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Abstract

This thesis is devoted to providing some “travel tips” that arise from my personal
visit in the world of p(artitions) and ¢(-series).

In the first part, we will focus on partition congruences, especially from an elemen-
tary perspective. We first give a completely elementary proof of an infinite family of
congruences modulo powers of 5 for the number of partitions of n into distinct parts.
As a by-product, we also consider some eta-quotient representations concerning the
Rogers—Ramanujan continued fraction.

In the second part, our attention is turned to identities. The first two chapters in
this part are devoted to partition identities — one treats weighted partition rank and
crank moments and the other investigates partitions with bounded part differences. Then
in a series of three chapters, a general theory of span one linked partition ideals will
be presented. We start from several conjectures of Kanade and Russell and then link
this theory with directed graphs. A comprehensive example on Gleiflberg’s identity will
finally be discussed. The last chapter in this part will be devoted to analytic identities
of Rogers—Ramanujan type with manipulations of basic hypergeometric series heavily
involved.

In the third part, asymptotic aspects of integer partitions will be investigated. We
first use square-root partitions into distinct parts to illustrate a refined Meinardus-type
approach. In the next three chapters, we will focus on modular infinite products that
concern either Dedekind eta function or Jacobi theta function with the assistance of
Rademacher’s circle method. Finally, we will study nonmodular infinite products that
are related to a conjecture of Seo and Yee.

In the last part, we will leave for another world of p, that is, the world of patterns
in inversion sequences. We mainly focus on two recent conjectures, one of which on
0012-avoidance is due to Lin and Ma and the other on the avoidance of triples of binary

relations is due to Lin.
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Chapter 1

Introduction

1.1 Notation and Terminology

1.1.1 The Theory of Partitions

The theory of partitions was given to birth in a letter [119] from Leibniz to Bernoulli
in September 1674, in which Leibniz asked for the number of representations of a positive
integer n as a sum of positive integers, which is now called the number of integer partitions

of n, usually denoted by p(n), if the order of the summands is not taken into account.

Definition 1.1.1. An integer partition of a positive integer n is a non-increasing sequence
of positive integers whose sum equals n. These summands are called parts of this partition.
We usually use p(n) to denote the number of partitions of n. Conventionally, we also put

p(0) = 1, which means that 0 has an empty partition () containing no parts.

Notation 1.1.1. Given a partition A, we denote by #(\) and |A| the number of parts

and the sum of parts of A\, respectively.

For example, the partitions of 0, 1, ..., 5 are listed in Table 1.1.
Of course, we may impose or lessen restrictions on the parts of partitions. One

important example is that the parts are required to be pairwise distinct.

Definition 1.1.2. A distinct partition is a partition such that its parts are pairwise

distinct. We will use pp(n) to denote the number of distinct partitions of n.

In Table 1.2, we will delete those partitions in Table 1.1 with repeated parts and
leave all distinct partitions.

Another important variant of partitions is called overpartitions.

Definition 1.1.3. An owverpartition is a partition where the first occurrence of each
distinct part may be overlined. We will use p(n) to denote the number of overpartitions

of n.



Table 1.1. Partitions of 0, 1, ..., 5

p(n) | partitions of n
L]0

1 1

2 [2,1+1

3 |3,2+1,1+1+1
5

7

4,3+1,242,24+1+1, 1+1+1+1
5, 44+1,342,34+1+1,24+2+1,2+1+1+1,
1+41+14+14+1

ks |lw|liNo|~RoOo|3

Table 1.2. Distinct partitions of 0, 1, ..., 5

pp(n) | distinct partitions of n

0

1

2, 1+T

3,2+ 1, 14471

4,341,242, 2441, 1 £ 14+1tF1

5,44+ 1,3+2,34F+T1, 2421, 24 14+1F1,
1+ +1

G| w| NN~ o] S
W[N]~~~

For example, 4 has 14 overpartitions:

4, 4, 3+1,3+1,3+1, 3+1,2+2 2+2,
24141, 24141, 24141, 24141, 1+1+1+1, T+14+1+1.

The name of overpartitions was given by Corteel and Lovejoy [72] in 2004, but they
have already been extensively used by Andrews in 1967 [5], by Joichi and Stanton in
1987 [105] and by Corteel in 2003 [71].

Regarding combinatorial aspects of partitions, an important concept is Ferrers dia-

gram, which is also known as Young diagram.

Definition 1.1.4. Given an integer partition A, its Ferrers diagram is a diagram of
squares aligned in the upper-left corner such that the n-th row has the same number of

squares as the n-th part of \.



Using Ferrers diagrams, we are able to define two other important combinatorial

objects.

Definition 1.1.5. Given an integer partition ), its conjugate X is the partition whose
Ferrers diagram can be obtained by flipping the Ferrers diagram of A along the main

diagonal.

Definition 1.1.6. Given an integer partition A, its Durfee square is the largest square

contained in its Ferrers diagram.

For example, the Ferrers diagram of 5+ 343 + 2+ 2 + 1 is shown in Figure 1.1(a).
It can be seen from Figure 1.1(b) that its conjugate is 6 + 5+ 3 + 1 + 1. Finally, it has a

Durfee square of size 3, which is given in Figure 1.1(c).

Figure 1.1. Ferrers diagram

A=5+3+3+2+2+1 has conjugate A = 6+ 5+ 3+ 1 + 1 and a Durfee square of size 3.

(a). A (b). A (c). Durfee square

Of course, the theory of partitions is rather vast. To end this section, I will not

hesitate to recommend Andrews’ monograph: The theory of partitions [12].

1.1.2 The Theory of g-Series

Before going into details of the theory of g-series, it is necessary to introduce some

notations.

Notation 1.1.2 (g-Pochhammer symbols). Let ¢ € C be such that |¢| < 1. Let n € Z.

n—1
" [1(1—A¢") ifn>o0,
34 )n = § k=0

1/(Aq" q)—n ifn <0,
(A;q)0 = ] (1 — Ag"),

k>0

3



(Ala A2 cee :Am; Q)n = (Al; Q)n(A2; Q)n e (Ama q)m
(Ala A27 s 7Am; Q)oo = (Al; Q)OO(AZ; Q)oo e (Am7 Q>oov

Ay Agy o Ay (A On(A25@)n - (A5 @
By, Bs,..., B, (B1; Q)n(B2; @)n - (B O)n

and

A17A27--'7AmA-q (AL Qoo(A2; Qoo (Ama; Do
By, Bs,...,Bp,’ (B1; @)oo (B2; @)oo -+ * (B @)oo

With these notations, we may also define the basic hypergeometric (or ¢g-hypergeometric)
function ,.¢¢ and the bilateral basic hypergeometric (or bilateral g-hypergeometric) func-

tion .1, which lie in the core of the theory of ¢-series.

Notation 1.1.3 (¢-Hypergeometric function ,.¢y).

A Ay, A A Ay, A )\
r¢s ( 1,412, ) T;q7 Z) — Z ( 1,412, y LA ’q> <(—1>nq(2)> A

BI7B27“'7BS n>0 q7Bla-827"'7Bs

Notation 1.1.4 (Bilateral g-hypergeometric function ,1;).

A Ay A ) A As, . A )\ "
rl/)s( 1y 412, ) T;q,Z) — Z ( 1,412, ) T,Q) ((_1)"(](2)) 2",

BlaBQ7"'7BS n=—00 B17B2)"'7BS
Also, the g-binomial coefficients are important.

Notation 1.1.5 (¢-Binomial coefficient).

= (¢ D)m (T QDn-m
0 otherwise.

[n] {n] (¢ Dn if0<m<n,
m my

Roughly speaking, the theory of g-series deals with identities. It seems that the first
important monograph is Bailey’s 1935 book [32], but according to Richard Askey, the
best monograph should be George Gasper’s copy of Bailey’s book, which is now published
as [83]. For a selection of g-series identities, Andrews’ chapter (Chapter 17) of the “NIST
handbook of mathematical functions” [16] provides a good reference.

Let me excerpt several important identities as instances.



Theorem 1.1.1 (Eluer’s first sum). For |z| < 1,

190 (E;q&)zz w1 (1.1.1)

(@G (59

Theorem 1.1.2 (Eluer’s second sum). For |z| < 1,

— —1 )" (g)zn
090 (_;q, 2) =) <1()q;g)n = (2,¢)oo- (1.1.2)

n>0

Theorem 1.1.3 (¢-GauB sum). For |c| < |ab],

a,b ¢ a,b c\" c/a,c/b
4 — | = ; — ] = ; . 1.1.3
o (ed)-Blo) G- () o
Theorem 1.1.4 (¢-Binomial theorem). For N > 0,

N
190 ( ;QVZ) = (2¢ V5 q)n. (1.1.4)

1.1.2.1 Generating Functions

Generating functions create a fantastic kingdom where the worlds of p and g meet.
Let us begin with the first deep result (in the 16th century) due to Euler [78].

Theorem 1.1.5 (Generating function of p(n)). We have

Y pln)g" = ! (1.1.5)

n>0 (4 Voo
This identity can be understood as follows.

1 1
(¢ 9o _kl;[ll—q’“
:H(1+qk+q2k+q3k+“_)_
k>1

Now the term ¢™* can be treated in the sense that the part k appears m times. Hence,
if we expand the infinite product, the coefficient of ¢" exactly enumerate the number of

partitions of n.



It is notable that if we expand the reciprocal of the infinite product in (1.1.5), namely,
(43 @)oo, one has

(G Do=1—q—++q" —¢?—¢"+---.

If one pays attention to the powers, then it could be observed that they are simply
pentagonal numbers. In [78], Euler conjectured an identity based on this observation,
which was proved by himself a couple of years later and is now known as Euler’s Pentagonal

Number Theorem.

Theorem 1.1.6 (Euler’s Pentagonal Number Theorem). We have

(¢ @)oo = i (—1)grGn/2, (1.1.6)

n=—oo

It follows by multiplying (1.1.5) and (1.1.6) that p(n) can be computed recursively by
p(n) =p(n—1) +p(n —2) —p(n =5) —p(n = 7) +p(n = 12) + p(n = 15) — - - .

Next, g-series sometimes help us reduce the difficulty of proving partition identities.

The simplest example is still due to Euler [78§].

Theorem 1.1.7. Forn > 0, the number of partitions of n into distinct parts is the same

as the number of partitions of n into odd parts.

Proof. Let p,(n) denote the number of partitions of n into odd parts. Then,

n 1
Y po(n)g" =] =
n>0 k>1
B 1 1— q2k
1 ?R—11 — g2k
H 1 — q2k
k>1 1—¢
o U=d)(1 44"
k>1 1—¢*
=1 +d9
k>1
This is just the generating function for distinct partitions. O]



Finally, partitions can help us understand or even prove g-series identities. Let us
use Euler’s first sum as an example. Here we shall prove the special case:
q* 1

3 _

k>0 (Q;Q)k (Q?C_I)oo'

Proof. We enumerate partitions with exactly & parts. If we take the conjugate of such
a partition, then it has the largest part of size k. Below the largest part, we have a
partition with largest part not exceeding k. Hence, such partitions can be enumerated

by the generating function

qk

(@ a)e
Finally, we sum up k > 0 to arrive at the desired identity. O

1.1.3 The Theory of Numbers

When studying the asymptotic behavior of certain sequences or complex functions,
we require the following traditional notations.

First, we have the Vinogradov notations introduced by I.M. Vinogradov in the 1930s.

Notation 1.1.6 (Vinogradov notations). We say f(x) < g(z) if there exists an absolute
constant C' such that |f(z)| < Cg(z). If the constant C' depends on some variables, then
we attach a subscript and write f(2) <yarables ¢(2). Likewise, we write f(x) > g(x) if

g(z) < f(z).
The Bachmann—Landau notations are also useful.

Notation 1.1.7 (Bachmann-Landau notations). The big-O notation' is defined in the
usual way: f(z) = O(g(x)) means that f(r) < g(z). Again, subscripts are allowed as

the Vinogradov notations. Also, we have the small-o notation: f(z) = o(g(z)) means
that lim f(z)/g(z) = 0. Further, if lim f(z)/g(x) = 1, then we write f(z) ~ g(x).

1.1.4 The Theory of Patterns

Let m = mymy - - - m, be a permutation of [n] :={1,2,...,n}. One of its most natural

encodings is known as its inversion sequence.

Here O stands for “Ordnung”, which means “order of” in German; see [31].



Definition 1.1.7. The inversion sequence of m = mymq - - - m, is a sequence ejes - - - €, of
length n where for each 7, e; is the number of integers larger than ¢ that precede m; in 7.
That is,

e, =H{1<j<i:m>m}

We can see from the above definition that for each ¢, we always have 0 <e¢; <17 — 1.
Notice that given two permutations, their inversion sequences are different. Since there
are exactly n! permutations of [n], we conclude that there is a bijection between G,,, the

set of permutations of [n], and the set of sequences of length n:
{e1e2---€, :0<e; <i—1forallien|},

as the cardinality of the above set is also n!. Therefore, we have the second definition of

inversion sequences.

Definition 1.1.8. A sequence e = ejes - - - ¢, of natural numbers is called an ‘nversion
sequence if 0 < e; < i —1 for all i € [n]. We usually denote by I,, the set of inversion

sequences of length n.
Let v,w € N" be two words of length n.

Definition 1.1.9. We say v and w are order isomorphic if for eack k, the k-th smallest
entries of v and w occur at the same places. Further, we say the reduction of v is a
sequence obtained by replacing the k-th smallest entries of v with k£ — 1. In particular, v

and its reduction are order isomorphic.

