

0 < κ − p(M)

q(M)
= ∑

m≥M+1

1
2m! <

1
2(M+1)! ∑

ℓ≥0

1
2ℓ

=
2

q(M)M+1 .

To ensure the assumption made from Liouville’s approximation theorem, we must have

2
q(M)M+1 >

c
q(M)n ,

that is,
2(M+1−n)·M! <

2
c
.

However, the left-hand side goes to infinity as M goes to infinity, thereby yielding a con-
tradiction. ■



30. Pell’s equation

30.1 Pell’s equation
Definition 30.1 Pell’s equation is of the form

x2 −Dy2 = 1, (30.1)

where the integer D> 1, which is not a square, is given. Whenever we refer to a solution
(x,y) to Pell’s equation, we assume that x and y are integers unless otherwise specified.
That is to say, we are usually only interested in the integer solutions.

Pell’s equation is named after the English mathematician John Pell, but this attribu-
tion, which should belong to the English mathematician William Brouncker as the first
European to solve Pell’s equation, was mistakenly arisen by Euler. However, this equa-
tion was studied even earlier outside Europe. For instance, in the Indian mathematician
Brahmagupta’s work Brāhmasphuṭasiddhānta, an integer solution to x2 − 92y2 = 1 was
discovered.

Definition 30.2 Pell’s equation x2 −Dy2 = 1 always has two solutions (x,y) = (±1,0).
The two solutions are called trivial solutions. All other solutions are called nontrivial
solutions.

Now we start with some basic facts about the nontrivial solutions to Pell’s equation.

Fact 30.1 Let (x,y) be a nontrivial solution to Pell’s equation x2 −Dy2 = 1.
(i) x and y are coprime.
(ii) (x,−y), (−x,y), (−x,−y) are also nontrivial solutions to x2 −Dy2 = 1.
(iii) |x| ≥ 2 and |y| ≥ 1.

(iv) x+ y
√

D ∈


(1,+∞) if x > 0 and y > 0,
(0,1) if x > 0 and y < 0,
(−1,0) if x < 0 and y > 0,
(−∞,−1) if x < 0 and y < 0.

(v) If (x1,y1) and (x2,y2) with x1,y1,x2,y2 > 0 are two distinct solutions, then the three
inequalities x1 > x2, y1 > y2 and x1 + y1

√
D > x2 + y2

√
D are equivalent.

Recall that we have assumed that the integer D > 1 is not a square. This means that
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√

D is irrational, and hence that 1 and
√

D are linearly independent over Q. In other
words, if we have a1 +b1

√
D = a2 +b2

√
D with a1,b1,a2,b2 ∈Q, then a1 = a2 and b1 = b2.

Further, the set {a+b
√

D : a,b ∈Q} forms a field under addition and multiplication, and
indeed it is Q(

√
D). We shall freely use these facts below.

Theorem 30.2 Let (x,y) and (x′,y′) be solutions to Pell’s equation x2 −Dy2 = 1. Then
the integer pair (X ,Y ) given by

X +Y
√

D = (x+ y
√

D)(x′+ y′
√

D)

gives a solution to the same equation. In particular, for k positive integers, the integer
pairs (xk,yk) are solutions to the equation where

xk + yk
√

D = (x+ y
√

D)k.

Consequently, if there is a nontrivial solution, then there are infinitely many solutions.

Proof. From an algebraic perspective, this theorem is trivial as we may invoke the norms

X2 −DY 2 = NQ(
√

D)/Q(X +Y
√

D)

= NQ(
√

D)/Q(x+ y
√

D) ·NQ(
√

D)/Q(x
′+ y′

√
D)

= (x2 −Dy2)(x′2 −Dy′2)

= 1.

However, we may also directly compute that{
X = xx′+ yy′D,

Y = xy′+ x′y,

so that

X2 −DY 2 = (xx′+ yy′D)2 −D(xy′+ x′y)2

= (x2 −Dy2)(x′2 −Dy′2)

= 1.

For the second claim, we simply apply induction on k. Finally, if there is a nontrivial
solution (x,y), then we may assume that x,y > 0 so that x+ y

√
D > 1. Hence (x+ y

√
D)k

increases strictly with k, thereby implying that the pairs (xk,yk) are distinct. ■

30.2 Existence of solutions
Note that the above discussions are built on the assumption that Pell’s equation x2−Dy2 =
1 has a nontrivial solution. However, the core question is does such a solution exist? To
address an answer, we require a lemma based on Dirichlet’s approximation theorem.

Lemma 30.3 Let D > 1 be an integer that is not a square. Then there exists an integer
t with 0 < |t|< 2

√
d such that there are infinitely many integer pairs (p,q) with

p2 −Dq2 = t. (30.2)
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Proof. Recall that
√

D is irrational. By repeatedly applying Theorem 29.8, we may get an
infinite sequence of integer triples (p1,q1,Q1), (p2,q2,Q2), . . . where 1 ≤ qn ≤ Qn such that∣∣∣∣√D− pn

qn

∣∣∣∣≤ 1
qn(Qn +1)

and Qn+1 > max

{
Qn,

∣∣∣∣√D− pn

qn

∣∣∣∣−1
}
.

Note that the numbers Qn form a strictly increasing sequence. Also, we claim that the
pairs (pn,qn) are distinct. This is because if 1 ≤ i < j are two different indices, then∣∣∣∣√D− pi

qi

∣∣∣∣> 1
Qi+1

> · · ·> 1
Q j

>
1

q j(Q j +1)
≥
∣∣∣∣√D−

p j

q j

∣∣∣∣ .
Further, we see that for every n ≥ 1,

|p2
n −Dq2

n|= |pn −qn
√

D| · |pn +qn
√

D|
= |pn −qn

√
D| · |pn −qn

√
D+2qn

√
D|

≤ 1
Qn +1

(
1

Qn +1
+2Qn

√
D
)

< 2
√

D.

By the pigeonhole principle, there is an integer t with |t| < 2
√

D such that there are
infinitely many pairs (p,q) among (pn,qn) with p2 −Dq2 = t. Further, this t cannot be 0
as D is not a square. ■

Theorem 30.4 Let D > 1 be an integer that is not a square. Then Pell’s equation

x2 −Dy2 = 1

has infinitely many solutions.

Proof. By Theorem 30.2, it suffices to show the existence of one nontrivial solution. Let
t be as in Lemma 30.3 and assume that (P,Q) and (P′,Q′) with P,Q,P′,Q′ > 0 are two
distinct solutions to

p2 −Dq2 = t

such that

P ≡ P′ (mod |t|) and Q ≡ Q′ (mod |t|).

Let
X +Y

√
D =

P′+Q′√D
P+Q

√
D

,

so that

X +Y
√

D =
(P′+Q′√D)(P−Q

√
D)

(P+Q
√

D)(P−Q
√

D)
=

(PP′−DQQ′)+(PQ′−P′Q)
√

D
t

,

and hence that 
X =

PP′−DQQ′

t
,

Y =
PQ′−P′Q

t
.
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Note that PP′ −DQQ′ ≡ P2 −DQ2 = t ≡ 0 (mod |t|) and that PQ′ −P′Q ≡ PQ−PQ = 0
(mod |t|). Hence, X and Y are integers. Also, Y ̸= 0 as if we assume on the contrary that
Y = 0, then P

Q = P′

Q′ so that

t
Q2 =

(
P
Q

)2

−D =

(
P′

Q′

)2

−D =
t

Q′2 ,

and hence that Q=Q′ and P=P′, which contradicts the assumption that (P,Q) and (P′,Q′)
are distinct. Finally,

X2 −DY 2 = NQ(
√

D)/Q(X +Y
√

D)

=
NQ(

√
D)/Q(P

′+Q′√D)

NQ(
√

D)/Q(P+Q
√

D)

=
P′2 −DQ′2

P2 −DQ2

= 1.

We conclude that (X ,Y ) is the desired nontrivial solution. ■

30.3 Structure of solutions
As long as we have shown the existence of solutions to Pell’s equation, it becomes natural
to ask if there is a way to characterize all the solutions. It turns out that we may go further
and consider integer solutions (x,y) to a slightly generalized variant of Pell’s equation

x2 −Dy2 =±1,

where D > 1 is not a square. The solutions (±1,0) are still called trivial while all other
solutions are nontrivial. Again, we have some basic facts about nontrivial solutions.