Example 1.1.1. (16,5,14,14,0,19,20,1,20,5)% and (5,3,4,4,1,6,7,2,7,3) are order
isomorphic. They both reduce to (4,2,3,3,0,5,6,1,6,2).

Now we turn our attention to patterns in sequences.

Definition 1.1.10. We say a sequence e contains a given pattern p if there exists a
subsequence of e such that it is order isomorphic to p; otherwise, we say that e avoids

the pattern p.

Example 1.1.2. The sequence e = ejes - - - g = 002030 does not avoid the pattern 100
since the subsequence eseseq = 200 is order isomorphic to 100, but avoids 011 since no

subsequences of e are order isomorphic to 011.

2Do you realize this sequence may be converted to “Penn State”?



Notation 1.1.8. Let py, po, ..., pm be given patterns. We denote by L,(p1,p2, .-, Pm)

the set of inversion sequences of length n that avoid all of the patterns pi, po, ..., pm.

It is known that permutations that avoid given patterns have extensive applications
in computer science, biology and many other fields; see the monograph of Kitaev [114].
Considering the close connection between permutations and inversion sequences, there
are also flourish trends in the study of pattern avoidance in inversion sequences in recent

years.

1.1.4.1 Kernel Method

The kernel method is a powerful tool to discover a closed form of a generating function
if functional equations concerning it is known. In the perspective of Helmut Prodinger
[142], this method originated as an exercise in the first volume of Donald Knuth’s book
“The Art of Computer Programming” [115, Exercise 4, §2.2.1, p. 243]. Then it was turned
into a method in the work of Banderier er al. [34] on generating trees.

To briefly illustrate this method, I will use Knuth’s exercise with the solution provided
by Prodinger [142]. T will omit the combinatorial statements while only focus on the

generating function.

Theorem 1.1.8. Let F(z,q) € R[g]][[z]] satisfy the functional equation

q
F(z,q) = 2qF(2,q) + ~(F(z,q) = F(0,)) + 1. (1.1.7)
Then,
1—+/1—4¢°
i M
2q

F — : 1.1.8
(z,q) T R (1.1.8)

Proof. We first rewrite the functional equation (1.1.7) as
(¢2* —x +q)F(x,q) = qF(0,9) — . (1.1.9)

Here the coefficient (gz? — x + ¢) on the left-hand side is usually called the kernel
polynomial.
If we treat the kernel polynomial (¢2® — x + ¢) as a polynomial in z, it is easy to

compute its two roots

1—+/1—4¢? 1+ 1 —4q?
r(q) = ———— and ry(q) = ———M.

2q 2q



Now we have
qF(0,q)

e — ek

Notice that r1(q) = q + O(q?*). Therefore, 1/(x — r1(g)) has no power series expansion

F(x,q) =

around (0,0). However, as F(x, q) is a formal power series in x and ¢, we must have that
x —ri(q) is a factor of the numerator and thus ¢F(0,q) = r1(q). That is,
ri(q) 1—+1—4¢°

F = = 1.1.1
0.9 =" T (1.1.10)

and the desired result follows by substituting the above into (1.1.9). O

1.2 State of the Art

1.2.1 Partition Congruences

The theory of partition congruences, which is now a blooming topic, was given to
birth when Ramanujan studied the table of the values of p(n) up to n = 200, which is
calculated by Major MacMahon.

Table 1.3. Values of p(n) for 1 <n <20

1

3

SRRSO

6 7 8 9 10
11 15 22 30 42
11 12 13 14 15
56 77 101 135 176
6 17 18 19 20
231 297 385 490 627

s

3

D

If one looks at the column where n = 4 (mod 5) in Table 1.3, it can be seen that
p(n) is divisible by 5. With such an observation, Ramanujan [146] announced in 1919

the following congruences.

Theorem 1.2.1. We have

p(bn+4) =0 (mod b5), (1.2.1)

10



p(7Tn+5)=0 (mod 7) (1.2.2)
and
p(1ln+6) =0 (mod 11). (1.2.3)

The proofs of the first two congruences were given in [146] while the proof of the last
was announced one year later in a short note [147] and was finally published in [148], in
which indeed a unified proof of all three congruences was presented.

It is also notable that in [146], Ramanujan actually showed an identity which is
regarded as his “Most Beautiful Identity” by both Hardy and MacMahon [151, p. xxxv].

Theorem 1.2.2. We have

5. ,5\5

> T (1.2.4)

From this identity, (1.2.1) follows as a direct corollary.

There are many directions to generalize Ramanujan’s congruences. First, what happens
if one changes the moduli to powers of 5, 7 and 117 Such general families of congruences
were indeed conjectured by Ramanujan himself in 1919 [150] in which the conjecture for

powers of 7 is incorrect. But this was fixed later by Watson [171].
Theorem 1.2.3. We have, for £ € {5,7,11} and a > 1,

0 (mod ¢%) (=511,
p(lon + dop) = - (1.2.5)
0 (mod 7"zl ¢=7,

with 0 < 4,0 < 0“ —1 such that
24000 =1 (mod €%).

Watson [171] was able to prove the cases of powers of 5 and 7 using modular forms.

But for the case of powers of 11, he stated that

“Da die Untersuchung der Aussage iiber 11¢ recht langweilig ist, verschiebe

ich den Beweis dieses Falles auf eine spatere Abhandlung.”

Nearly thirty years later in 1967, Atkin [28] eventually completed the project of proving

the case of powers of 11 with an agreement with Watson’s assertion that the proof is

11



7 Some fifteen years later in the 1980s, elementary proofs of the cases of

“langweilig.
powers of 5 and 7 were further discovered, respectively by Hirschhorn and Hunt [100]
and Garvan [79]. However, elementary proof of the case of powers of 11 is still a mystery.

Another question we could ask about partition congruences is what happens if one
changes the moduli to an arbitrary integer? This problem was first considered by Atkin

in the 1960s with discoveries like
p(11° - 13n+237) =0 (mod 13).

Along this direction, the most exciting result is obtained by Ono [137] in 2000.

Theorem 1.2.4. For any positive integer m that is coprime to 6, there exists an arith-

metic progression A,,n + B, such that
p(Amn + By) =0 (mod m). (1.2.6)
Ono also provided examples like
p(107* - 31n + 30064597) = 0 (mod 31).

In 2001, Weaver [172] compiled a list of 76,065 Ramanujan-like congruences while the
list was extended by Johansson [104] to 22,474,608,014 congruences in 2012.

1.2.2 Rank and Crank of Integer Partitions

In the previous section, we have introduced partition congruences from the analytic
side. A natural question is that can we interpret these congruences, especially (1.2.1),
(1.2.2) and (1.2.3), combinatorially? In other words, can we find a combinatorial statistic
such that we can split the partitions of, for example, 5n + 4, into five subclasses of equal
size with the statistic satisfying a certain property in each subclass? This idea was first
raised in 1944 by Dyson [76], who was an undergraduate at that time.

The first statistic Dyson defined is called rank.

Definition 1.2.1. The rank of an integer partition is the largest part minus the number

of parts.

We list the rank of all partitions of 4, 5 and 6 in Table 1.4. From this Table, one may
observe that the partitions of 4 and 5 are divided into five and seven equally numerous

subclasses according to the rank modulo 5 and 7. Based on this observation, Dyson

12



Table 1.4. Ranks of all partitions of 4, 5 and 6

partitions of 4
4
3+1
242
2+1+1
I+1+1+1

rank
3
1
0
-1
-3

partitions of 5
5
441
3+2
3+1+1
24241
2414141
1+1+14+1+1

rank
4

partitions of 6
6
d+1
442
441+1
3+3
3+2+1
3+1+1+1
2+2+42
2424141
24+1+14+1+1
1+14+1+1+1+1

rank

)

made the following conjecture, which was proved by Atkin and Swinnerton-Dyer [30]

about ten years later.

Theorem 1.2.5. Let N(k,m,n) denote the number of partitions of n whose rank is

congruent to k modulo m. Then,

+4) = p(dn + 4
N(0,5,5n )=N(1,5,bn+4)=---=N(4,5,5n+4) _—(715)
and

(,Tn+5) = 7.7 - m+95

Figure 1.2. Splitting a partition through the Durfee square

(2¢; @)n

13

(1.2.7)

(1.2.8)



Let N(m,n) denote the number of partitions of n whose rank is m. We may define a

bivariate generating function

o0
> Y N(m,n)z"g¢"
n>0 m=—oo
This generating function can be easily obtained through the Durfee square. In Figure 1.2,
we can see that for any partition A\ with Durfee square of size n, there is a partition \;
with largest part not exceeding n below the Durfee square. Also, to the left of the Durfee
square, there is another partition Ay with the number of parts not exceeding n. Taking
the conjugate of Ay, we can see that )\, is also a partition with largest part not exceeding
n. Finally, the rank of X of simply the number of parts in Ay minus the number of parts

in A\;. We therefore arrive at the following identity.

Theorem 1.2.6. We have

n2

> i N(m,n)z"q¢" =Y q

o =0 GG Dz O

(1.2.9)

From this generating function identity, the following symmetry property can be
deduced without difficulty.

Theorem 1.2.7. We have
N(m,n) = N(—m,n). (1.2.10)

On the other hand, we see from Table 1.4 that partitions of 6 are not divided into
eleven subclasses of equal size according to the rank modulo 11. Therefore, Dyson further
conjectured in [76] the existence of another statistic called crank such that there exists a
unified combinatorial interpretation of all three Ramanujan’s congruences (1.2.1), (1.2.2)

and (1.2.3) through this statistic. Let me quote Dyson’s original words:

“One is thus led irresistibly to the conclusion that there must be some analogue

modulo 11 ...
I hold in fact:

That there exists an arithmetical coefficient similar to, but more recondite
than, the rank of a partition; I shall call this hypothetical coefficient the

“crank” of the partition, ...



... Whatever the final verdict of posterity may be, I believe the “crank” is
unique among arithmetical functions in having been named before it was
discovered. May it be preserved from the ignominious fate of the planet

Vulcan!”

This statistic was found after over four decades by Andrews and Garvan [23] after

Garvan’s discovery of the vector crank shortly beforehand [80].

Definition 1.2.2. The crank of a partition A is defined by

40N if w(A) =0,
crank(\) := (1.2.11)
(A —w(A) if w(A) >0,
where 1(\) denotes the number of parts in A larger than w(\).
Table 1.5. Cranks of all partitions of 4, 5 and 6
partitions of 4 crank | partitions of 5  crank partitions of 6 crank
4 4 5 5 6 6
3+1 0 441 0 S5+1 0
2+2 2 3+2 4 4+2 4
2+1+41 -2 3+1+4+1 -1 4+1+1 -1
1+14+1+1 —4 24241 1 3+3 3
2+1+1+4+1 -3 3+2+1

1+1+141+1 =5 3+1+1+1 -3
2+2+42 2
2+2+1+1 -2
24+1+14+1+1 —4
1+14+1+1+14+1 -6

In Table 1.5, the cranks of all partitions of 4, 5 and 6. One can see how the equally
numerous subclasses appear according to the crank modulo 5, 7 and 11.

Let M(m,n) denote the number of partitions of n whose rank is m except for n = 1
where M(—1,1) = =M (0,1) = M(1,1) = 1. The following result was due to Andrews

and Garvan.

15



Theorem 1.2.8. We have

- mon (45 9)oo
%mZZOOM(m,n)z SN C N Er (1212)

We have a similar symmetry property to the rank case.

Theorem 1.2.9. We have
M(m,n) = M(—m,n). (1.2.13)

Finally, Dyson’s crank now is not fabled!

Theorem 1.2.10. Let M (k,m,n) denote the number of partitions of n whose crank is

congruent to k modulo m. Then,

M(0,5,5n +4) = M(1,5,5n +4) = --- = M(4,5,5n + 4) = p(5n5+4), (1.2.14)
M(0,7,7Tn+5) = M(1,7,7Tn +5) = --- = M(6,7,7n + 5) = W (1.2.15)
and
M(0,11,11n + 6) = M(1,11,11n + 6) = - - - = M(10,11, 11n + 6) = W.
(1.2.16)

1.2.3 Identities of Rogers—Ramanujan Type

Another ingenious work of Ramanujan [145], which was claimed in 1913 in his first
letter to Hardy, is about the Rogers-Ramanujan identities, which should indeed be
attributed to Rogers in a paper [156] that was completely ignored.

Theorem 1.2.11 (First Rogers—Ramanujan identity). The number of partitions of a
non-negative integer n into parts congruent to £1 modulo 5 is the same as the number of

partitions of n such that each two consecutive parts have difference at least 2.

Theorem 1.2.12 (Second Rogers—Ramanujan identity). The number of partitions of a
non-negative integer n into parts congruent to £2 modulo 5 is the same as the number of
partitions of n such that each two consecutive parts have difference at least 2 and such

that the smallest part is at least 2.

Their analytic forms, which are in terms of generating functions, also look nice.

16



Theorem 1.2.13 (Rogers-Ramanujan identities (analytic form)). We have

3 ¢ _ 1 (1.2.17)

n>0 (Q7 Q)Tb (qv q47 95)00

and

qn2+n 1

> = (1.2.18)

n>0 (q; q)n (q27q3;q5)oo'

One can observe that in the Rogers-Ramanujan identities, two types of partition
sets are considered. One partition set consists of partitions under certain congruence
conditions. For example, in the first Rogers-Ramanujan identity, we enumerate partitions
into parts congruent to +1 modulo 5. The other partition set contains partitions under
certain difference conditions. For example, we require that each two consecutive parts
have difference at least 2 in the first Rogers—Ramanujan identity.

More identities of the same flavor were discovered by mathematicians including Schur
[160], Gleifiberg [84], Gordon [86], Gollnitz [85], Andrews [7] and so forth. Let me excerpt

Schur’s 1926 identity as an example.

Theorem 1.2.14 (Schur). Let A(n) denote the number of partitions of n into distinct
parts congruent to =1 modulo 3.
Let B(n) denote the number of partitions of n into parts congruent to £1 modulo 6.
Let C(n) denote the number of partitions of n such that the difference between two
consecutive parts is at least 3 and greater than 3 if the smaller part is a multiple of 3.
Then,
A(n) = B(n) = C(n). (1.2.19)

The most standard proof of Schur’s 1926 identity is based on recurrences [6], but
there are also combinatorial proofs through bijections [40] and weighted words [3].

In the 1970s, George Andrews [8,10,11] further started a systematic study of Rogers—
Ramanujan type identities and developed a general theory in which the concept of linked
partition ideals was introduced. Unfortunately, this theory was then almost ignored.
However, three chapters of this thesis are devoted to give a revisit of Andrews’ idea and
to make it more feasible.

Finally, it is notable that identities of Rogers-Ramanujan type also have deep
connections with other branches of mathematics. One instance is with representations

of Lie algebras shown in a series of papers of Lepowsky and Wilson [120-123]. For

17



example, they considered level 3 modules for the affine Lie algebra 5/[\2, from which they
also obtained a proof of the Rogers—Ramanujan identities. Along this line, Kanade and
Russell [108] discovered more identities of Rogers—-Ramanujan type by experiments, which
are now known as Kanade-Russell conjectures.

Further, identities of Rogers—Ramanujan type may even have connections with theories
outside of mathematics. For example, in statistical mechanics, the hard hexagon model

has the solution, which was due to Baxter [36], involving the Rogers—Ramanujan identities.

1.2.4 Asymptotics

There is a natural injection between partitions of n and n + 1, that is, we can append
1 as a part to each partition of n so that a partition of n + 1 is constructed. This implies
that {p(n)} is an increasing sequence for n > 1. The next question is how large p(n) is?
In other words, is there an asymptotic formula or even an exact formula for p(n)?

This question was first treated by Hardy and Ramanujan [96] in 1918 using a method
which is now called the Hardy—Littlewood circle method.

Theorem 1.2.15. As n — oo,

27

eV . (1.2.20)

9

I
p(n) ~ mn

One could imagine how shocked MacMahon was when Ramanujan presented him the
value of p(200). Let me simply quote a piece of lines from the movie “The Man Who
Knew Infinity”

(M stands for MacMahon and R stands for Ramanujan.)

M: Well, here we are. p(200), the moment of truth ... Well, you first. What

is your formula given you?

R: Three billion nine hundred and seventy two thousand nine hundred and

ninety eight million.

M: My God! You are close [*silent for 5 seconds*| within two percent. Well,
I will be damned.

Well, what is the exact value of p(200) then? The answer is

p(200) = 3,972,999, 029, 388.

18



There are a number of ways to study the asymptotic behavior of a sequence, all

starting with the generating function. Recall that the generating function of p(n) is

1 1
PO = Gon " =gt -pi—g)

The easiest method is Ingham’s Tauberian theorem, which is stated as follows.

Theorem 1.2.16 (Ingham [101]). Let f(q) = >,50a(n)q™ be a power series with weakly
increasing nonnegative coefficients and radius of convergence equal to 1. If there are

constants A > 0 and A\, « € R such that

ast — 0T, then
a1
A AT v

as n — Q.

Since p(n) is non-decreasing, it is only necessary to study the asymptotics of P(q) as
q — 17 along the real line.

But it is not always the case that the non-decreasing condition is satisfied for a given
sequence. In such cases, one should continue with some more complicated calculations.

Let us still use p(n) to illustrate. The basic idea here is Cauchy’s integral formula. Recall

that . Plg)
q
= — d
p<n) 271 f(;:|qr q”“ ¢

where the contour C is inside the unit disc and the contour integral is taken counter-
clockwise.

Since
1

=gl —=g)1—¢%)-

one can see that P(q) has a dominant pole at ¢ = 1. Hence, if the radius of the contour

P(q) =

C inside the unit disc is taken to approach 1, then the main contribution comes from the
arc close to 1. This is essentially the principle of Wright’s circle method.

When we study the asymptotics, one important function that always appears is the
modified Bessel function of the first kind or the I-Bessel function.
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Definition 1.2.3. The modified Bessel function of the first kind is defined by

L(@) = mE::o m!I‘(m:— s+ 1) (§> - ’ (1.2.21)

where I'(z) is the gamma function.

Its asymptotic behavior is also well known.

Theorem 1.2.17 (Cf. [2, p. 377, (9.7.1)]). For fized s, when |argz| < 7/2,

e’ 452 —1 (45> —1)(48* —9)
I(z) ~ — <1 —— 21(50)? - > : (1.2.22)

After considering the dominant pole at ¢ = 1, one could even move further by noticing
that the pole of P(q) at —1 is 1/2 as “important” as the pole at 1, the pole at primitive
cube roots of unity is 1/3 as “important,” and so on. Hence, we could focus on the
asymptotic behavior of P(q) on arcs inside the unit disc that is close to a rational point
on the unit circle, that is, a point of the form exp(2mih/k). Based on this idea along with

other techniques, Rademacher [143] eventually arrived at an exact formula as follows.

Theorem 1.2.18. We have

1 d 2 ) T |2 1
p(n) = 275 3 Ap(n)Vk I (71_214 sinh (k 3 (n - 24))) : (1.2.23)

k>1

where

Ak (n) _ Z 67ri(s(h,k:)—2nh/k)
0<h<k
ged(h,k)=1

with s(h, k) being the Dedekind sum defined by

wo= = ()

r—|z]—-1/2 ifxdZ,
0 if x € Z.

where

(&) =

Let me end this section with an example given on page 70 of [12].
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Example 1.2.1. Let us use the first 8 terms in Rademacher’s formula to estimate p(200):

+ 3,972,998, 993, 185.896
+ 36,282.978

— 87.584

+ 5.147

+ 1.424

+0.071

+0.000

+0.044
3,972,999, 029, 387.975

Eureka! We are only .025 away from the exact value!
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Outline

o Chapter 2 is devoted to an elementary proof of an infinite family of congruences

modulo powers of 5 for pp(n), the number of partitions of n into distinct parts.

o Chapter 3 is devoted to some eta-quotient representations concerning the Rogers—

Ramanujan continued fraction.
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Chapter 2

Partitions into Distinct Parts Modulo Powers of 5

This chapter comes from

e S. Chern and M. D. Hirschhorn, Partitions into distinct parts modulo powers of 5, Ann. Comb.
23 (2019), no. 3-4, 659-682. Also in: George E. Andrews—80 Years of Combinatory Analysis,
305-328, Birkhéduser/Springer, Cham, 2021. (Ref. [64])

2.1 Introduction and Main Result

Let pp(n) denote the number of partitions of n into distinct parts. Then

> ro(n)q" = (—¢; @) =

> S0 (2.1.1)

where
E(q) = (¢; ¢)o-

Like the ordinary partition function p(n), pp(n) also enjoys an infinite family of

congruences modulo powers of 5. Namely,

52a+2 -1

52a+1
Pb < n+ 21

) =0 (mod 5%). (2.1.2)
It should be noted that this congruence, which is due to Rgdseth [154] and independently

to Gordon and Hughes [87], requires the theory of modular forms in its proof. On the

other hand, the congruence for p(n) stated as follows,

p(5°‘n + 5a) =0 (mod 5%) (2.1.3)
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where
19 x 5% +1

if «v is odd,
5 = 24 (2.1.4)
23 x5+ 1 . )
——— if a is even,
24

which was conjectured by Ramanujan [150] in 1919, was first demonstrated by Watson
[171] in 1938, again, with the help of modular forms. However, in 1981, it was shown by
Hirschhorn and Hunt [100] that (2.1.3) could also be achieved by a purely elementary
approach, which is based on a modular equation of degree 5.

Now a natural question arises:

Can we prove (2.1.2) by an elementary method, or even using the words of Mike

Hirschhorn, by only “high School algebra, but taken somewhat further?”

The goal of this chapter is to settle this problem in affirmative. Our result can be

stated as follows.

Theorem 2.1.1. For a > 1,

) 52 _ (52—1)/24 '
Z Pp (5 a—ln + 24 ) C]n =7 Z $2a71,i<1_17 (215)
n>0 i=1
52(1 -1 (52a+1_5)/24 )
> pp <520‘n + ) =6 D @ (! (2.1.6)
n>0 24 i=1
where
o E(@)E@) o _ B(@)E(@) ‘= qE(qQ)E(qlo)?’ (2.1.7)
E(q)*E(q"°) E(q)E(q")*’ E(q)*E(q)
and where the coefficient vectors X, = (Ta1, Taz, -+ ) are given recursively by
x; = (1,0, ---), (2.1.8)
and for a > 1,
Xon = XgaflA (219)
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and
Xoa+1 = XgaB, (2110)

where A is the matriz (o ;)i j>1 and B is the matriz (5; )i j>1 where the o, j and B;; are

given by

N,
o agrty = — (2.1.11)
3,521 ’ D

and
> Bigaly = = (2.1.12)
where

N, = (y + 160y* + 2800y° 4+ 16000y* + 32000y°)z
+ (180y* 4 3000y + 16800y + 32000y° )2
+ (75y* + 12153° + 6600y* + 12000y°)z>
+ (14g? + 220y° + 1150y 4 2000y°)z*
+ (y* + 15y° + 759" + 125¢°)2° (2.1.13)
Njg = (5y + 660y + 144005> + 120000y* + 448000%° + 640000y°)x
+ (y + 680y* + 14900y° + 123200y 4 456000y + 640000y° )2
+ (26532 + 5785y + 47500y + 174000y° + 240000y°)z*
+ (469 4 1000y> + 8150y* + 29500y° + 40000%°)z*
+ (3y* + 65y° + 525y* + 1875y° + 25004°)2° (2.1.14)
and

D' =1 — (205y + 4300y + 34000y> + 120000y* + 160000°)z
— (215y + 4475y* + 35000y° + 122000y* + 160000y°)z>
— (85y + 17502 + 13525¢° 4 46000y* + 60000y°)z*
— (15y + 305y 4 2325y> + 7875y* + 10000y°)z*
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— (y + 20y% + 1509° + 500y* + 6253°)2°.

Furthermore, for a > 1,

Toa+1, = 0 (mod 5%),

Toat2,; =0 (mod 5%),

from which it follows that for a > 1,

St 1 52a+2 -1 _ N
pp |5 n+724 =0 (mod 5%),

2042 5202 -1 — a
pp [ 5T n + 51 =0 (mod 5%).

(Of course, (2.1.19) is a special case of (2.1.18).)

2.2 Preliminaries

Let

R(q) = (%q4wf) C x(=a) = () = 29

> ¢

Then ([98, (8.1.1)])

E(q) = E(q25) <R(q5) —q- q2R(q5>> )

([98, (8.4.4)])
1 E@y ([ 1 q 2¢° 3¢° s
ﬂw_E@P<M@{WMW+R@P+M®+M

—3¢°R(¢") + 2¢°R(¢°)* — ' R(¢*)” + °R(¢”)*) ,

([98, (40.2.3)])

9 9
q, 4,49 ,q9 10
R(¢*) — R(q)> = 2¢ iq :
¢ q )

31

(2.1.15)

(2.1.16)
(2.1.17)

(2.1.18)

(2.1.19)

(2.2.1)

(2.2.2)

(2.2.3)



(198, (40.2.4)])

4 6 9
7, 4", 4% q
1“?(<12)+R((1)2=2<2 ;. 8;qw) ,

q4,9°,9,4

([98, (41.1.3)])

4 5 5 6 9

1_qR<q>R<q2)2: <q7 q 7q 7q 7q 7q . 10

¢ ¢ qq, ¢"

([98, (41.1.2)])

([98, (34.8.4)])

and ([98, (34.8.3)])

E@) Bl _, E@EG°)
E(q)?  E(¢?)? E(¢?)E(¢)
We require the following results.
Lemma.
R(¢*)  R(q)® _ 4g X9
R(q)*  R(@®)  “x(=¢°)*
R(¢*) — R(q)”

o8

32

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)



1+qR(9)R(¢*)?  R(¢?)’
T T
i + R0 R = ST e S
1 B

and

x(=q) _ E(@)'E(¢"°)
X(=¢°)°  E(¢*)?E(¢)"

1 —4q

(2.2.12)

(2.2.13)

(2.2.14)

(2.2.15)

(2.2.16)

Proof of (2.2.9). If we multiply (2.2.3) by (2.2.4) and divide by R(q)*R(¢?), we find that

R(¢*)  R(q)* _ (R(¢*) — R(¢)*)(R(¢*) + R(q)?)
R(q)* R(q%) R(q)*R(q%)
9 9 4 6 .9
N T, o (00T
¢, 4. q ¢, ¢ ¢
- 9 .9 .2 8

¢ 4 4% 4% 4% ¢ ¢, ¢’ % q g0
q8 q8 4 6’ .

3334

_ 4 (q; qz, qz, qz, qi;qm)
¢, 0., ¢ q .
(450
(4% ¢1°)3
x(—9q)
xX(=¢°)>
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Proof of (2.2.10). If we divide (2.2.3) by (2.2.4), we obtain

¢. ¢ ¢
R(¢?) — R(q)? ¢ q"

¢ ¢4 4% ¢
o

q, q27q87q9'q10
¢, q* ¢ q"

_ (00
%t dt db e )
= qR(q)R(¢*)".