Fact 30.5 Let (x,y) be a nontrivial solution to the equation x2 −Dy2 =±1.
(i) x and y are coprime.
(ii) (x,−y), (−x,y), (−x,−y) are also nontrivial solutions to x2 −Dy2 =±1.
(iii) If x+ y

√
D > 1, then x > 0 and y > 0.

The structure of the solutions to x2 −Dy2 =±1 can be characterized as follows.

Theorem 30.6 Let D > 1 be an integer that is not a square. Then the equation

x2 −Dy2 =±1 (30.3)

has a nontrivial solution (x1,y1) with x1,y1 > 0 such that x1+y1
√

D is minimal. Further,
all solutions to this equation are given by (±xk,±yk) with k ≥ 0 where

xk + yk
√

D = (x1 + y1
√

D)k, (30.4)

so that

xk =
(x1 + y1

√
D)k +(x1 − y1

√
D)k

2
and yk =

(x1 + y1
√

D)k − (x1 − y1
√

D)k

2
√

D
. (30.5)

In particular, the case where k = 0 corresponds to the trivial solutions (±1,0).
Consequently, the following statements are true.
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(i) If the solution (x1,y1) is such that x2
1−Dy2

1 = 1, then all solutions to Pell’s equation
x2 −Dy2 = 1 are given by (±xk,±yk) with k ≥ 0, and the equation x2 −Dy2 = −1
has no solution.

(ii) If the solution (x1,y1) is such that x2
1 −Dy2

1 =−1, then all solutions to Pell’s equa-
tion x2 −Dy2 = 1 are given by (±x2k,±y2k) with k ≥ 0, and all solutions to the
equation x2 −Dy2 =−1 are given by (±x2k+1,±y2k+1) with k ≥ 0.

Definition 30.3 The solution (x1,y1) in this theorem is called the fundamental solution
to (30.3).

Proof. We have shown that x2−Dy2 = 1 has a nontrivial solution, say (X ,Y ) with X ,Y > 0.
Now there are only finitely many solutions (x,y) to x2 −Dy2 = ±1 such that x+ y

√
D lies

in the interval (1,X +Y
√

d]. This claim is due to the fact that x is bounded by 0 < x ≤ X
and hence that 0 < y ≤

√
(X2 +1)/D; otherwise, if x > X , then Dy2 = x2∓1 > X2−1 = DY 2

so that y > Y and hence that x+ y
√

D > X +Y
√

D. Thus, we can find a solution (x1,y1)
with x1,y1 > 0 so that x1 +y1

√
D is minimal. It is plain that all (±xk,±yk) are solutions to

the equation by a similar argument to that for Theorem 30.2. Also, (30.5) follows from
the fact that xk − yk

√
D = (x1 − y1

√
D)k, by taking conjugates over Q.

Now assume that there is a solution (x̃, ỹ) with x̃, ỹ > 0 to x2 −Dy2 =±1 such that it is
not among (xk,yk). Then we may find an index n ≥ 1 such that

(x1 + y1
√

D)n = xn + yn
√

D < x̃+ ỹ
√

D < xn+1 + yn+1
√

D = (x1 + y1
√

D)n+1.

Note that 0 < |x1−y1
√

D|< 1. Multiplying by |x1−y1
√

D|n to each part of the above gives

1 < (x̃+ ỹ
√

D) · |x1 − y1
√

D|n < x1 + y1
√

D.

Let us define
x̃1 + ỹ1

√
D = (x̃+ ỹ

√
D) · |x1 − y1

√
D|n,

so that x̃1 and ỹ1 are integers. Now,

x̃2
1 −Dỹ2

1 = NQ(
√

D)/Q(x̃1 + ỹ1
√

D)

= NQ(
√

D)/Q(x̃+ ỹ
√

D) ·NQ(
√

D)/Q|x1 − y1
√

D|n

=±1,

implying that (x̃1, ỹ1) is also a solution. Since x̃1 + ỹ1
√

D > 1, we have x̃1, ỹ1 > 0. Then we
are led to a contradiction as x̃1 + ỹ1

√
D < x1 + y1

√
D violates the minimality of x1 + y1

√
D.

In other words, we cannot have the fabled solution (x̃, ỹ).
For the last conclusion, we simply use the fact that x2

k −Dy2
k = (x2

1 −Dy2
1)

k. ■

■ Example 30.1 (i). Consider D = 2, i.e. the equation x2−2y2 =±1. A direct computation
gives (x1,y1) = (1,1) with x2

1 −2y2
1 = 1−2 =−1. Hence, we have

xk =
(1+

√
2)k +(1−

√
2)k

2
and yk =

(1+
√

2)k − (1−
√

2)k

2
√

2
. (30.6)

The solutions to x2 − 2y2 = 1 are given by (±x2k,±y2k) with k ≥ 0, e.g. (±1,0), (±3,±2),
etc. The solutions to x2−2y2 =−1 are given by (±x2k+1,±y2k+1) with k ≥ 0, e.g. (±1,±1),
(±7,±5), etc.
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(ii). Consider D = 3, i.e. the equation x2 − 3y2 = ±1. A direct computation gives
(x1,y1) = (2,1) with x2

1 −3y2
1 = 4−3 = 1. Hence, we have

xk =
(2+

√
3)k +(2−

√
3)k

2
and yk =

(2+
√

3)k − (2−
√

3)k

2
√

3
. (30.7)

The solutions to x2 − 3y2 = 1 are given by (±xk,±yk) with k ≥ 0, e.g. (±1,0), (±2,±1),
(±7,±4), etc. The equation x2 −3y2 =−1 has no solution. ■

30.4 Units of real quadratic fields
Now we are in a position to complete the proof of the characterization of units of real
quadratic fields as claimed in Sect. 26.1.

Theorem 30.7 (Units of Real Quadratic Fields). Let d > 1 be a squarefree integer in Z.
Then the units of OQ(

√
d) are real. Further, there exists a unique unit ε > 1 such that

all units of OQ(
√

d) are of the form ±εn with n ∈ Z.

Proof. According to Lemma 26.5, it is sufficient to study the equation

a2 −db2 =±1, (30.8)

and characterize all solutions (a,b) with a,b ∈ 1
2Z. Since the units are of the form a+b

√
d

by Lemma 26.5, they are real numbers.
The rest has the same logic as that for Theorem 30.6. In particular, enlarging the

domain of solutions from Z to 1
2Z will not affect the finitude of solutions (a,b) to a2−db2 =

±1 such that a+b
√

d lies in the interval (1,A+B
√

d], where (A,B) with A,B > 0 is again
a fixed solution to Pell’s equation a2 − db2 = 1. Now the desired unit ε = a1 + b1

√
d is

determined by the solution (a1,b1) in 1
2Z with a1,b1 > 0 so that a1 +b1

√
d is minimal and

hence unique. ■

30.5 Fundamental solution via continued fractions
Our last object is to find an efficient way to determine the fundamental solution to (30.3).
Recall that

√
D is a quadratic irrational number, so by Theorem 28.5 it has a unique

periodic simple continued fraction representation.

Theorem 30.8 Assuming that the periodic simple continued fraction representation of√
D has period m, then it is of the form ⟨a0,a1, . . . ,am⟩.

Proof. By the Continued Fraction Algorithm, we have a0 = ⌊
√

D⌋. Let us write
√

D =
⟨a0,δ ⟩ where δ is a real number. Then

√
D = a0+

1
δ = ⌊

√
D⌋+ 1

δ so that δ = 1√
D−⌊

√
D⌋ . Now

the conjugate of δ over Q is δ ′ = 1
−
√

D−⌊
√

D⌋ . Since δ > 1 and −1< δ ′ < 0, we conclude from
Theorem 28.6 that δ can be represented by a purely periodic simple continued fraction,
and hence that

√
D has the required continued fraction representation. ■

Throughout, we always assume that the periodic simple continued fraction represen-
tation of

√
D, which has period m, is written as ⟨a0,a1, . . .⟩= ⟨a0,a1, . . . ,am⟩. Let pn

qn
be its

n-th convergent and tn its n-th complete quotient.
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Theorem 30.9 If (x,y) = (p,q) with p,q > 0 is a solution to x2 −Dy2 = ±1, then p
q is a

convergent to
√

D = ⟨a0,a1, . . .⟩.