Proof of (2.2.11). If we multiply (2.2.5) by (2.2.6) and divide by R(q)R(¢*)?, we find

. 1 — PRQR()? — (1-qR(q )R( 2)2)( +qR( )R(¢%)%)
(¢)R(¢*)?
(q, ¢, ¢ 4" ¢ 1) (q %4 4% ¢%, ¢ )
¢ dd ) \a dhdt g 79,q
(q, 7 4% ¢ 1) (q NN 10)
cadd ) \ahahd )

_ q5,q5,q5,q5,q5‘q10
¢, ¢ d " )
5

_x(=¢")
x(=q)

Proof of (2.2.12). If we divide (2.2.5) by (2.2.6) we obtain

q, q47 q57 q57 q67 q9 . q10
1— qR(q>R(q2)2 . q27q37q37q77q77q9, 00
1+ qR(Q)R(q2)2 (QQ, q27 q57 q57 q87 qS_ qlo)

g, ¢*,q* 4% ¢% ¢°
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_ (0000000
¢ ¢ ¢ dd )

]

Proof of (2.2.13). Note that (2.2.10) is equivalent to (2.2.12), because they are both

equivalent to
R(q%) — R(q)* = qR(q)’R(¢*)* + qR(q) R(¢*)". (2.2.17)

If we divide (2.2.17) by R(q)R(¢?)? and rearrange, we find that

R(q) 1 R(q)*
_ _ —q 2.2.18
R - FoR@P R 2219
while if we divide (2.2.17) by R(q)?, rearrange and multiply by ¢, we obtain
R(¢*)* R(q*)
2 = —¢’R(q)R(¢*)* + —q. 2.2.19
TR q"R(q)R(q") e ( )

If we add (2.2.18) and (2.2.19), we obtain

RO R (L onignep) g (10) )

R(q?)3 R(q) R(q)R(¢?) R(q) (¢%)
X(=¢°)° P x(=a)
xX(—q) X(—q°)°

Proof of (2.2.14). If we multiply (2.2.9) by (2.2.11) and add (2.2.13), we find that

+¢’R(¢)°R(¢°) = <R(323 - R(Q)2> ( ! - — QQR(Q)R(Q2)2>

R(q)*R(q?) R(q)R(¢?)

N ( R(q;3 +‘-’2ng?23>




xX(—¢°)° 2 X(=q)
* x(—q) 20t (—q5)5>
_ x(=¢°) 2 X(=9)
-~ x(—q) TRt (—¢®)
O
Proof of (2.2.15).
X(—¢°)° E(¢*)E(¢°)°
v(—a) 1T B E@oy
_ E@) (E(QQ)E(Q5)3 qE(q10)4>
E(¢)* \ E(9)E(q") E(¢°)?
_ E(@)? B!
E(q')*  E(q)*"
O
Proof of (2.2.16).
o x(=9) _, E(@E(¢")
! 4qx(—q5)5 -l (P E()?
_ B¢ (E@)' |, E(@E(@¢")
= By <E<qw>2 1 E<q2>E<q5>>
E(¢")*  E(q)*
E(¢°)* E(¢?)?
O

2.3 The Work of Baruah and Begum

It is fair to mention that our idea is motivated by a recent work of Baruah and Begum
[35], in which the following results were shown.

> pp(dn+1)¢" = E(¢*)2E(¢°)?

2 BB (2:3.)
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E(¢?)E(¢"°)? 2 (E()E(q)*\”
g (1 i 160q< E(q)*E(¢) ) 0 ( E(q)*E(q°) )

5 (E(®)E(@)*’ L[ E(®)E@@9)*)*
+16000¢ () ) + 32000 (E(q)gE(q5) ) ) (2.3.2)

as well as the corresponding result for Z pp(125n + 26)q™.
n>0
Now let us reprove (2.3.1). We have

Y po(n)q" = (—¢; @)oc = g(é;
_ _EB@®y [ 1 q 2¢ 3¢ .
‘E@ﬁ(ﬂfﬂ*ﬂ&ﬁ*ﬂfﬁ*ﬂfﬁ”q

—3q5R(q5) + 2q6R(q5)2 . q7R(q5)3 + qu(q5)4)

x E(q”) ( L q - q4R(q10)> :

_ E(@)E(¢")
E(q)"
1 2 3 2| s, qg)_R(Q)2
X«R@WM%+QM”R@0 g *43@2 m&ﬂ)
_ B¢ E(d")
E(q)"

o[ (X=2) o x(=9)\ . o, x(=9)

< xX(—q) T+ x(— 5)5> P12 (—q5)5>

_ E(@)E(q") (x(=¢") > x(—q)

- E(q)f (X(—Q) -4 x(— 5)5>

_ E(@)PE(q") (x(=¢°)° x(—q)

- E(q)f (X(—Q) +q> <1 4qx( q5)5>

_ (E(q5)5E(q1°)> E(qz)4E(q5)2> <E(Q)4E(q1°)2>
E(q)° E(q)?E(¢"°)* ) \ E(¢*)*E(¢°)*
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Note that (2.3.1) is the case a =1 of (2.1.5).

2.4 The Modular Equation

We obtain the modular equation for (.
Let ((¢°) = Z.

Theorem 2.4.1.

¢° — (2057 + 430022 + 340002 + 120000Z* + 1600002°)¢*
— (2157 + 44752% + 350002 + 1220002* + 1600002°)¢?
— (857 + 175027 + 13525Z° + 46500Z* + 600002°)¢?
— (157 + 3052% + 23252° 4 7875Z* + 10000Z°)¢
—(Z +202% + 150Z° + 500Z* + 6252°) = 0. (2.4.1)

Proof. Let H be the huffing operator, given by

H (Z a(n)q"> => a(5n)q™. (2.4.2)

n n

We can show, using extremely lengthy but elementary calculations (see §2.9), that

H(¢) =417 +8602% + 68002 + 24000Z* + 3200027,
(2.4.3)
H(¢*) = 86Z + 1019527 4 3666002 + 65348002* + 683840002° + 4507200002°
+ 190720000027 + 50560000002 + 76800000002 + 51200000002,
(2.4.4)
H(C*) = 51Z + 2749572 + 28362652° + 1286889002* + 33436920002°
+ 562836800002° + 6562056000002 + 55020960000002°
4 338213120000002° 4 153192960000000.2*°
+ 506956800000000Z"" + 11950080000000002 '
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+ 1904640000000000Z " + 1843200000000000.2**
+ 8192000000000002,
(2.4.5)
H(¢Y) =127 + 326742% + 85792602 + 8314922752* + 429584340002°
4 13967731800002° + 31314949600000Z7 + 5118022888000002°
+ 6319880448000000Z° + 60349364480000000.2°
+ 452174745600000000Z ™ + 26790385920000000002*2
+ 12574269440000000000Z " + 465619353600000000002
+ 134544588800000000000Z " + 297365504000000000000.2 ¢
+ 485949440000000000000Z " + 553779200000000000000.2*
+ 393216000000000000000Z* + 131072000000000000000.2*°
(2.4.6)

H((%) = Z + 2137022 + 139320502 + 26849021257 + 2511316881252°
+ 140976386500002° 4 532547945100000Z7 + 145157665540000002°
+ 2988834473800000002° 4 47978423660000000002*°
+ 61395781800000000000Z ™ + 636255683040000000000.2 "
+ 53986013068800000000002* + 377722394368000000000002
+ 21875584000000000000000Z** + 1049457704960000000000000.2°
+ 4160657715200000000000000Z*" + 13552680960000000000000000.Z
+ 35909189632000000000000000Z* + 76195266560000000000000000Z*
+ 1264386048000000000000000002%" + 158138368000000000000000000.2>
+ 140247040000000000000000000Z2% + 786432000000000000000000002>*
+ 2097152000000000000000000022°.
(2.4.7)

Let n be a fifth root of unity other than 1, and for ¢ =0, 1, 2, 3, 4 define

G = ¢(n'q). (2.4.8)
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Then the power sums 7y, --- , 75 of the (; are given by

m =G+ -+ =5H(C),
T =C( 4 -+ + G =5H(C),

ms=C 4+ -+ =5H(C). (2.4.9)
From (2.4.9) we obtain the symmetric functions oy, --- , 05 of the ,
01 = Z G=m

= 2057 + 430022 + 3400022 + 120000Z* + 1600002°,

o2 = (¢ = l(mfﬁ — )

1<J 2

= —2157 — 4475Z% — 35000Z° — 122000Z* — 16000025,

1
03 = Z GiGiCr = §(7T102 — Ta0y + T3)

1<j<k
=857 4+ 17502% + 1352523 + 460002* + 6000025,
1
04 = Z GiCiCeG = 1(7103 — M09 + T30 — Ty)
1<j<k<l
= —15Z — 3052% — 232523 — 7875Z* — 100002°,
o5 = (oG- -Gy = 5(7104 — o035 + T30 — M40 + T5)
=7 +20Z° +1502% + 500Z* + 6252°. (2.4.10)

Now, (g, --- ,(4 are the roots of

(X = G)(X = (X = Q)X = G)X =)
:X5—O'1X4+O'2X3—0'3X2+0'4X—O'5:0, (2411)

or,

X — (2057 + 430022 + 34000Z° + 120000Z* + 1600002°) X *
— (2157 + 44752% + 3500023 + 1220002* 4 1600002°) X*
— (857 + 175027 4+ 135252° + 465002* + 600002°) X >
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— (157 + 30522 + 23252° 4 7875Z* + 10000Z°) X

—(Z +202% + 1502 + 500Z* + 6252°) = 0. (2.4.12)

In particular, ¢ is a root, and we obtain (2.4.1). ]

Remark. 1t is truly remarkable, amazing even, that although 7, --- 75 are polynomials
of degree up to 25, o1, --- , 05 are of degree 5.

2.5 Some Important Recurrences and Generating Functions

Let U be the unitizing operator, given by

U <Z a(n)q”> = a(5n)¢". (2.5.1)

It follows from (2.4.1) that for ¢ > 6, u; = U((") satisfies the recurrence

= (205¢ + 4300¢? + 34000¢* + 120000¢* + 160000¢°)u;_;
+ (215¢ + 4475¢% + 35000¢* + 122000¢* + 160000 )u;_o
+ (85¢ 4+ 1750¢* + 13525¢> + 46500¢* 4+ 60000 )u;_3
+ (15¢ 4 305¢2 4 2325¢% + 7875¢* 4 10000 ) ;4

+ (¢ 4 20¢* + 150¢* + 500¢* + 625¢%)u;_s. (2.5.2)

The recurrence (2.5.2), together with the five initial values wuy, ug --- ,us, which can
be read off from (2.4.3)—(2.4.7) by replacing Z by (, gives

Surt == (2.5.3)

i>1

where

N = (41¢ + 860¢? + 6800¢> + 24000¢* 4 32000¢°)x
+ (86¢ + 1790¢? + 14000¢? 4 48800¢* + 64000¢°)
+ (51¢ + 1050¢? + 8115¢* + 27900¢* + 36000¢°)z?
+ (12¢ + 244¢* 4 1869¢* 4 6300¢* 4- 8000¢°)
+ (¢ 4 20¢? + 150¢3 + 500¢* + 625¢° )2 (2.5.4)
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and

D =1 — (205¢ + 4300¢* + 34000¢* + 120000¢* 4 160000¢°)x
215¢ + 4475¢? + 35000¢ 4 122000¢* + 160000¢° )2
85¢ + 1750¢? + 13525¢° + 46500¢* + 60000¢”)z*

15¢ 4 305¢2 + 2325¢* + 7875¢* 4 10000¢°)2*

—(
—(
—(
— (¢ +20¢% + 150¢* + 500¢* + 625¢%)x°.

From (2.5.3)—(2.5.5) we deduce that for i > 1,

5i
U(gi) =U; = ZMz’,jCj
j=1

where the p; ; are given by

oo bl o N/
L2 sty =

=1 j=1

where
N' = (41y + 860y + 6800y> + 24000y* 4 32000y )z
+ (86y + 1790y 4 14000y> + 48800y* + 64000y°) x>
+ (51y + 1050y 4 8115y + 27900y 4 36000y°)2*
+ (12y + 244y* + 1869y° + 6300y* + 8000y )z*
+ (y + 20y* + 150y° + 500y* + 625y°)2°
and

D' =1 — (205y + 4300y* + 34000y> + 120000y* + 160000y )z
— (215y + 4475y* + 35000y° + 122000y* + 160000y°)z>
— (85y + 1750y + 13525¢° 4 46500y* + 60000y°)z*
— (15y + 305y 4 2325y> + 7875y* + 10000y°)z*
— (y + 20y* + 150y + 500y* + 625¢°) 2.

(2.5.5)

(2.5.6)

(2.5.7)

(2.5.8)

(2.5.9)

More importantly, if we multiply (2.4.1) by v and apply the operator U, we see that

42



vV =

U(v¢ 1) satisfy the recurrence (2.5.2) (with v for u).

Also, using the same sort of calculations as in §2.4 (see §2.9 Appendix),

vy = U(y) = §(1 + 160¢ + 2800¢? 4 16000¢> + 32000¢*),

V2

U3

(2.5.10)
= U(y¢) = §(385¢ + 40100¢? + 1312800¢3 4 20912000¢* + 189920000¢°
4 1043200000¢° + 3456000000¢” + 6400000000¢® + 5120000000¢?),

(2.5.11)
= U(y¢?) = 6(290¢ + 119015¢* + 11235600¢> + 476348000¢* + 11537760000¢°
+ 179434400000¢° + 1908992000000¢” + 14377472000000¢®
+ 77783040000000¢° + 301644800000000¢ ' 4 821248000000000¢ ™
+ 1495040000000000¢ 2 + 1638400000000000¢** + 819200000000000¢ ),

(2.5.12)

vy = U(yC?) = 6(99¢ + 157795¢2 4 36522125¢° + 3308569500¢*

and

Us

+ 161943150000¢° + 4995603800000¢° + 105933588800000¢”
+ 1628976896000000¢® + 18797435520000000¢° + 166360908800000000¢ *°
+ 1143762304000000000¢* + 6142300160000000000¢ 2
+ 25729781760000000000¢ ** + 83330457600000000000¢
4 204857344000000000000¢** 4- 370032640000000000000¢
4 463667200000000000000¢*™ 4- 360448000000000000000¢*®
+ 131072000000000000000¢ ™)
(2.5.13)

= U(y¢*) = 6(16¢ + 118090¢? 4 63835100¢* + 11315760375¢*

+ 1002222145000¢° + 53778439200000¢° 4 1946392973200000¢”

+ 50789296612000000¢® 4 998696483520000000¢” + 15256932894400000000¢ *°
+ 185007570368000000000¢ ™ + 1807671489280000000000¢ *2

+ 14376293539840000000000¢ ™ + 93630345523200000000000¢ *

+ 500636522496000000000000¢*° + 2195582095360000000000000¢ '

4 7860788428800000000000000¢ " + 22768123904000000000000000¢ *®
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+ 52564656128000000000000000¢ ™ + 94522572800000000000000000¢ >
+ 127664128000000000000000000¢*" + 121896960000000000000000000¢ >
+ 73400320000000000000000000¢** + 209715200000000000000000000¢>*).

(2.5.14)
It follows that for ¢ > 1,
U™ =8> ai ;¢ (2.5.15)
j=1
where
oo  bi o Na
DD gty = o (2.5.16)
i=1j=1
where
N, = (y + 160y* + 2800y° + 16000y* + 32000y°)z
+ (18032 + 3000y® + 16800y* + 32000%°) x>
+ (75y* + 12153° + 6600y* + 12000y°)z>
+ (14y* 4 220y° + 1150y* + 2000y°)z*
+ (y? + 15y° + 75y* + 125¢°)2° (2.5.17)

and D’ is given in (2.5.9).

Similarly, if we multiply (2.4.1) by ¢'6 and apply the operator U, we see that
w; = U(q '8¢ 1) satisfy (2.5.2) (with w for u).
Also,

wy = U(qg ) = v(5 + 660¢ 4 14400¢ + 120000¢> 4 448000¢* + 640000¢°),

(2.5.18)
wy = U(q7'6¢) = (1 + 1705¢ + 171700¢ + 6083200¢> + 110016000¢*
+ 178080000¢° + 797120000¢° + 34688000000¢” + 94720000000¢*
+ 148480000000¢” + 1024000000000¢ ),
(2.5.19)

w3 = U(qg~10¢?) = v(1545¢ + 523885¢2 + 48836000¢> + 2157580000¢*
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and

+ 55972480000¢° 4 950485600000¢° + 11233328000000¢”
+ 95713408000000¢® + 598718720000000¢° 4 2762265600000000¢1°
+ 9317888000000000¢ ™ 4 22405120000000000¢'* + 36454400000000000( 2
+ 36044800000000000¢** + 16384000000000000¢*?),
(2.5.20)
= U(q0¢%) = 7(686¢ + 753625¢* + 161075075¢> 4 14497246500¢*
+ 727863490000¢° 4 23458401400000¢° + 526452595200000¢ "
+ 8658501792000000¢® + 107918950400000000¢” 4 1042082905600000000¢ ™
+ 7904596864000000000¢ " + 47450048000000000000¢ *2
4 225774243840000000000¢ ™ 4 847926476800000000000¢
4 2486042624000000000000¢*° + 5577277440000000000000¢ '
+ 9255321600000000000000¢ " + 107151360000000000000000¢ '
4 7733248000000000000000¢ ¥ + 2621440000000000000000¢2)
(2.5.21)

= U(qg '6¢*) = 7(163¢ + 4+630970¢ 4 295013300¢>

+ 50030923625¢* 4 4413689785000 + 240963519250000¢°

+ 8992052284600000¢7 + 244243690752000000¢% + 5037514186320000000¢°

+ 81262009334400000000¢ ™ + 1047144506208000000000¢ ™

+ 10942698476160000000000¢* 4 93715045227520000000000¢

+ 662259232256000000000000¢ ™ + 387577451008000000000000¢ *°

+ 18796453150720000000000000¢ ¢ 4 75357109452800000000000000¢ 7

4 248290942976000000000000000¢*® + 665623035904000000000000000¢ *

+ 1429384069120000000000000000¢° 4 2401107968000000000000000000¢>*

+ 3040870400000000000000000000¢?* 4 2731540480000000000000000000¢

+ 1551892480000000000000000000¢* + 419430400000000000000000000¢25).
(2.5.22)
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It follows that for ¢ > 1,

5i+1

Ulg o) =7 > Bi¢ ! (2.5.23)
j=1
where
oo bi+1 N
i j B
; Z By’ = 5 (2.5.24)
=1 j=1
where

N = (5y + 660y> + 14400y° + 120000y* + 448000y° + 640000y°)x
y + 680y? + 14900y° + 123200y" + 456000%° + 640000y°)z>
26512 + 5785y> + 47500y + 174000y° + 240000y°)z>

46y* + 1000%° 4 8150y* + 29500%° + 40000y®)2*

n
n
I
+ (3y? + 65y° + 525y* + 1875y° + 2500y°)2® (2.5.25)

(
(
(
(
and D' is given in (2.5.9).

2.6 Proof of the First Part of Theorem 2.1.1

The first part of Theorem 2.1.1 follows by a simple induction from (2.3.1), (2.5.15)

and (2.5.23), as we now demonstrate.

We know that (2.1.5) is true for a = 1.
Suppose (2.1.5) is true for some a > 1.
Then

91 5204 -1 (52a_1)/24 -
ZPD <5 “Tin + 24 ) C]n =7 Z $2a_17iCZ_ . (261)

n>0 i=1

If we apply the operator U to (2.6.1) and use (2.5.15), we find

52a -1 (52a_1)/24 )
> pp (52a_1(5”) + ) "= > Ton-1,UNCT)

n>0 24 i=1
(52>—1)/24

5i
= Z Toa-1:0 Z Oéi,jgj_l
i=1

=1
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=4 Z

(520t1-5)/24 [(5%%—1)/24 ’
( $2a1,7;04i,j> ijl

j=1 i=1
(520+1-5)/24
i—1
=9 Z an,jC] )
Jj=1

or,

52 _ (522+1_5)/24 ‘
2P <52an T ) ¢"=05 > @l
n>0 J=1
which is (2.1.6).

Now suppose (2.1.6) is true for some o > 1.

Then
520 _ (529F1-5)/24 ‘
> po (52% + 53 > =g > @ (2.6.2)
n>0 i=1

If we apply the operator U to (2.6.2) and use (2.5.23), we find

52 _ (52o+1-5)/24

> o (520‘(571 +1)+ = > Toa,iU (g 10¢™1)

n>0 24 i=1
(522+1-5)/24 5i+1
= Z T20,i"Y Z Bi;¢071
i=1 Jj=1

(520t2-1)/24 ((52a+1—5)/24

=7 Z Z I2a,zﬂz‘,j> ¢t

j=1 =1
(5%22+2-1)/24

=7 Z Toat1,;¢0 71,

j=1
or,
et 520+2 _ 1 (522+2-1)/24 -
ZPD (5 i + 24> q" = Z Toa+1,;¢7 7,
n>0 J=1
which is (2.1.5) with o + 1 for a. O
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2.7 Proof of the Second Part of Theorem 2.1.1

Let v(n) denote the (highest) power of 5 that divides n.

We prove the following theorem.

Theorem 2.7.1.

oz [550]
5j—i—1

Proof. Let \;j = v(oj), pij = {

|

Observe that from the recurrence (2.5.2), for i,j > 6,

Aij > min(N_q o1+ LA 0+ 2, 13+ 3, Aim1j—a+4, N5+ 4
Aicoj—1t 1L, Ao 0+2, N0 3+4, Ni—gja+3,Nicajs+4,
Nicsjm1+ 1, Nics 0+ 3, Nicsjo3 + 2, N\i_gj—a + 3, \i3 5 + 4,
Nicaj—1+ 1L Nicajo+ 1, Nigj3+ 2, Ni—ajoa+ 3 Ni—aj—5 +4,
ANiesjo1+ 0, X550+ 1, N5 -3 + 2, M54 + 3, ANims5 55 + 4).

On the other hand,

pi; =min(p;1 -1+ 1, pic1joo + 2, pim1j-3 + 3, pic1,j—a + 4, pic1j—5 + 4
Pi—2j—1+t L, piojo+2,pi 0 3+4 pi—oja+3,pi—ajs+4,
pi—3j-1+1,pi3;2+3,pi-3;3+2,pi3j-4+3,pi-3;55+4,
Pi—aj—1+ L, picajo+1,pi—aj_3+2,pi—aj_a+3,pi—ajs5+4,
Pi—sj—1+0,pi552+ 1, pi_sj3+2 pi—sja+3, pisjs+4).

For, the right side of (2.7.4)

_ QSj—i—l—lJ {5j—z’+2J fm—i—i—BJ 5j—z’—|—4J {5]’—1’—1
= min > 5 > )
6 6 6 L 6 6
{5j—i+2J {5j—i+3J {53’—@'%—10 {5j—i—1J {5;‘—@}
6 ’ 6 ’ 6 1’ 6 ’ 6 ’
{5j—i+3J {Sj—zﬁl—lOJ {5;’—@'—1 {5]'—@} {5j—i+1J
6 ’ 6 ’ 6 1’ 6 ’ 6 ’
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(2.7.3)
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{5j—i+4J {5j—i—1J {5‘7—@} {5j—i+1J {5j—i—|—3J
6 ’ 6 e I 6 ’ 6 ’
{5]’—@'—1J {5‘7—1 L5j—z’+1J {5j—i+2J {5j—i+3D
6 e 6 ’ 6 ’ 6
5j—i—1
S,

The values of \;; — p;; for 1 < i < 5 and for 1 < j <5 are given in the following

tables. Note that they are all non-negative. (We use e for cc.)

J
1234567891011121314 1516 17 18 19 20 21 22 23 24 25 26
t100000e---
2000000010 o ---
3000000000 0 0O OO0 O0 e
4 ¢001000000 0 0O 0O 0 0O
01000

0000 e--
5000001000 0 001011100 e---
(2.7.5)
i
12345678910111213 1415 16 17 18 19 20 21 22
jl0e---
2000000 ---
30000000100 0 e ---
400010000000 00000 e---
500000000002 0000000000 e---
(2.7.6)

(2.7.1) follows from (2.7.3)—(2.7.6) by induction.

The proof of (2.7.2) is essentially the same as that of (2.7.1). The boundary values
are given by the following tables.
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J
1234567891011121314 1516 17 18 19 20 21 22 23 24 25 26 27
11 100100e---

20000000000 0O e ---
3001100000 0 0 0 0 0 O0 e
4 020000001 0 0 2 00O0O0O0DO0O0DCO0 e---
5000002000 0 01 0110010012000 e---
(2.7.7)
)
12345678910111213141516 17 1819 20 21 22 23
j110e---
20000010e---
30002000000 1 0 @ ---
41010000000 0 OO0 0020 e---
500100000101 00O01TO0DO0ODO0OO0O01O0e---
(2.7.8)
]
Theorem 2.7.2. For a > 0,
51 — 8 )
V(Toat11) > @, u(:cgaH,i)ZOz—i-{ Jf0r222, (2.7.9)
51— 2
y(gszw,i)zomﬂZ J (2.7.10)

S i
Proof. If we replace v(A) by QEWD and v(B) by QWD with
6 ij>1 6 i.>1

the exception v(by ;) = 1, and we start with v(x;) = (0, oo, ---), the results follow by

induction. O

This completes the proof of Theorem 2.1.1. O]
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2.8 Calculations

We find that

x1=(1,0, ), (2.8.1)

x» = (1, 160, 2800, 16000, 32000, 0, - - ), (2.8.2)

x3 = (5% 33, 22 % 5% 1039573, 2* x 5% x 84358511, 2° % 5% x 1519417629,
2% % 5% % 57468885219, 2! x 5% % 239126250621, 220 * 5° x 493702983,
210 5 57 % 57851635449, 2'7 * 5% x 155363323153, 22% * 5% x 99443868167,
220 % 59 % 1277863945093, 2% x 51 % 82117001559, 2** * 5% x 85675198911,
229 5 5M % 916288433, 2% x 5'3 x 32357578059, 2*% x 5'* x 2366343709,
236 4 516 % 57370733, 237 % 517 % 22998577, 23¢ x 518 % 30309607,
238 4 518 % 20313321, 299 % 59 % 2181069, 2% * 52! % 18319,
2% 4 528 %29, 246 % 522 4 521, 2% % 522 % 37, 20 x 5% 0, ... ), (2.8.3)

in agreement with Baruah and Begum and

v(x1) = (0, 00, -+ ), (2.8.4)

v(x2) = (0, 1,2, 3,3, 00, - ), (2.8.5)

v(xs) = (1,1,2,3,3,4,6,7,8, 8, 9,11, 12, 14, 13, 14, 16, 17, 18, 18, 19, 21,
23,22, 22, 23, 00, -+ ). (2.8.6)

2.9 Proof of (2.4.3)

We provide a proof of (2.4.3). The proofs of (2.4.4)-(2.4.7), (2.5.10)—(2.5.14) and
(2.5.18)—(2.5.22) are similar but lengthier.