Proof. Note that p2 = Dq2 ±1 ≥ Dq2 −1 ≥ q2 where we use the fact that D ≥ 2 and q ≥ 1
in the last inequality. Hence, p ≥ q. Further, ±1 = p2−Dq2 = (p+q

√
D)(p−q

√
D) implies

that
0 <

∣∣∣∣√D− p
q

∣∣∣∣= 1
q(p+q

√
D)

≤ 1
q(q+q

√
D)

=
1

(1+
√

D)q2
<

1
2q2 .

Since p and q are coprime, Theorem 29.6 tells us that p
q is a convergent to

√
D. ■

Theorem 30.10 Assume that the periodic simple continued fraction representation of√
D has period m. Then p2

n −Dq2
n = ±1 if and only if m | (n+ 1). Further, whenever

m | (n+1), we have

p2
n −Dq2

n = (−1)n+1. (30.9)

Consequently, (pm−1,qm−1) is the fundamental solution to x2 −Dy2 =±1, and in partic-
ular,

p2
m−1 −Dq2

m−1 = (−1)m. (30.10)

Proof. We start with sufficiency. Noting that tn+2 = tm· n+1
m +1 = t1 = 1√

D−a0
, we obtain from

Theorem 27.14 that

√
D =

tn+2 pn+1 + pn

tn+2qn+1 +qn
=

pn+1 + pn(
√

D−a0)

qn+1 +qn(
√

D−a0)
.

Multiplying both sides by qn+1 +qn(
√

D−a0) and treating them as linear combinations of
1 and

√
D, we derive by equating coefficients that{

0 = pn+1 − pna0 −qnD,

0 = qn+1 −qna0 − pn.

Eliminating a0 and recalling (27.2), we have

p2
n −Dq2

n =−(pn+1qn − pnqn+1) = (−1)n+1,

as required.
For necessity, it is enough to prove that tn+2 = t1, as if this is the case, then we may

express
√

D = ⟨a0,a1, . . .⟩ as ⟨a0,a1, . . . ,an+1⟩, and Theorem 28.3 asserts that m | (n+ 1).
Now we prove this claim. Note that the sign of p2

n −Dq2
n is determined by pn

qn
−
√

D whose
sign is (−1)n+1 as indicated by Theorem 27.9. Hence, p2

n −Dq2
n = (−1)n+1. If n = 0, then

p2
0 −Dq2

0 =−1. Also, p0 = a0 = ⌊
√

D⌋ and q0 = 1, so that ⌊
√

D⌋2 −D =−1. Recall that

t1 =
1√

D−⌊
√

D⌋
=

√
D+ ⌊

√
D⌋

D−⌊
√

D⌋2
=
√

D+ ⌊
√

D⌋.

Therefore,

t2 =
1

t1 −⌊t1⌋
=

1(√
D+ ⌊

√
D⌋
)
−⌊

√
D+ ⌊

√
D⌋⌋

=
1√

D−⌊
√

D⌋
,
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thereby yielding t1 = t2 = t0+2, as required. Suppose that n ≥ 1 in what follows. Since
√

D =
tn+1 pn + pn−1

tn+1qn +qn−1
,

we have
tn+1(pn −qn

√
D) =−pn−1 +qn−1

√
D.

Thus,

tn+1 = tn+1 · (−1)n+1(p2
n −Dq2

n)

= tn+1(pn −qn
√

D) · (−1)n+1(pn +qn
√

D)

= (−pn−1 +qn−1
√

D) · (−1)n+1(pn +qn
√

D)

= (−1)n+1((−pn pn−1 +qnqn−1D)+(pnqn−1 − pn−1qn)
√

D
)

= (−1)n+1((−pn pn−1 +qnqn−1D)+(−1)n−1
√

D
)

=
√

D+(−1)n(pn pn−1 −qnqn−1D).

In other words, we have tn+1 =
√

D+C where C is an integer. Finally,

tn+2 =
1

tn+1 −⌊tn+1⌋
=

1
(
√

D+C)−⌊
√

D+C⌋
=

1√
D−⌊

√
D⌋

= t1,

thereby confirming the requested claim.
Finally, it follows from Theorem 30.9 that every solution (x,y) to x2 −Dy2 = ±1 with

x,y > 0 is among (pℓm−1,qℓm−1) with ℓ≥ 1. Hence, (pm−1,qm−1) is the fundamental solution
by the monotonicity of the sequences {pk} and {qk}. ■

■ Example 30.2 (i). Consider D = 13, i.e. the equation x2 − 13y2 = ±1. We have
√

13 =
⟨3,1,1,1,1,6⟩, which is of period m = 5. Also, the fourth convergent gives the fundamental
solution (x1,y1) = (p4,q4) = (18,5) with x2

1 −13y2
1 = 182 −13 ·52 = (−1)5 =−1. Hence, we

have

xk =
(18+5

√
13)k +(18−5

√
13)k

2
and yk =

(18+5
√

13)k − (18−5
√

13)k

2
√

13
. (30.11)

The solutions to x2−13y2 = 1 are given by (±x2k,±y2k) with k≥ 0, e.g. (±1,0), (±649,±180),
etc. The solutions to x2−13y2 =−1 are given by (±x2k+1,±y2k+1) with k ≥ 0, e.g. (±18,±5),
(±23382,±6485), etc.

(ii). Consider D = 18, i.e. the equation x2 −18y2 =±1. We have
√

18 = ⟨4,4,8⟩, which
is of period m = 2. Also, the first convergent gives the fundamental solution (x1,y1) =
(p1,q1) = (17,4) with x2

1 −18y2
1 = 172 −18 ·42 = (−1)2 = 1. Hence, we have

xk =
(17+4

√
18)k +(17−4

√
18)k

2
and yk =

(17+4
√

18)k − (17−4
√

18)k

2
√

18
. (30.12)

The solutions to x2 −18y2 = 1 are given by (±xk,±yk) with k ≥ 0, e.g. (±1,0), (±17,±4),
(±577,±136), etc. The equation x2 −18y2 =−1 has no solution. ■



31. Fermat’s Last Theorem (I)

31.1 Fermat’s Last Theorem
One of the fundamental relations in Classical Euclidean Geometry concerns the three sides
of a right triangle, and it states that the square sum of the two shorter sides equals the
square of the longest side, known as the hypotenuse. Arithmetically, if the two shorter
sides are of length a and b, and the hypotenuse is of length c, then

a2 +b2 = c2. (31.1)

This relation is called the Pythagorean Theorem, named after the ancient Greek philoso-
pher Pythagoras. A particularly interesting problem is to find right triangles with integer
sides, and it is almost immediate to find some small examples such as 32 + 42 = 52 and
52 + 122 = 132. In Problem II.8 of the Arithmetica, the Alexandrian mathematician Dio-
phantus formally asked for a characterization of triples of integers (a,b,c), which are now
called the Pythagorean triples, such that (31.1) holds.

Around 1637, Fermat wrote in the margin of his copy of the Arithmetica the following
famous and somewhat mysterious comments on the Pythagorean triples:

It is impossible to separate a cube into two cubes, or a fourth power into two
fourth powers, or in general, any power higher than the second, into two like
powers. I have discovered a truly marvelous proof of this, which this margin is
too narrow to contain.

Formally, Fermat claimed the following statement.

Fermat’s Last Theorem For any integer n ≥ 3, the equation

xn + yn = zn (31.2)

has no positive integer solutions.

R We usually call (31.2) the Fermat equation.

Did Fermat have a marvelous proof ? Nobody knows but it is most likely he did not.
Perhaps it is the power of the method of infinite descent as described in Lemma 8.4 that
gave Fermat the illusion that he had one.
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The initial attempts at the Fermat equation only concern specific exponents. These
attempts include Fermat’s own proof for the n = 4 case based on the technique of infinite
descent. The n = 3 case is mainly attributed to Euler, while Legendre and Dirichlet
independently proved Fermat’s Last Theorem for n = 5.

Here one shall note that if the Fermat equation has a positive integer solution for a
certain exponent n ≥ 3, so does the equation for any divisor d of n with d ≥ 3. This is
because if (x,y,z) is such that xn + yn = zn, then we also have (xd′

)d +(yd′
)d = (zd′

)d where
dd′ = n. Since Fermat has already shown the n = 4 case, it is sufficient to prove that the
Fermat equation has no positive integer solutions for n = p, an odd prime. Yet another
observation is that if any two of x, y and z, if they exist, have a common prime factor, so
does the remaining number, and hence we may cast out this common factor. Eventually,
we will get x, y and z so that they are pairwise coprime.