We require the following results.

Lemma. Let

(2.9.1)



Then

4 202

R(q);%(qz)Q ~ CR@R(G) = qk, (2.9.3)

s T () b0

- )3lR(q2) +¢*R(a)°R(¢*) = ¢ (K +2+4 ;4() , (2.9.5)

R(1q)5 —¢°R(q)°” = q(K 44 2 + [12) , (2.9.6)

e ) e

R(;m +q¢'R(q)" = ¢ (K2 18K + 34+ 9; + 1;3 + 2;436 + i?f) (2.9.8)

R(q)SlR(QQ) —¢'R(9)°R(¢*) = ¢° <K2 +6K +20 + 4; + 165‘2 + ?é) . (29.9)
R(¢?

R(q)™ 180 448 832 1024 1024
4 — P K2+ 10K +524+ —— + =2 4 222
C\R AR et e T s T e T )

(2.9.10)
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K+1=q" E(q)25210)4, (2.9.11)
4 E(9)*E(¢")?
- @) (2.9.12)
and
1 . (2.9.13)

Proofs of (2.9.2)-(2.9.5). (2.9.2) is (2.2.9), (2.9.3) is (2.2.11), (2.9.4) is (2.2.13) and
(2.9.5) is (2.2.14). 0

Proof of (2.9.6).

L o 5y R(¢%) _ R(q)? 1 2 3p( 2
o~ 70 = (e~ ) (s + 0 R )
1 2 2\2
* <R<q>R<q2>2 T R@R) )
bl ) o
Il
Proof of (2.9.7).
R(¢*)  ,R(@)" (R(¢®) R(g)? |
Ry TR <R<q>2 R<q2>> <R<q>5 7 Rlg) )
’ <R<q>31R<q2> ! qZR<Q)3R(q2)>
:;-Q<K+4+[8(+[1(62> +q(K+2+j‘(>

Il
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Proof of (2.9.8).

1

2
4R — QR 5 9 2
F“q)u)%-q ()" }% —q¢R(q)’| +2¢
16
=¢ (K +4 ) 2¢°
q( +K+W +
96 192 2546 256
K?4+8K 4+34+ — 4+ — -
q( +8K 4+ 344 2+ o5+ K3+}@)
Proof of (2.9.9).
1
—¢"R(q)*R(¢%)

R(q)®*R(¢*)
- <R<1q>5 - QQRW) <R<q>31R<q2> * q2R(q>3R(q2)> 7 <R<q>
—o(Keasgrgm)a(Ke2e ) - (3)

4 64 64
K2+ 6K +20+ — + — + — |.
( TOR A0 K2+K3)

Proof of (2.9.10).

(QQ) _ q4 R(Q)12
R(q)! R(q?)

2
R(¢%) Q)2> < 1 4 10) < 1 4 8( 2 )
- +q'R + |5~ —¢*R(Q)°R
(Rq R ) \Rigm () RarRG ¢ (@)°R(q")
4 ) 96 192 256 256
= (K‘+8K+34+K;+K7+}@—#Kﬁ>

44 64 64
K?+6K+20+ — 4+ — >
+q( MR A O €

180 448 832 1024 1024
2
(K'+10K+62++ =ttt 5).
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Proofs of (2.9.11) and (2.9.12). (2.9.11) is (2.2.15) and (2.9.12) is (2.2.16). O

Proof of (2.9.13).

w1 A aEB@E@) B@'BE)? _ . E@E@) _1
K=K (1= ) = Gy B ’

from which the result follows. O]

Proof of (2.4.3). We start by noting that (2.4.3) is equivalent to

U(C) = 41¢ + 860¢% + 6800¢> + 24000¢* + 32000¢°. (2.9.14)
We have
B E(¢*)E(¢")°
Vo =Uia E(q)*E(¢°) )
B¢ E(q%)
) v (qE(Q)3>
= 80 () (o - o0
B(@®)P\*( 1 q 2¢° 3¢ s
: <E<q5>6 ) <R<q5>4 TRy TR R T
=3¢"R(") +2¢°R(¢°)* — ¢"R(¢°)° + qSR(q5)4)3)
E(¢*)’E(¢")PE

_ (¢") 1 4 8/ 2
= Eg)" (51@1 (R(q>8R<q2) q R(q)°R(q ))

-0 (e 20" ) = (G~ iy

2 1 2 3 2 o 2 1 2 5
+153¢ (R(q)gR(qQ) + ¢ R(q)°R(q )) 177q (R(q)5 ) )
e (B(?) | SR@T a8 (RB@)  R@*\ . o3
5 <R<q>7 i R<q2>> RNTE R<q2>> 7”)
_ E(@®)E(¢°)"E(¢")
E( )19
( ) ! , 44 64 64
« (51¢ ¢ (K +6K+2O+K+K2+K3>

96 192 256 256
—9q- (K2 +8K +34+ — + >+ )
9qq( +8K +344 =+ 5 + 5+ 1
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180 448 832 1024 = 1024
- (K2 + 10K 452+ — + — + — )
qq< 10K +52+ ——+ 5+ oo+ o+

4 $ 16
+153q2~q<K+2+K>—177q-q<K—|—4+ + )

K K2
20 32 64 4
— 2 . — — — pR— 3 — J—
78q q<K+6+K+K2+K3) 219¢q (K> 71q)
_ 3E(@)PE(@)PE(d")
E(g)"
(K+1) (K —4)

e (41K* + 204K + 416 K* + 384K + 256)
s B(?)P°E(@)PE(¢) (K +1)*(K —4)
E(q)19 KS
x (41(K — 4)* +860(K — 4)* + 6800(K — 4) + 24000(K — 4) + 32000)
sE(@)E(@)PE(¢°) (K +1)*(K —4)°

=q’ E(q)lg K5
41 860 6300 24000 32000
X(K (K —4)? +<K—4>3+<K—4>4+<K—4>5>
iy (E( ) 15E< >> (q_1E<q2>4E<qﬁ>2>2 <q_1 E(q)*E(¢%) )
E(q)*E(q")* E(q?)E(q)3
( g 5) (41¢ + 860¢* + 6800¢> + 24000¢* 4 32000¢°)

¢+ 860§ + 6800¢% 4 24000¢* + 32000¢°.

2.10 Endnotes

Using a similar argument, I [56] obtained an elementary proof of an infinite family of

congruences modulo powers of 5 for g(n) given by

> 9(n)g" = (((Jqf Z>3°°. (2.10.1)

Theorem 2.10.1. Fora>1 and n > 0,

5% — 1
g (520‘_171—{— - ) =0 (mod 5%). (2.10.2)

Further, g(n) is closely related to the number of 1-shell totally symmetric plane
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partitions of n, denoted by s(n). As a consequence, we have the following result.

Theorem 2.10.2. Fora>1 and n > 0,
s (2 52 lp 4 52“’1) =0 (mod 5%). (2.10.3)

For a detailed description, see [56].

2.11 References

[35] N. D. Baruah and N. M. Begum, Exact generating functions for the number of
partitions into distinct parts, Int. J. Number Theory 14 (2018), no. 7, 1995-2011.

[56] S. Chern, 1-Shell totally symmetric plane partitions (TSPPs) modulo powers of 5,
Ramanugjan J. 55 (2021), no. 2, 713-731.

[64] S. Chern and M. D. Hirschhorn, Partitions into distinct parts modulo powers of 5,
Ann. Comb. 23 (2019), no. 3-4, 659-682. Also in: George E. Andrews—380 Years
of Combinatory Analysis, 305-328, Birkhduser/Springer, Cham, 2021.

[87] B. Gordon and K. Hughes, Ramanujan congruences for ¢(n), Analytic number
theory (Philadelphia, Pa., 1980), pp. 333-359, Lecture Notes in Math., 899,
Springer, Berlin-New York, 1981.

[98] M. D. Hirschhorn, The power of q. A personal journey, Developments in Mathe-
matics, 49. Springer, Cham, 2017. xxii+415 pp.

[100] M. D. Hirschhorn and D. C. Hunt, A simple proof of the Ramanujan conjecture for
powers of 5, J. Reine Angew. Math. 326 (1981), 1-17.

[150] S. Ramanujan, The lost notebook and other unpublished papers, Narosa Publishing
House, New Delhi, 1988.

[154] . Rgdseth, Congruence properties of the partition functions ¢(n) and go(n), Arbok
Univ. Bergen Mat.-Natur. Ser. (1969), no. 13, 27 pp.

[171] G. N. Watson, Ramanujans Vermutung tber Zerfallungszahlen, J. Reine Angew.
Math. 179 (1938), 97-128.

o7



Chapter 3
Eta-quotient Representations and Rogers—Ramanujan Con-

tinued Fraction

This chapter comes from

e S. Chern and D. Tang, The Rogers—Ramanujan continued fraction and related eta-quotient
representations, Bull. Aust. Math. Soc. 103 (2021), no. 2, 248-259. (Ref. [66])

As one might have already seen from the previous chapter, in proceeding in the
same manner with proofs of (2.4.4)—(2.4.7), (2.5.10)—(2.5.14) and (2.5.18)—(2.5.22), we

encounter terms of the form

1
¢®R(q)*+?PR(¢?)2~5

Pla,p) = + (=1)*Pg*R(q)** R(¢*)** (3.0.1)
with @ > 0. Hence, it is necessary to take further investigation. But before moving

forward, let us first review some background materials.

3.1 Background and Results

Recall that \
R(q) = (q;‘-’g;qf’) (3.11)
“.q )
is indeed the infinite product form of the Rogers—Ramanujan continued fraction that was
discovered by Rogers [155], independently by Ramanujan [149], and also independently
by Schur [159]. In the literature, the Rogers—Ramanujan continued fraction often refers
to the generalized continued fraction

q\/®

1 +1+1+1+-

—

¢ ¢
1+ 1



1/5

but here we will discard the factor of ¢'/°, that is, we define

2 3

1 g9 ¢ q
Ba =1 i T+

It is known (see, for example, [98, p. 145]) that (3.1.1) holds.

In the past, modular equations for the Rogers—Ramanujan continued fraction have
been studied extensively by many mathematicians, including Rogers and Ramanujan
themselves [20, 149,150, 157,170]. For example, [98, (40.1.10)] states that

(R(¢*) — R(q)?) (1 + qR(q)R(¢*)?) = 2qR(q) R(¢*)? (3.1.2)
and [98, (40.1.12)] states that
(R(¢*) = R(9)*) (1 + R(9)R(¢")*) = 3qR(q)*R(¢*)*. (3.1.3)

Now let us turn our attention to P(«, ) defined in (3.0.1) for o € Z>o and 8 € Z.

Theorem 3.1.1. Let K be as in (2.9.1), namely,

o
Then the following recurrence relations hold:
P(a,B+1)=4K 'P(a, 8) + P(a, B — 1) (3.1.5)
and
Pla+2,0) = KP(a+1,5) + P(a, ). (3.1.6)
We also have initial values:
P(0,0) =2, (3.1.7)
P(0,1) = Zgg - Zéggj — 4K, (3.1.8)
P(LO) = sy — aRIR(E) = K (319)
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and

P, —1) = 1@ GRS e o (3.1.10)

qR(¢*)*  R(q)

Interestingly, we also have an analog with R(¢*) involved. Let us define, for o € Zx
and 3 € Z,

1

CR(QPR(@) (—1)*q"R(q)** " R(¢*)*". (3.1.11)

Qla, B) :=

Theorem 3.1.2. Let

(4 0)3. (¢ ¢*)%,

S=q” (@ )2 (¢ q15)3 (3.1.12)
and
3.3 5. 5\5
T G D)= ), ( )
Then the following recurrence relations hold:
Qo B+1) = (2+9771)Q(, B) — Qer, B — 1) (3.1.14)
and
1 9 ., 1 3
Qla+2,8) = (18 + T+ T+ |Qa+1,8) + Q. B). (3.1.15)
We also have initial values:
Q(0,0) =2, (3.1.16)
R(¢’) | R(a)’ G
0,1) = + =2497 1, 3.1.17
Q0. 1) R(q)*  R(¢*) ( )
1 1 9 1 3
1,0) = - R(P)=—-S+-T ' +-T+ = 1.1
Q(1,0) TR R qR(q)"R(q”) 5T T T+ (3.1.18)
and
Rg) qR(¢®)?_ 1,,9,., 1. 3
1,-1) = — =—-S4+-T =T — —. 3.1.19
T 7 A T R LA KA S 119
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Remark 3.1.1. Let us take a look at the initial values in Theorems 3.1.1 and 3.1.2. We
find that (3.1.8) is (2.2.9), (3.1.9) is (2.2.11) and (3.1.10) is (2.2.13). Also, (3.1.17) is
due to Gugg [91]. However, the two complicated identities (3.1.18) and (3.1.19) appear

to be novel.