Definition 31.1 A triple of nonzero integers (x,y,z) is called primitive if the numbers x,
y and z are pairwise coprime.

From the above discussions, we may summarize the following fact about Fermat’s Last
Theorem.

Fact 31.1 To prove Fermat’s Last Theorem, it is sufficient to show that the equation

xp + yp = zp (31.3)

has no primitive positive solutions for any odd prime number p.

The modern approaches to attack Fermat’s Last Theorem exhibit more and more
algebraic flavor, such as the German mathematician Ernst Kummer’s development of the
theory of ideals. In the 1980s, Gerhard Frey, Jean-Pierre Serre, and Ken Ribet cleverly
linked the Fermat equation with elliptic curves, and showed that the validity of Fermat’s
Last Theorem is built on the validity of a special case of the Taniyama–Shimura–Weil
conjecture which concerns the modularity for elliptic curves. Following this line, the British
mathematician Andrew Wiles ultimately succeeded in proving Fermat’s Last Theorem in
1994, after over three and a half centuries of waiting.

So looking back at Fermat’s comments in 1637, only two thirds are completely correct
— the Fermat equation has no positive integer solutions and the margin is too narrow to
contain Wiles’s 129-page proof (Ann. of Math. (2) 141 (1995), no. 3, 443–551 & 553–
572; the latter is joint with his student Richard Taylor). But may Fermat really know
some hidden secrets that are silently lying in THE BOOK?

31.2 Quadratic case: Pythagorean triples
We have seen earlier some instances of Pythagorean triples. Now our object is to charac-
terize all of them.
Theorem 31.2 A triple of positive integers (x,y,z) is a primitive Pythagorean triple,
i.e. x,y,z are pairwise coprime such that

x2 + y2 = z2, (31.4)
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if and only if 
x = r2 − s2,

y = 2rs,

z = r2 + s2,

or


x = 2rs,

y = r2 − s2,

z = r2 + s2,

(31.5)

where r > s > 0 are coprime integers of different parities.

Proof. The sufficiency is almost plain. Here we only need to show that the first case in
(31.5) gives a Pythagorean triple as the second case is simply obtained by swapping x and
y in the first case. First, it is straightforward that (x,y,z) = (r2 − s2,2rs,r2 + s2) are such
that x2 + y2 = z2. Now it suffices to verify that they are pairwise coprime. Since r and s
are of different parities, we find that r2− s2 and r2+ s2 are odd. Hence, 2 is not a common
factor of any two of r2 − s2, 2rs and r2 + s2. Assume that p is an odd prime. If p divides
any two of r2 − s2, 2rs and r2 + s2, then p divides both r and s, thereby contradicting the
assumption that r and s are coprime.

For necessity, we start by noting that x and y cannot be simultaneously odd, for if
this is the case, then x2 + y2 ≡ 2 (mod 4), which cannot be a square. Thus, without loss
of generality, we assume that x is odd and y is even so that z is odd, and shall prove that
there exist coprime positive integers r > s of different parities such that x = r2 − s2 and
y = 2rs, and hence that z = r2 + s2. Now we rewrite (31.4) as

y2 = z2 − x2 = (z− x)(z+ x).

Since we have assumed that x and z are odd, we know that z± x are even. Let us write
z+ x = 2u and z− x = 2v. Note also that (u,v) = 1. Otherwise, if u and v have a common
prime divisor p > 1, then p also divides u− v = x and u+ v = z, thereby violating the
assumption that (x,y,z) is primitive. Also, u and v are of different parities as x and z are
supposed to be odd. Finally, we have

y2 = (z− x)(z+ x) = 4uv.

Since y is even, we find that uv is a square. Further, since (u,v) = 1, each of them is
a square. We write u = r2 and v = s2. Thus, x = u− v = r2 − s2, y = 2

√
uv = 2rs and

z = u+ v = r2 + s2. Further, the assumption r > s > 0 comes from the fact that x > 0 and
the assumption that (r,s) = 1 comes from the fact that (u,v) = 1. Finally, u and v have
different parities and so do r and s, as required. ■

In what follows, we shall give an alternative consideration of Theorem 31.2 from a
more algebraic point of view.

Let i =
√
−1. Recall from Sect. 26.4 that OQ(i) = Z[i], which is a unique factorization

domain. The units of Z[i] are ±1 and ±i. Also, all prime (or equivalently, irreducible)
elements in Z[i] are:

(i) 1+ i and its associates;
(ii) rational primes p and their associates for p ≡ 3 (mod 4);
(iii) nonunit and nonassociate factors a + bi of rational primes p for p ≡ 1 (mod 4),

i.e. a,b ∈ Z are such that p = a2 +b2.

Lemma 31.3 If x,y ∈ Z of different parities are coprime in Z, then x+ yi and x− yi are
coprime in Z[i].
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Proof. Assume on the contrary that there is a prime element π in Z[i] which divides both
x+ yi and x− yi. First, π ∤ 2 in Z[i]. Otherwise, NQ(i)/Q(π) = 2 divides NQ(i)/Q(x+ yi) =
x2 + y2 in Z. But since x and y have different parities, x2 + y2 is odd, thereby leading
to a contradiction. Now π | (x+ yi) and π | (x− yi) imply that π | 2x and π | 2yi. Since
π ∤ 2, we have π | x and π | y. If π is associated with a rational prime p ≡ 3 (mod 4),
then p | x and p | y, and this violates the assumption that x and y are coprime in Z. If π
is a factor of a rational prime p ≡ 1 (mod 4), then NQ(i)/Q(π) = p divides NQ(i)/Q(x) = x2

and NQ(i)/Q(y) = y2 in Z. Hence, we still have p | x and p | y, and arrive at the same
contradiction. The required claim therefore follows. ■

Lemma 31.4 Let κ,λ ∈ Z[i] be coprime in Z[i]. Then if κλ is associated with a square
in Z[i], so are κ and λ .

Proof. We uniquely factor κλ as κλ = uπ2α1
1 · · ·π2αk

k , where u is a unit, and π1, . . . ,πk
are distinct prime elements. In particular, the powers 2α1, . . . ,2αk are even since κλ is
associated with a square. Now since κ and λ are coprime, each π2α j

j is exclusively in one
of the factorizations of κ and λ , thereby implying the required result. ■

Now we present the second proof of Theorem 31.2.

Second Proof of Theorem 31.2. Here we only establish the necessity. Recall that (x,y,z)
is a primitive Pythagorean triple so that x2 + y2 = z2. As we have argued earlier, x and
y have different parities and without loss of generality, we assume that x is odd and y is
even. Now by Lemma 31.3, x+ yi and x− yi are coprime in Z[i]. Note that

z2 = (x+ yi)(x− yi).

By Lemma 31.4, we may write
x+ yi = u(r+ si)2,

where u ∈ {±1,±i} is a unit and r,s ∈ Z. Since x,y > 0, neither of r and s are 0. We
may further assume that r,s > 0 as in other cases we may factor out a unit from r+ si.
Therefore,

x+ yi = u
(
(r2 − s2)+2rsi

)
.

Since x is assumed to be odd and y is assumed to be even, then r and s have different parities
and u ∈ {±1}. Further, y > 0 and r,s > 0 imply that u = 1. Thus, (x,y) = (r2 − s2,2rs) so
that z = r2+ s2 while we additionally require that r > s so that x > 0. Finally, r and s must
be coprime to ensure that (x,y,z) is primitive. ■

31.3 Quartic case: An elementary approach
Now we shall apply Theorem 31.2 to prove the quartic case of Fermat’s Last Theorem and
the proof is essentially built on Fermat’s method of infinite descent. In fact, we establish
the following stronger result.

Theorem 31.5 The equation

x4 + y4 = z2 (31.6)

has no positive integer solutions.
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Proof. Suppose on the contrary that (31.6) has a positive integer solution and we may
further assume that (x,y) = 1 by casting out all common factors of x and y. Thus, the
triple (x,y,z) is primitive. Further, x and y cannot be simultaneously odd as if this is the
case, then z2 ≡ 2 (mod 4), which is impossible. Hence, we assume that x is odd and y is
even, so that z is odd.