Remark 3.1.2. It follows from (3.1.16), (3.1.17) and the recurrence relation (3.1.14) that

R(q)*  R(¢®
R¢%) © R(g)

Also, Gugg [91, Theorem 5.1] proved that

Q(Ov _1) =

) 1
L=24+9T7", (3.1.20)

Q(2,-1) = =+ R(QR() = —2+T. (3.1.21)

1
¢*R(q)R(¢)
Therefore, we deduce from (3.1.18)(3.1.21) and (3.1.15) the following relation between
S and T

Corollary 3.1.3. We have

81 + 144T + 46T? — 16T° + T* — 18ST — 2ST? + S*T* = 0. (3.1.22)

It follows from (3.1.7) and (3.1.8) together with the recurrence relation (3.1.5) that
for each § € Z, we can represent P(0, () in terms of K. Likewise, we have similar
representations for P(1,3) for each § € Z. Finally, the recurrence relation (3.1.6)
reveals that for each a > 2 and 8 € Z, we have P(«a,3) € Z[K, K~']. In Table 3.1,
we list the representations of P(a, ) in terms of K with 0 < a <2 and -3 < < 3.
Similar arguments can be applied to Q(«, #) to show that for each o € Z>( and g € Z,
Q(a, B) € Q[S, T, T~]. Since the representations of Q(«, 3) are much lengthier, we will
not list them concretely like Table 3.1.

Let H be the upper half complex plane, and put H* := HU Q U {ico}. For any
positive integer N, let I'o(N) be the Hecke congruence subgroup of level N defined by

To(N) = { (a Z) € SLy(Z): ¢=0 (mod N)} .

C

Let Ko(N) be the field of meromorphic functions on the compact Riemann surface
Lo(N)\H*. It follows from Newman [135] that K is in K((10), and S and T are both in

Ky(15). Hence, we have the following results.
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Table 3.1. Representations of P(a, 8) in Z[K, K]

“ 0 1
B
-3 —64K 3 — 12K | 64K 3 — 32K 24+ 20K ' -6+ K
-2 16K72+2 16K 2+8K ' -4+ K
—1 —4K1 4KV -2+ K
0 2 K
1 4K 4K 1+ 24+ K
2 16K72+2 16K 2+8K ' +4+ K
3 64K 3+ 12K1 | 64K 3 + 32K 2+ 20K ' + 6+ K
« 2
B
-3 —64K 3 4+ 64K 2 —44K' 4+ 20 — 6K + K?
-2 16K2 — 16K~ ' +10 — 4K + K?
—1 —AK ' 44 -2K + K?
0 2+ K?
1 4K+ 442K + K*?
2 16K 2+ 16K ' +10+ 4K + K?
3 64K 3 + 64K 2+ 44K +20 + 6K + K?

Corollary 3.1.4. Foranya € Zsq and 3 € Z, P(a, 8) € Z|K, K~'| and hence P(a, ) €
Ky(10).

Corollary 3.1.5. For any o € Zso and B € Z, Q(a,8) € Q[S,T,T~'] and hence
Q(a7ﬁ) € K0<15>
3.2 Proofs of the Recurrences

We shall prove the following identities, from which the recurrence relations (3.1.5),
(3.1.6), (3.1.14) and (3.1.15) follow immediately.

P(a, B)P(0,1) = P(a, B+ 1) — P(a, B — 1), (3.2.1)
P(a+1,8)P(1,0) = P(a+2,8) — P(a, B), (3.2.2)
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Qe, £)Q(0,1) = Qe f +1) + Qe f — 1) (3.2.3)

and

Proof of (3.2.1) and (3.2.2). It follows from (2.9.1) that

P(a, B)P(0,1)

1 a+p « a+2 2\ 20— R( 2) R( )2
= ( FRG IR + (="M R(q)* T R(¢?) B) (R(ZP - R(ZQ)>

. 1 (QQ) at+B a+2 2\ 20— R(q)
~ (R R ~ RO R )
_ 1 R(q)? 1yt Ba a+28 20— BR(Q ))
(qaR(q)“”BR(CJQ)Qa 7 R(q?) (U™ R R R(q)?

1 X o N
N (qO‘R(q)a+2(ﬁ+1)R(q2)2a(5+1) + (—1)* g R(q) P R(¢?)? (B+1)>

1
o a+(f-1) ,a a+2(8-1) 2\2a—(B-1)
(e gy + (V" R R )
:P(Oé,ﬁ—l-l) —P(Oé,ﬁ—l)
This is (3.2.1). Also, (3.2.2) follows by a similar argument. O

Proof of (3.2.3) and (3.2.4). It follows from (3.1.11) that
Q(a, $)Q(0, 1)

. Lo 2043 3 ( 3
= <qaR(q)2a+3BR( ) e + (_1) q R(q) BR(q ) ) <R(Z

) . R(qg)?
o R<q3>>

)
B <qaR(Q)2a+iﬁR( 3o ﬁREZ;§+(—1)“q°‘R( 2438 R g3y gEgg;’)
' (qaR(Q)Q‘”iﬂR(q 3)a—p EZQ? + (_1)aqaR(Q)2a+36R(q3)a—ﬁgggjg >
- < q* R(q)*+3 6+11)R(q3)04—(/3+1) + (_1)aqO‘R(q)2"‘+3(5+l)R(q3)a—(6+1)>
i (qaR( )2a-+3(8 11)3( F)a—(5—1) + (—1)aqaR(q)2a+3</3—1>R(qg)a_(5_1)>

=Qa, f+1)+Q(a, 5 - 1).
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This is (3.2.3). Likewise, one may derive (3.2.4). O

3.3 Proofs of (3.1.18) and (3.1.19)

As we have seen in Remark 3.1.1, the only (and true!) difficulty is proving (3.1.18)
and (3.1.19). Let us begin with an interesting relation between (1,0) and Q(1,—1).

Lemma 3.3.1. We have

Lo et = (qwlmq) - qR(‘”QR@‘“’)) - (qﬁ(f?»))z R ) =3

Proof. Notice that

(R(g*) — R(@)*) (1 + ¢*R(g)R(¢*)°)

LHS of (3.3.1) = RGP

=3,

in the last identity of which we use the modular equation (3.1.3). Therefore, (3.3.1)
follows. O

Lemma 3.3.1 implies that if one of (3.1.18) and (3.1.19) is proved, then the other
follows automatically.

Now recall that K(V) is the field of meromorphic functions on the compact Riemann
surface I'g(IV)\H*. Further, the U-operator is defined in (2.5.1). A standard result [25,
pp. 80-82] states that for any positive integer N, if f € Ky(5N), we have U(f) € Ko(N).

Our proof of (3.1.18) relies on a surprisingly neat 5-dissection identity as follows.

Lemma 3.3.2. We have

E(@®)?\ _ E(@)’E(¢)
U( E(g) ) " BB 332

Proof. 1t follows from Newman [135] that

L E(@®)E(q°)?

E(q)*E(q")3 € Kol15)

and

E(@®)?E(¢™)
E(q)E(q™)?
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If we compare the Fourier expansions of

q

L E(@)PE(@) S E(@)E(g®)
BBy ™ U(q E<q>E<q75>2)’

which are both in K(15), it can be observed that

Ul s E@PE@”)) _ B E@)
E(q)E(q™)?
from which (3.3.2) follows. O

Now we move to prove (3.1.18). It follows from the 5-dissection identities for E(q)
and 1/FE(q), namely, (2.2.1) and (2.2.2), that

E(¢®)®  E(¢®)°E(¢"™)*
(

Hence,

E(q3)3E(q5)2 B q2E<q5)5E(q15>2 B - - -
E(q)3E(¢") E(q)° (Q(2,0) - 40(1,0) - 3Q(1, ~1) +2Q(0,1) - 5).

that is,
S=0Q(2,0) —4Q(1,0) — 3Q(1,—1) +2Q(0,1) — 5.
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It follows from (3.2.4) and (3.1.16) that

Q(2,0) = Q(1,0)* + Q(0,0) = Q(1,0)* +2

and from (3.2.4) and (3.1.21) that

Q(L,—1)Q(1,0) = Q(2,-1) —Q(0,~1) = 9T ' — 4+ T.
Also, (3.3.1) states that
Q(1,0) - Q(1,-1) =3.

Therefore,

S = (Q(1,00* +2) —4Q(1,0) — 3Q(1,—1) +2Q(0,1) — 5
=Q(1,0)(Q(1, 1) +3) — 4Q(1,0) — 3(Q(1,0) — 3) +2Q(0,1) — 3
= —4Q(1,0) + Q(1,0)Q(1,—1) + 2Q(0,1) + 6
= —4Q(1,0) + (=97 =4+ T) +2(2+977") +6
= —4Q(1,0) + 9T  + 6 + T,

from which (3.1.18) follows. Further, (3.1.19) follows from (3.1.18) and (3.3.1).

3.4 Endnotes

Mike Hirschhorn emailed me on Aug 28, 2019 with a beautiful bivariate generating

function identity:

2— Ko —4K 'y + (K +2+4K Yy

Pla, B)aty” = 3.4.1
a%;O @) (1-Kz—a2%)(1—-4K"1y —4?) (3.4.1)
where K is as in (2.9.1). Analogously, one could obtain
2— Ko+ 4Ky + (K -2+ 4K ay
Pla,=p)a"y” = 3.4.2
a,ﬁzzo ( ) (1 - Kz —2?)(1+4K -1y —y?) ( )

A direct application of the “series expansion” command in most computer algebra systems
such as Mathematica to the above relations makes it easier to find the expression of
P(a, 8); see the discussion in [56, §2.1].
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Outline

o Chapter 4 is devoted to weighted partition rank and crank moments that are closely

related to Andrews—Beck type congruences.

o Chapter 5 is devoted to partitions with bounded part differences in which both analytic

and combinatorial aspects will be discussed.
o Chapters 6-8 are devoted to a general theory of span one linked partition ideals.

o Chapter 9 is devoted to analytic identities of Rogers—Ramanujan type based on basic

hypergeometric transformation formulas.
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Chapter 4
Weighted Partition Rank and Crank Moments

This chapter comes from

e S. Chern, Weighted partition rank and crank moments. I. Andrews—Beck type congruences, to

appear in Proceedings of the Conference in Honor of Bruce Berndt. (Ref. [58])

¢ S. Chern, Weighted partition rank and crank moments. II. Odd-order moments, to appear in
Ramanugjan J. (Ref. [59])

e S. Chern, Weighted partition rank and crank moments. III. A list of Andrews—Beck type
congruences modulo 5, 7, 11 and 13, to appear in Int. J. Number Theory. (Ref. [60])

4.1 Introduction

4.1.1 Rank and Crank of an Integer Partition

Let us first recall the definition of rank and crank of an integer partition A\. We use
£(\), w(A) and £()) to denote the number of parts in A, the number of ones in A and the
largest part in A, respectively.

The rank of A is defined by Dyson [76]:

rank(\) := £(\) — £(A),

namely, the largest part minus the number of parts in A. On the other hand, Andrews

and Garvan [23] defined the crank of a partition A by

crank()\) := () if w(A)=0
() —w(X) if w(X) >0,

)

where 1(\) denotes the number of parts in A larger than w(\).
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The two partition statistics were introduced to combinatorially interpret Ramanujan’s

celebrated congruences:

p(bn+4) =0 (mod 5), (4.1.1)
p(Tn+5)=0 (mod 7) (4.1.2)

and
p(1ln+6) =0 (mod 11). (4.1.3)

Now let N(m,n) (resp. M(m,n)) count the number of partitions of n whose rank
(resp. crank) is m. Further, we shall put M(—1,1) = —M(0,1) = M(1,1) = 1 and
M (m, 1) = 0 otherwise.

4.1.2 Ordinary and Symmetrized Rank and Crank Moments

In general, there are two types of rank and crank moments attracting broad research
interest. The first type, which is due to Atkin and Garvan [29], is the most natural. Let

us define k-th ordinary rank and crank moments respectively by

Ni(n) == i m*N(m,n) = Zrankk()\) (4.1.4)
m=—o0o AFn
and
Mi(n) = i mFM(m,n) =>" crank® (). (4.1.5)

In light of the symmetry property that N(m,n) = N(—m,n) and M(m,n) = M(—m,n),
we see that the odd order moments are all zero. For the even order moments, Atkin and
Garvan [29] showed that the generating functions of M (n) are related to quasimodular
forms, while Bringmann, Garvan and Mahlburg [42] showed that the generating functions
of Ni(n) are related to quasimock theta functions.

On the other hand, Andrews [14] defined the k-th symmetrized rank moment by

nti= 3 (" EE N = (M) e

m=—00 AFn
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As a crank analog, Garvan [82] defined the k-th symmetrized crank moment by

o0

= 35 (" - 5 ()

m=—00 AFn

It was shown that n;(n) = pux(n) = 0 when £ is odd. Further, the generating functions
of the even order symmetrized moments 79, (n) and pok(n) can be nicely formulated

(cf. [14,82]):

1 _ _ 144"
an(n)qn _ (_1)n 1qn(3n 1)/2+kn (418)
,;1 (4 @)oo n; (1 —qn)*
and
1 1 n(n— 1+q"
por(n)q" = (=1)" g 1)/2%”7” (4.1.9)
%:1 (45 @)oo ,;1 (1 —qgm)*

4.1.3 Main Results

Recall that P denotes the set of integer partitions. Parallel to (4.1.4), (4.1.5), (4.1.6)
and (4.1.7), we define the weighted k-th ordinary and symmetrized rank and crank

moments by

=Y #(\) rank®(A (4.1.10)
Mg (n) ==Y w(A) crank®(\), (4.1.11)
=Y (fankmg “J> (11.12)
and
" crank(\) + [ 551
w(n) =) wA . 1.
i) s= i () (1013

For the weighted rank moments, we have relations as follows.
Theorem 4.1.1. Let k be a positive integer. We have

1 _ Por(q")
N: . (n)g" = — —1)n g2 22 4.1.14
7; 2k 1( ) (q; Q)oo 7%:1( ) (1 - qn>2k ( )
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where Py(u) is defined recursively by Py(u) =1 and for k > 1,
Popr(u) = (1= u+ (k+ Lu) Pi(u) + (u—u?) P/(u), (4.1.15)

where P/(u) as usual denotes dPy(u)/du. In particular,

Njj_y(n) = _;N%(n)- (4.1.16)

Remark 4.1.1. It is worth pointing out that the polynomials Py(u) satisfy the exponential

generating function

tk eut o et

P(u,t) :=>_ Pi(u) (4.1.17)

T St ot
=1 k! e ue

To see this, we translate the recurrence (4.1.15) into the functional equation

0 B 0 N
a@@@—1_9wo+maﬁww+@—u%ﬁﬁmw

Solving the above PDE with the boundary condition &?(u,0) = 0 yields (4.1.17).