Let (X ,Y,Z) be such a primitive solution with Z minimal. If we rewrite (31.6) as

(X2)2 +(Y 2)2 = Z2,

then by Theorem 31.2, there exist coprime integers r > s > 0 of different parities such that

X2 = r2 − s2, Y 2 = 2rs, Z = r2 + s2.

Note that if r is even and s is odd, then X2 ≡−1 (mod 4), which is impossible. Hence, r
is odd and s is even, and we write s = 2t. Thus, Y 2 = 4rt. Since Y is even and (r, t) = 1, we
may write

r = k2, t = ℓ2,

where k, ℓ > 0 are integers with (k, ℓ) = 1. In particular, since r is odd, so is k. It follows
from X2 = r2 − s2 = r2 − (2t)2 that

X2 +(2ℓ2)2 = (k2)2.

Applying Theorem 31.2 again to the above, we have coprime integers a > b > 0 of
different parities such that

X = a2 −b2, 2ℓ2 = 2ab, k2 = a2 +b2.

Since ab = ℓ2 and (a,b) = 1, we may further write

a = c2, b = d2,

so that
k2 = c4 +d4.

Note that here c and d are coprime and of different parities. By renaming c and d, we
may further assume that c is odd and d is even. The above relation gives another solution
to (31.6), namely, (x,y,z) = (c,d,k). However, we have

k ≤ k2 = r ≤ r2 < r2 + s2 = Z,

thereby contradicting the minimality of Z. ■

31.4 Quartic case: An algebraic approach
Let us further consider (31.6) in Z[i]. It turns out that even if the domain of solutions
is substantially extended, we still have merely trivial solutions in the sense that at least
one of x, y and z is zero. In this section, we will establish this result following the idea of
David Hilbert (Jahresber. Dtsch. Math.-Ver. 4 (1897), 175–546).

Throughout, all arithmetic is done in Z[i].
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Definition 31.2 Let ξ ,η ,θ ∈ Z[i] be nonzero. We say the triple (ξ ,η ,θ) is primitive if
ξ , η and θ are pairwise coprime.

Note that for (ξ ,η ,θ) with

ξ 4 +η4 = θ 2, (31.7)

if any prime element divides two of ξ , η and θ , it divides the remaining number. Hence,
we may cast out all common factors and it is sufficient to consider primitive solutions.

Let λ = 1− i in this section. Then λ is an associate of 1+ i, and thus a prime
element in Z[i]. Further, λ 2 = −2i is an associate of 2, λ 4 = −4 is an associate of 4 and
λ 6 = 8i is an associate of 8.
Lemma 31.6 Let α ∈ Z[i] be such that λ ∤ α. Then

α2 ≡±1 (mod λ 4), (31.8)
α4 ≡ 1 (mod λ 6). (31.9)

Proof. Note that for any number κ in Z[i], there are four possibilities modulo 2, namely
κ ≡ 0,1, i,λ (mod 2). Since λ | 2, we know that for α with λ ∤ α, it is only possible that
α ≡ 1, i (mod 2). If α = 2δ +1 with δ ∈ Z[i], then α2 = 4δ 2 +4δ +1, implying that α2 ≡ 1
(mod 4), and equivalently that α2 ≡ 1 (mod λ 4). Similarly, if α = 2δ + i, then α2 ≡ −1
(mod λ 4). By the same reasoning, we further have α4 ≡ 1 (mod λ 6) whenever λ ∤ α. ■

We consider a variant of (31.7).

Lemma 31.7 If there exist a unit u of Z[i] and a primitive triple (ξ ,η ,θ) in Z[i] with
λ | ξ such that

uξ 4 +η4 = θ 2,

then we must have λ 2 | ξ .

Proof. Since (ξ ,η ,θ) is primitive while λ | ξ , we have λ ∤ η and λ ∤ θ . Then η4 ≡ 1
(mod λ 6) and thus θ 2 = uξ 4 +η4 ≡ 0+1 = 1 (mod λ 4). We conclude that θ ≡ 1 (mod λ 2)
as λ ∤ θ implies that θ ≡ 1, i (mod λ 2) but for the latter case we further have θ 2 ≡ −1
(mod λ 4), which is not true. Let us write θ = λ 2δ +1 with δ ∈ Z[i]. If δ ≡ 0,λ (mod 2),
then λ | δ ; if δ ≡ 1, i (mod 2), then δ + i ≡ λ ,0 (mod 2) so that λ | (δ + i). Hence, λ |
δ (δ + i). Since

θ 2 −1 = (θ −1)(θ +1) = λ 2δ (λ 2δ +2) = λ 2δ (λ 2δ +λ 2i) = λ 4δ (δ + i),

we have θ 2 ≡ 1 (mod λ 5). Therefore, uξ 4 = θ 2 −η4 ≡ 1− 1 = 0 (mod λ 5), which further
implies that λ 2 | ξ . ■

Now we require a subtle application of the method of infinite descent.

Theorem 31.8 For any unit u of Z[i], there is no primitive triple (ξ ,η ,θ) in Z[i] with
λ | ξ such that

uξ 4 +η4 = θ 2. (31.10)

Proof. The core of this proof relies on the claim that whenever we are given a unit u and
a primitive triple (ξ ,η ,θ) with λ n ∥ ξ , i.e. λ n | ξ and λ n+1 ∤ ξ , for some n ≥ 2, such that
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uξ 4+η4 = θ 2 holds, we are always able to find another unit u′ and another primitive triple
(ξ ′,η ′,θ ′) with λ n−1 ∥ ξ ′ such that u′ξ ′4 +η ′4 = θ ′2.

Now suppose on the contrary to the lemma that there exist a unit u1 and a primitive
triple (ξ1,η1,θ1) with λ | ξ1 such that u1ξ 4

1 +η4
1 = θ 2

1 . Then by the above claim together
with the technique of infinite descent, we are ultimately led to a unit u0 and a primitive
triple (ξ0,η0,θ0) with λ ∥ ξ0 such that u0ξ 4

0 +η4
0 = θ 2

0 . But this contradicts Lemma 31.7
as λ 2 ∤ ξ0. Hence, the desired result is true.

From now on, we prove the initial claim. Again, we have λ ∤ η and λ ∤ θ . Note that

uξ 4 = (θ +η2)(θ −η2).

Since λ 2 | λ n ∥ ξ , we see that λ 8 | uξ 4 = (θ +η2)(θ −η2). It follows that λ 2 divides at
least one of θ +η2 and θ −η2 as λ is a prime element. If θ ±η2 ≡ 0 (mod λ 2), then
θ ∓η2 = (θ ±η2)∓2η2 ≡ 0∓0 = 0 (mod λ 2) since we also have λ 2 | 2. Thus, λ 2 divides
both θ +η2 and θ −η2. If there exists an additional prime element π such that λ 2π
divides both θ +η2 and θ −η2, then λ 2π | 2θ and λ 2π | 2η2, so that π | θ and π | η2 while
the latter further gives π | η . But this violates the assumption that η and θ are coprime.
Hence, (θ +η2,θ −η2) = λ 2.

Let us write {
θ ±η2 = λ 2δ1,

θ ∓η2 = λ 2δ2,

where δ1,δ2 ∈ Z[i] are coprime. Then from

uξ 4 = λ 4δ1δ2,

we may further write δ1 = v1κ4
1 and δ2 = v2κ4

2 where κ1,κ2 ∈ Z[i] are coprime and v1,v2
are units. Meanwhile, since λ 4n ∥ ξ 4, we have λ 4(n−1) ∥ δ1δ2 = v1v2κ4

1 κ4
2 . As κ1 and κ2 are

coprime, we assume without loss of generality that λ n−1 ∥ κ1 and λ ∤ κ2.
Noting that

±2η2 = λ 2δ1 −λ 2δ2 =−2i(v1κ4
1 − v2κ4

2 ),

we have
η2 = w1κ4

1 +w2κ4
2 ,

where we put w1 =∓iv1 and w2 =±iv2, both of which are units. Recalling that n ≥ 2 and
hence that λ | λ n−1 ∥ κ1, we get

η2 ≡ w2κ4
2 (mod λ 4).

However, since λ ∤ η and λ ∤ κ2, Lemma 31.6 tells us that η2 ≡ ±1 (mod λ 4) and κ4
2 ≡ 1

(mod λ 4). Hence, w2 ≡ ±1 (mod λ 4). However, w2 is a unit, so w2 = ±1. If w2 = 1, we
choose

u′ = w1, (ξ ′,η ′,θ ′) = (κ1,κ2,η);

if w2 =−1, we choose

u′ =−w1, (ξ ′,η ′,θ ′) = (κ1,κ2, iη).

In both cases, we have u′ξ ′4 +η ′4 = θ ′2 where u′ is a unit, (ξ ′,η ′,θ ′) is primitive, and
λ n−1 ∥ ξ ′, as requested. ■

Finally, the nonexistence of primitive solutions to ξ 4 +η4 = θ 2 is an immediate impli-
cation of the above result.
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Theorem 31.9 The equation

ξ 4 +η4 = θ 2

has no primitive solutions in Z[i].

Proof. Assume on the contrary that there is a primitive solution (ξ ,η ,θ).
We first prove that λ divides exactly one of ξ and η . If this is not the case, i.e. λ

divides neither of them, then ξ 4 ≡ 1 (mod λ 6) and η4 ≡ 1 (mod λ 6) by Lemma 31.6,
thereby implying that θ 2 ≡ 1+1 = 2 = iλ 2 (mod λ 6). Therefore, λ 2 | θ 2 so that λ | θ since
λ is a prime element. We further note from 4 | λ 6 that θ 2 ≡ 2 ̸≡ 0 (mod 4), i.e. 4 ∤ θ 2,
or equivalently, λ 4 ∤ θ 2. Hence, λ 2 ∤ θ . Now let us write θ = λθ ′, where λ ∤ θ ′. Since
λ 2θ ′2 = θ 2 ≡ iλ 2 (mod λ 6), we have θ ′2 ≡ i (mod λ 4). However, by Lemma 31.6, it is only
possible that θ ′2 ≡±1 (mod λ 4) as λ ∤ θ ′. We arrive at a contradiction.

Without loss of generality suppose that λ | ξ . Then we are led to an instance of (31.10)
with u = 1, a unit of Z[i]. But such an instance should not exist by Theorem 31.8. ■



32. Fermat’s Last Theorem (II)

32.1 Cubic case: An algebraic approach
As we have seen in the previous lecture, for the quartic case, the algebraic approach
seems to be much more complicated than the elementary one. However, there is still an
advantage that it may be naturally transplanted to the cubic case but with a focus on
OQ(

√
−3). However, to provide an elementary proof, one should be extremely careful for

even as legendary as Euler would miss some crucial steps.
In Sect. 26.5, we considered OQ(

√
−3) as Z[1+

√
−3

2 ]. Here, we shall use a slightly different
generator, namely, OQ(

√
−3) = Z[−1+

√
−3

2 ], for the sake of computational convenience.

Throughout, let ζ = −1+
√
−3

2 for brevity. Then ζ 2 = −1−
√
−3

2 , ζ 3 = 1 and 1+ζ +ζ 2 =
0. It is already known that OQ(

√
−3) = Z[ζ ] is a unique factorization domain. The units

of Z[ζ ] are ±1 and ±1±
√
−3

2 . Also, all prime (or equivalently, irreducible) elements in Z[ζ ]
are:

(i)
√
−3 and its associates;

(ii) rational primes p and their associates for p = 2 or p ≡ 5 (mod 6);
(iii) nonunit and nonassociate factors a + bζ of rational primes p for p ≡ 1 (mod 6),

i.e. a,b ∈ Z are such that p = a2 −ab+b2.

Throughout, all arithmetic is done in Z[ζ ].

Let λ = 3−
√
−3

2 in this section. Then λ = 1− ζ =
√
−3 · −1−

√
−3

2 is an associate of√
−3, and thus a prime element in Z[ζ ]. Also, λ 2 =−3ζ−2 is an associate of 3.

Lemma 32.1 Let α ∈ Z[ζ ] be such that λ ∤ α. Then

α3 ≡±1 (mod λ 4). (32.1)

Proof. Note that for any number κ in Z[ζ ], there are three possibilities modulo λ , namely
κ ≡ 0,±1 (mod λ ) for Z[ζ ] = Z[1− ζ ] = Z[λ ] and 3 = −ζ 2λ 2 ≡ 0 (mod λ ). Hence for α
with λ ∤ α, it is only possible that α ≡±1 (mod λ ). If α = λδ +1 with δ ∈ Z[i], then

α3 = (λδ +1)3 = λ 3δ 3 +3λ 2δ 2 +3λδ +1
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= λ 3δ 3 −ζ 2λ 4δ 2 −ζ 2λ 3δ +1

≡ λ 3δ 3 −ζ 2λ 3δ +1

= λ 3δ (δ +ζ )(δ −ζ )+1

= λ 3δ
(
δ +(1−λ )

)(
δ − (1−λ )

)
+1

≡ λ 3δ (δ +1)(δ −1)+1 (mod λ 4).

Since δ ≡ 0,±1 (mod λ ), we have δ (δ +1)(δ −1)≡ 0 (mod λ ). Thus, α3 = (λδ +1)3 ≡ 1
(mod λ 4). If α = λδ −1, then −α =−λδ +1, so that α3 =−(−α)3 =−(−λδ +1)3 ≡−1
(mod λ 4). ■

Definition 32.1 Let ξ ,η ,θ ∈ Z[ζ ] be nonzero. We say the triple (ξ ,η ,θ) is primitive if
ξ , η and θ are pairwise coprime.

Note that for (ξ ,η ,θ) with

ξ 3 +η3 = θ 3, (32.2)

if any prime element divides two of ξ , η and θ , it divides the remaining number. Hence,
we may cast out all common factors and merely consider primitive solutions. Further,
since −θ 3 = (−θ)3, it is equivalent to consider

ξ 3 +η3 +θ 3 = 0. (32.3)

We also start with a variant of (32.3).

Lemma 32.2 If there exist a unit u of Z[ζ ] and a primitive triple (ξ ,η ,θ) in Z[ζ ] with
λ | ξ such that

uξ 3 +η3 +θ 3 = 0,

then we must have λ 2 | ξ .

Proof. Since (ξ ,η ,θ) is primitive while λ | ξ , we have λ ∤ η and λ ∤ θ . Hence, uξ 3 =
−η3 − θ 3 ≡ ±1± 1 = 0 or ±2 (mod λ 4). Further, since λ | uξ 3 while λ ∤ (±2), we must
have uξ 3 ≡ 0 (mod λ 4). This implies that λ 2 | ξ . ■

The following is again a consequence of the technique of infinite descent.

Theorem 32.3 For any unit u of Z[ζ ], there is no primitive triple (ξ ,η ,θ) in Z[ζ ] with
λ | ξ such that

uξ 3 +η3 +θ 3 = 0. (32.4)

Proof. We shall show that whenever we are given a unit u and a primitive triple (ξ ,η ,θ)
with λ n ∥ ξ for some n ≥ 2, such that uξ 3 +η3 +θ 3 = 0 holds, we are always able to find
another unit u′ and another primitive triple (ξ ′,η ′,θ ′) with λ n−1 ∥ ξ ′ such that u′ξ ′3+η ′3+
θ ′3 = 0.

Now suppose on the contrary to the lemma that there exist a unit u1 and a primitive
triple (ξ1,η1,θ1) with λ | ξ1 such that u1ξ 3

1 +η3
1 + θ 3

1 = 0. Then the method of infinite
descent tells us that there must exist a unit u0 and a primitive triple (ξ0,η0,θ0) with
λ ∥ ξ0 such that u0ξ 3

0 +η3
0 +θ 3

0 = 0, which is however impossible by Lemma 32.2. Hence,
the desired result is true.



32.1 Cubic case: An algebraic approach 225

From now on, we prove the initial claim. Again, we have λ ∤ η and λ ∤ θ . Note that

−uξ 3 = (θ +η)(θ +ζη)(θ +ζ 2η).

Since λ | ξ , we see that λ divides at least one of θ +η , θ +ζη and θ +ζ 2η as λ is a prime
element. Further, it follows from ζ = 1−λ ≡ 1 (mod λ ) that θ +η ≡ θ + ζη ≡ θ + ζ 2η
(mod λ ). Thus, λ divides all of θ +η , θ +ζη and θ +ζ 2η . If there exists an additional
prime element π such that λπ divides both θ +η and θ +ζη , then λπ | λη and λπ | λθ
so that π | η and π | θ , but this violates the assumption that η and θ are coprime. By
the same reasoning with an extra application of the fact that ζ 3 = 1 when treating θ +η
and θ +ζ 2η , we find that

(θ +η ,θ +ζη) = (θ +ζη ,θ +ζ 2η) = (θ +ζ 2η ,θ +η) = λ .

Let us write 
θ +η = λδ1,

θ +ζη = λδ2,

θ +ζ 2η = λδ3,

where δ1,δ2,δ3 ∈ Z[ζ ] are pairwise coprime. Then from

−uξ 3 = λ 3δ1δ2δ3,

we may further write δ1 = v1κ3
1 , δ2 = v2κ3

2 and δ3 = v3κ3
3 where κ1,κ2,κ3 ∈Z[ζ ] are pairwise

coprime and v1,v2,v3 are units. Meanwhile, since λ 3n ∥ ξ 3, we have λ 3(n−1) ∥ δ1δ2δ3 =
v1v2v3κ3

1 κ3
2 κ3

3 . As κ1, κ2 and κ3 are pairwise coprime, we assume without loss of generality
that λ n−1 ∥ κ1, λ ∤ κ2 and λ ∤ κ3; other cases may be understood by replacing η with ζη
and ζ 2η .

Noting that

0 = (θ +η)+ζ (θ +ζη)+ζ 2(θ +ζ 2η),

we have

0 = v1κ3
1 +ζ v2κ3

2 +ζ 2v3κ3
3

= w1κ3
1 +w2κ3

2 +κ3
3 ,

where we put w1 = ζ−2v1v−1
3 and w2 = ζ−1v2v−1

3 , both of which are units. Recalling that
n ≥ 2 and hence that λ | λ n−1 ∥ κ1, we get

0 ≡ w2κ3
2 +κ3

3 (mod λ 3).

However, since λ ∤ κ2 and λ ∤ κ3, Lemma 32.1 tells us that κ3
2 ≡±1 (mod λ 4) and κ3

3 ≡±1
(mod λ 4). Hence, w2 ≡ ±1 (mod λ 3). However, w2 is a unit, so w2 = ±1. If w2 = 1, we
choose

u′ = w1, (ξ ′,η ′,θ ′) = (κ1,κ2,κ3);

if w2 =−1, we choose

u′ = w1, (ξ ′,η ′,θ ′) = (κ1,
1+

√
−3

2 κ2,κ3).

In both cases, we have u′ξ ′3 +η ′3 +θ ′3 = 0 where u′ is a unit, (ξ ′,η ′,θ ′) is primitive, and
λ n−1 ∥ ξ ′, as requested. ■

Finally, we establish the nonexistence of primitive solutions to ξ 3 +η3 +θ 3 = 0.
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Theorem 32.4 The equation

ξ 3 +η3 +θ 3 = 0

has no primitive solutions in Z[ζ ].

Proof. Assume on the contrary that there is a primitive solution (ξ ,η ,θ).
We first prove that λ divides exactly one of ξ , η and θ . If this is not the case, i.e. λ

divides none of them, then ξ 3 ≡±1 (mod λ 4), η3 ≡±1 (mod λ 4) and θ 3 ≡±1 (mod λ 4)
by Lemma 32.1, thereby implying that 0 ≡ ±1± 1± 1 ≡ ±1 or ±3 (mod λ 4). But both
cases are impossible, and we arrive at a contradiction.

Without loss of generality suppose that λ | ξ . Then we are led to an instance of (32.4)
with u = 1, a unit of Z[ζ ]. But such an instance should not exist by Theorem 32.3. ■

32.2 Cubic case: An elementary approach
We start with an analog of Lemma 8.3.

Lemma 32.5 Let x1,y1,x2,y2 ∈ R. Then

(x2
1 +3y2

1)(x
2
2 +3y2

2) = (x1x2 −3y1y2)
2 +3(x1y2 + y1x2)

2. (32.5)

Proof. We may either verify by a direct calculation or make use of the fact that

NQ(
√
−3)/Q(α)NQ(

√
−3)/Q(β ) = NQ(

√
−3)/Q(αβ )

where α = x1 + y1
√
−3 and β = x2 + y2

√
−3. ■

Using Lemma 32.5 twice, we see that if m can be represented as

m = r2 +3s2, (32.6)

then

m3 = a2 +3b2, (32.7)

where {
a = r(r+3s)(r−3s),

b = 3s(r+ s)(r− s).
(32.8)

Now, a crucial question is that whenever we write m3 as in (32.7), possibly with suitable
restrictions to a and b, are there always integers r and s such that (32.6) and (32.8)
hold? Such an argument was missing in Euler’s original elementary proof of the cubic
case of Fermat’s Last Theorem presented in his 1770 book Vollständige Anleitung zur
Algebra. However, this gap was not explicitly pointed out until 1894 by J. Schumacher
from Göppingen (Z. Math. Naturwiss. Unterricht 25 (1894), 350–351).

In what follows we shall adopt a neat reasoning due to Stan Dolan (Math. Gaz. 96
(2012), no. 535, 99–102).

Lemma 32.6 Let X and Y be coprime integers with N = X2 + 3Y 2. Then either N ≡ 1
(mod 2) or N ≡ 4 (mod 8).
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Proof. Since X and Y are coprime, either they are simultaneously odd or they have different
parities. For the former case, we have X2 ≡ Y 2 ≡ 1 (mod 8) so that N ≡ 4 (mod 8). For
the latter case, we immediately see that N is odd. ■

Lemma 32.7 Let X and Y be coprime integers with N = X2 + 3Y 2. Let x1 and y1 be
coprime integers with n1 = x2

1 + 3y2
1 such that n1 | N and n1 | (x1Y − y1X). Then there

exist coprime integers x2 and y2 with n2 = x2
2+3y2

2 such that the following relations hold:
(i) N = n1n2;
(ii) X = x1x2 −3y1y2;
(iii) Y = x1y2 + y1x2;
(iv) n2 | (x2Y − y2X).

Proof. We shall show that (x2,y2) = ( x1X+3y1Y
n1

, x1Y−y1X
n1

) is the desired choice. First, Parts
(i), (ii) and (iii) can be verified by direct calculations. Further, n2 and y2 are integers
since n1 | N and n1 | (x1Y − y1X). Hence x2 is also an integer as x2

2 = n2 − 3y2
2. Now, if

d = (x2,y2), then d divides both X and Y . But since we have assumed that X and Y are
coprime, we know that d = 1 and hence that x2 and y2 are coprime. Finally, we compute
that x2Y − y2X = y1n2 so that Part (iv) is true. ■

The following argument is the most important.

Theorem 32.8 Let X and Y be coprime integers with N = X2 + 3Y 2. Then for any
factorization N = n1n2 where n1 and n2 are not simultaneously even, we can find coprime
integers x1 and y1 with n1 = x2

1 +3y2
1 and coprime integers x2 and y2 with n2 = x2

2 +3y2
2

such that
(i) X = x1x2 −3y1y2;
(ii) Y = x1y2 + y1x2;
(iii) n1 | (x1Y − y1X);
(iv) n2 | (x2Y − y2X).

Proof. We argue by induction on N = X2 +3Y 2. When N = 1, i.e. N = (±1)2 +3 ·02, then
for the factorization 1 = 1 ·1, we may choose the pairs (x1,y1) = (1,0) and (x2,y2) = (±1,0)
so that the required conditions are satisfied.

Supposing that the statement is true for 1, . . . ,N −1 where N ≥ 2, we prove the state-
ment for N. If N cannot be written as N = X2 + 3Y 2 with X and Y coprime, then we
are done. Otherwise, let X and Y be arbitrary coprime integers such that N = X2 + 3Y 2.
Consider an arbitrary factorization N = n1n2, and without loss of generality, let n1 ≤ n2.

Recalling that n1 and n2 are not simultaneously even, it follows from Lemma 32.6 that
n1 is of the form 2k+1 or 4(2k+1). Also, when n1 = 1 so that n2 = N, we may find pairs
(x1,y1) = (1,0) and (x2,y2) = (X ,Y ) satisfying the required conditions. Below, we assume
that n1 ≥ 3.

Note that n1 and Y are coprime. This is because if there is a prime dividing both n1
and Y , it also divides n1n2−3Y 2 = N−3Y 2 = X2, and thus X . But X and Y are assumed to
be coprime. Let X1 be such that X1Y ≡ X (mod n1); this X1 must exist as (n1,Y ) = 1 and
n1 ≥ 3. We further choose X1 so that −n1

2 < X1 ≤ n1
2 . Since X2 +3Y 2 = N = n1n2, we have

X2 + 3Y 2 ≡ 0 (mod n1) so that (XY−1)2 ≡ −3 (mod n1). Now, X2
1 + 3 ≡ (XY−1)2 + 3 ≡ 0

(mod n1).
Define N1 = X2

1 + 3 = X2
1 + 3 · 12. From the above argument, we know that n1 | N1 so

we may write N1 = n1n3. By Lemma 32.6, N1 is of the form 2k+ 1 or 4(2k+ 1), while so
is n1 as argued earlier. Hence, n1 and n3 are not simultaneously even. Now we note that



228 Lecture 32. Fermat’s Last Theorem (II)

N1 = X2
1 + 3 ≤ (n1

2 )
2 + 3 < n2

1 ≤ n1n2 = N. By the inductive hypothesis, there must exist
pairs (x1,y1) and (x3,y3) such that the required conditions hold. In particular, we have
(a). x1 and y1 are coprime with n1 = x2

1 + 3y2
1; (b). n1 | (x1 · 1− y1X1), which implies that

0 ≡ x1 − y1X1 ≡ x1Y − y1X1Y ≡ x1Y − y1X (mod n1), i.e. n1 | (x1Y − y1X).
Recall further that N = n1n2 so that n1 | N. Then by Lemma 32.7, there exist coprime

integers x2 and y2 with n2 = x2
2 + 3y2

2 such that X = x1x2 − 3y1y2, Y = x1y2 + y1x2 and n2 |
(x2Y − y2X). Thus, the pairs (x1,y1) and (x2,y2) are as desired. ■

The above theorem immediately gives the missing justification of Euler.

Corollary 32.9 Let a and b be coprime integers such that a2+3b2 = m3. Then there exist
coprime integers r and s with r2 +3s2 = m such that{

a = r(r+3s)(r−3s),

b = 3s(r+ s)(r− s).

Proof. Noting that a cube cannot be congruent to 4 modulo 8, by Lemma 32.6, m3 is
odd, and so is m. Considering the factorization m3 = m ·m2 and applying Theorem 32.8,
we find coprime integers r0 and s0 with m = r2

0 +3s2
0 and coprime integers a2 and b2 with

m2 = a2
2 +3b2

2 such that

a = r0a2 −3s0b2, b = r0b2 + s0a2,

together with m | (r0b− s0a) and m2 | (a2b− b2a). Further, the two divisibility properties
imply that 0 ≡ a2(r0b− s0a)− r0(a2b−b2a) = a(r0b2 − s0a2) (mod m), i.e. m | a(r0b2 − s0a2).
Note that if there is a prime p dividing both a and m, then p2 divides m3−a2 = 3b2, which
gives that p | b. However, this violates the assumption that a and b are coprime. Hence,
(m,a) = 1, so that m | (r0b2 − s0a2).

Keeping the above relation in mind, we apply Lemma 32.7 to m2 = a2
2 +3b2

2 and m =

r2
0 +3s2

0, and find that there exist coprime integers a1 and b1 with m = m2

m = a2
1 +3b2

1 such
that

a2 = r0a1 −3s0b1, b2 = r0b1 + s0a1,

together with m | (a1b2−a2b1). Combining this with m | (r0b2−s0a2) gives m | (r0b1−s0a1).
Repeating this process once more with Lemma 32.7 applied to m = a2

1 +3b2
1 and m =

r2
0 +3s2

0, we get coprime integers a0 and b0 with 1 = m
m = a2

0 +3b2
0 such that

a1 = r0a0 −3s0b0, b1 = r0b0 + s0a0.

However, since 1 = a2
0 +3b2

0, the only possibilities are a0 =±1 and b0 = 0.
Now we may recover the pairs (a1,b1), (a2,b2) and (a,b):{

a1 = a0r0,

b1 = a0s0,

{
a2 = a0(r2

0 −3s2
0),

b2 = 2a0r0s0,

{
a = a0r0(r0 +3s0)(r0 −3s0),

b = 3a0s0(r0 + s0)(r0 − s0).

Finally, if a0 = 1, we choose (r,s)= (r0,s0), while if a0 =−1, we choose (r,s)= (−r0,−s0). ■

Finally, we recover Euler’s proof of the cubic case of Fermat’s Last Theorem, which
shall be stated in a slightly stronger form.
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Theorem 32.10 Let X ,Y,Z be nonzero integers with X +Y +Z = 0. Then their product
XY Z cannot be a cube.

Proof. Suppose on the contrary that there exist nonzero integers X ,Y,Z with X +Y +Z = 0
such that XY Z is a cube. In particular, we may choose such X ,Y,Z with |XY Z|> 0 minimal.

Note that for this choice, X ,Y,Z must be pairwise coprime. This is because if there
is some d > 1 dividing two of them, then it also divides the remaining number. Now we
still have that X

d + Y
d + Z

d equals zero and that X
d

Y
d

Z
d = XY Z

d3 is a cube. Hence, the numbers
X
d ,

Y
d ,

Z
d provide a counterexample with a smaller absolute product, thereby violating the

minimality of |XY Z|. From the fact that the product of the pairwise coprime integers
X ,Y,Z is a cube, we conclude that X ,Y,Z themselves are cubes. Write X = x3, Y = y3 and
Z = z3. In particular, x,y,z are pairwise coprime, so that exactly one of them is even as we
also have x3 + y3 + z3 = X +Y +Z = 0. Without loss of generality, we assume that x and y
are odd and z is even.

Let x+y = 2a and x−y = 2b so that x = a+b and y = a−b. Since x is odd, a and b have
different parities. Also, if there is a prime dividing both a and b, then it also divides both
x and y, thereby violating the fact that x and y are coprime. Hence, a and b are coprime.
Finally, a,b ̸= 0, for if this is the case, then x = ±y and hence the only possibilities are
x =±1 and y =±1 as x and y are coprime. But in these cases, we cannot find a nonzero
integer z such that x3 + y3 + z3 = 0.

Note that

z3 =−(x3 + y3) =−(x+ y)(x2 − xy+ y2)

=−(x+ y)
(
(x+ y)2

4
+

3(x− y)2

4

)
=−2a(a2 +3b2).

Since a,b ̸= 0, we have a2 +3b2 ≥ 4 and hence |−2a|< |z3|. Also, as a and b have different
parities, a2 +3b2 is odd. Further, from the fact that a and b are coprime, we see that the
greatest common divisor of −2a and a2 +3b2 is either 1 or 3.

For the first case, we further note that −2a and a2 +3b2 are nonzero cubes. Applying
Corollary 32.9 to the latter gives coprime integers r and s such that a = r(r+3s)(r−3s).
Consider the numbers −2r, r+ 3s and r− 3s, whose sum is zero. It turns out that their
product is −2r(r+3s)(r−3s) =−2a, which is a nonzero cube as argued earlier, implying
that the three numbers are nonzero. Now we have 0 < |−2a| < |z3| ≤ |x3y3z3| = |XY Z|,
i.e. the numbers −2r, r+3s and r−3s give a smaller absolute product, which is impossible.

For the second case, we have 3 | (−2a) and 3 | (a2+3b2). Thus, 3 |
(
−2a(a2+3b2)

)
= z3

so that 3 | z, which further gives that 27 | z3 =
(
−2a(a2+3b2)

)
. On the other hand, 3 | (−2a)

implies that 3 | a. Since a and b are coprime, we have 3 ∤ b so that 9 ∤ (a2 +3b2). It follows
that 9 | (−2a). Further, −2a

9 and a2+3b2

3 are coprime. Meanwhile,( z
3

)3
=−2a

9
· a2 +3b2

3
,

so that −2a
9 and a2+3b2

3 are nonzero cubes. Applying Corollary 32.9 to a2+3b2

3 = b2 +3(a
3)

2

gives coprime integers r and s such that a
3 = 3r(r+s)(r−s). Consider the numbers −2r, r+s

and r− s, whose sum is zero. It turns out that their product is −2r(r+ s)(r− s) = −2a
9 ,

which is a nonzero cube, implying that the three numbers are nonzero. Now we have
0 < |−2a

9 | < |z3| ≤ |x3y3z3| = |XY Z|. Thus, the numbers −2r, r + s and r − s also give a
smaller absolute product, leading to a contradiction. ■
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