Theorem 4.1.2. Let k be a positive integer. We have

k _ N 1+q"
# n __ n—1_n(3n—1)/2+kn
Nop_1(n)q" = — (—1)" g —_ (4.1.18)
2 M G =)
In particular,
ngk_l(n) = —k - nox(n). (4.1.19)
We also have crank analogs.
Theorem 4.1.3. Let k be a positive integer. We have
1 _ Por(q™)
Mg (n)g" = — —1)lgnint/z_Z 2R 4.1.20
where Py(u) is as in Theorem 4.1.1. In particular,
» 1
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Theorem 4.1.4. Let k be a positive integer. We have

k 1 nn—1)/24kn 1T q"
Mw - (n)qn _ (_1)n qn(n )/2+kn L
,; 2 (4 9)oo n; (1—qn)

In particular,
pp-1(n) = —k - pox(n).

4.2 Warm-up: The First Moment

Let us warm up with the first moment case.

Theorem 4.2.1. We have

" - q"
t(\) rank(\) g = —
A%:: %:1 (4:9)2 mZ::l (1 —qm)?
It follows that
1
> (A rank(A) = —=Na(n).
AFn 2

(4.1.22)

(4.1.23)

(4.2.1)

(4.2.2)

Remark 4.2.1. Tt is worth pointing out that the following generating function identity for

N3 (n) is used most frequently.

n___ 2 (=1)"g"C V21 + ¢")
Z NQ(n)q - Z (1 _ qn>2

See Eq. (3.4) in [15].

Proof. Recall that it was shown in [18] that

NIZQ ZZQZ rank :Z q
o (2434

n>0 A\n

We first apply the operator [0/0x],—1 to (4.2.3).

IPIEOE

n>0 AFn

2
-y |2

=0 102 (2q; Q)nl20/20)n ),
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> [ Gaa néq/z; R (Mﬂ -

n2

0 [aax<nlogx—210g1—$qm/z)>L:1

n>0 (2¢; 0)n(a/7 @)n

_r;) Zq, (/Zq [ ZZ xqm]xl
_n; (2¢;q (q/z Q)n ( Z:: > (4.2.4)

We next make the following easy observation: for any n > 1 where n can also be oo,

[88,21 og <(2q;q>n(1q/Z; q)n>L:1 = Li_l <1 _qn;qm + an?ni Z2>Ll 0. (4.2.5)

Applying the operator [0/0z].—1 to (4.2.4) and using (4.2.5) yields

Z Z #(A) rank (A

n>0 AFn

q n m
n>1[ zqan/ZQ)<+mZ::12 )]_

et l (2¢; @)n q2/z @)n alog((zq )n(q/zq) )]

e )
=1 (2g; Q)n(Q/Z' Qo 2 —q™ Oz (2g; Q)n(Q/Z§ Dz —a™) )|,
4.2.6
XZ: (¢:9) %mzl 1—qgm (4:2.6)
This is the first part of Theorem 4.2.1.
If one applies the operator [% (z%)} . to the generating function

n2

Zrank(/\) n _ q
2D AN =)

n>0 A\rn n>0

then one shall find that

ZNQ n)q" —ZZrank

n>0 n>0 A\Fn

76



-5 o (e )|
-5 i( )|
>0 0 (ZQ7 Q>n( /Z Q)n m=1 - qu qu — 22 =1
n2 n qm
_ (4.2.7)
nzl 49 7217712::1 L—qgm
This combining with (4.2.6) gives the second part of Theorem 4.2.1. ]
Theorem 4.2.2. We have
3" w(A) crank(\)g? = — ! > T . (4.2.8)
AEP ((]; Q)oo n>1 (1 - qn>2
It follows that
1
> w(A) crank(X) = —=Ms(n). (4.2.9)
AFn 2
Remark 4.2.2. It was shown by means of a relation due to Dyson [77] that
My(n) = 2np(n).
It turns out that
> w(A) crank(A) = —np(n). (4.2.10)
AFn
Proof. As in [23], we have
1—g¢q asjqu J
M ZE P q v crank()\)qn
nz>:0 )\zl—;b (zq, 7)o z>: 127 @)oo
_ 1—gq (2¢ q) < )
(2¢; Do 750 ( ¢ q);

(2q; Q)oo(:vQ/ z; Q)oo

Here in the last identity we use the g-binomial theorem (see Theorem 2.1 in [12]):

S0 (G0n (B9

3 (a;@)nt"  (at;q)oo

If we take z = 1 in (4.2.11), then we recover the bivariate generating function in [23].
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Now we apply the operator [0/0z],—; to (4.2.11).

Z Z crank n

n>0ATa (1 - 9)(r¢* @) ]

0 (24 Q)oo(Tq/ 23 @)oo | ,,
[ =g (=% 0) 0 oo [ (7€%9)x
a l(ZQ;Q) (MJ/Z Qo o %% ((M/Z; Q)oo>L1

— (5 9)o [68:1: Z (log(l — x¢"t) —log(1 — an/z))]

(265 @)oo (4/ 25 @)oo | O 5 .
_ (¢; @) B gt q"/z
(Z(LQ) (Q/Z (]>oo n§>:1 ( 1—grt! + 1 — qn/z> . (4.2.12)

We then apply the operator [0/0z].—1 to (4.2.12) and use (4.2.5) to deduce

> > w(A) crank(A
n>0 AFn
0 @)oo ot n
|9 (¢4 Z(_q - q/z>
02 (24, 0)oo(0/ % Voo i1\ 1 —q" 1—q"/z .
= [ (4 @)oo "/ 1 ]
n>1 (2¢; Q)oo(0/7; @) o 1- )z "=z,
1 q"
- : 4.2.13
(4 @) 7; (1—q)? (4.2.13)
To prove the second part of Theorem 4.2.2, we apply the operator {% (z%)] » to

the generating function

Z Z Zcrank(k)qn — <q7 q)OO

n>0 AFn (Zq7 Q)oo(q/zv Q>oo

Then

> Ma(n)g" =3 3 crank())’g

n>0 n>0 A\kn

_[3 (Za 2q;q gq(q;/ZQ) )] 1

m

(
_|o @ ‘ &
- [82 (264 @)oo (0/7 @) o n’LZ>1 (1 —zq" i 2T = ZQ)]

78

z=1



2 qm

= . 4.2.14
(¢ @)oo mZZ:l (1 —qm)? ( )
This combining with (4.2.13) gives the second part of Theorem 4.2.2. O

Finally, let spt(n) denote the total number of appearances of the smallest parts in all

of the partitions of n. In [15], it was shown that

spi(n) = 3 Ma(n) — 3 No(n).

In view of (4.2.2) and (4.2.9), we immediately obtain the following interesting relation.

Corollary 4.2.3. Forn >0,

spt(n) = Y #(A) rank(A) — > w(A) crank(N). (4.2.15)

AFn AFn

4.3 General Odd Moments

Now we are in a position to prove Theorems 4.1.1-4.1.4.

4.3.1 Rank

We require a reformulation of N (z, z; ¢) shown in [18]:

N(z,z9) =1+

_ (2¢; q)n
(_1)71 lqn(3n+1)/2xn
(2¢; @)oo n; (4 @)

1 T
X (q”(l—zq”) +z(1—an))' (4.3.1)

z
It is convenient to define two auxiliary functions

1 T

o) ™ MEEOE

=)

To study the weighted k-th ordinary rank moment, we require the following family of

a(zQ) =

operators for k > 1:

2 f(2) if k=1,
Di(f(2)) = (13.2)
22Dia(f(z) ifk>1.
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We first show that a(z; Q) and [(z, z; Q) satisfy the following proposition.

Proposition 4.3.1. For each positive integer k, there is a polynomial Py with integer

coefficients such that

DifalsiQ)) = o (433)

and

. x;),m. (4.3.4)

Di(B(,2,Q)) = (-1)*

Further, Py satisfies Pi(u) =1 and for k > 1,
Pii1(u) = (1 —u+ (k+ 1)u>Pk(u) + (u - u2)P,£(u) (4.3.5)

Proof. 1t is not hard to compute that

Di(a(::Q)) = -0(:Q) = =g
and
0 x
Di(Ble, % Q) = 56z, % Q) = —m-

Let us assume that the proposition is true for some k£ > 1. Then

Disa(a(3 Q) = 5-=Dyla(= Q)
_ 2 2Pp(2Q)
0z (1 — zQ)++1
(1—2Q+ (k+ 1)2Q) Pu(2Q) + (2Q — Q%) Pi(=Q)

(1= Q)

Likewise, we have

D1 (B(z,2,Q))
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- (-1)

The proposition follows by induction on k. n

Next, for k > 1, we write

Pucla(@)] = 0% = ani(@
" Dua Bz Q))| | =-TE2ED ()
2k—1 ) 25 (- 2Qpk 2k—1\T; &)

Noticing that ag,—1(Q) + Sar-1(1; Q) = 0, we may factor out (1 — z) from ag,—1(Q) +
Por—1(x; Q) for all k > 1. Let us write

Qop—1(Q) + Bap—1(2; Q) = (1 — ) Fop_1 (7 Q).

Applying the trivial identity
0
—=2)f(z)| =-f(), (4.3.6)
z=1
we deduce that

For1(1;Q) = — [8035 <a2k—1(Q) + Bok—1(z; Q))]

=1

_ _8$P2k1(37Q)]
r=1

_03: (1 —2zQ)2*k
(= 2Q + 2k2Q) Py 1(2Q) + (2Q — #*Q*) Py, (2Q)
- i (1 _ $Q)2k+1 B
(1 =Q+2kQ)Por1(Q) + (Q — Q*) Py, 1(Q)
- (1 _ Q)Qk:—H
P (Q)
g
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For k > 1, it follows from (4.3.1) that

> rank? 1 (\) 2N g = |:,D2k1 <N($, Z; Q))]
AeP =

— 1 Z(_l)n—lqn(3n+l)/2xnm

(2¢; @)oo 251 (¢ @)n—1

1 x
X [D2k1 (q”(l _ an) + z(l — Izn))] z=1

— 1 Z(_1>n71 n(3n+l)/2$n('xq;7q)n

q
(7¢; @)oo 251 (¢ @)n—1

X (Oégk_1<qn) + 52k—1(x; qn))

1—x2 _ (2q; q)n
_ 1) lqn(3n+1)/2xn )
(7¢; @)oo 7;( ) (4 @)n—1

X For_1(z;q").

Applying (4.3.6) again, we have

> () rank® (V)¢ = [8893 > rank2k_1(A)xﬁ(A)qA|]

AeP AEP

1 _ (2q; @)n
(_1)71 lqn(3n+1)/2xn
(2¢; @)oo n; (4 @)n—1

X Fop_1(z; q”)]

=1
1 -1 _n(3n n n
= _((]' Q) Z(_l)n lq 8 +1)/2(1 —q )FQk—1<1;q )
1d)o0 n>1
1 . Por(q")
— 1)t n(3n+1)/2 1 — " o t2e\Y )
(q;q%OE( )" g ( Q)(l_qn o

We therefore arrive at (4.1.14).
Further,

> rank? ()¢ = {D%(./\/’(LZS Q))]

AEP ==l
o 1 j: _1\n—1_n(3n+1)/2/1 _ . n
- (69) nZl( e
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1 1
X [DQk (q”(l — zq") + z(l — q:))]zzl

1
— (_1)n—1qn(3n+1)/2(1 . qn)
(4 @)oo ,;
Por(2q") sz;(%)
(1 __an)2k+1 22(1 __%;)2k+1 -
2 _ Pay(q")
_ (_1)n lqn(3n+1)/2(1 . qn) )
(¢ @) n; (1 — gn)?+t

It turns out that
> HN) rank?H(\)¢? = Z rank®*(\) g
AeP /\677

and hence

> H(N) rank®*1(\) = —= Z rank®*(\

AFn )\)—n
which is (4.1.16).

Let us turn to the weighted k-th symmetrized rank moment

=S,

AFn

We first study the k-th derivatives

ok L5
@TQ(Z‘; Q)

and

ok L5
@ X 5(%2’;@)'

Proposition 4.3.2. For any positive integer k, we have

o 55t olsl

o w9 = gy 0
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and

L5 kil k-1
;;ZL,;!Jﬁ(:v,z; Q) = (—D’“W. (4.3.8)
Proof. The desired results follow directly from Leibniz’s rule. []
Let £ > 1. We write
A I A
{322k1 2k — 1>!a(z, Q)] B T Gop—1(Q)
and - . .
[aaz%l (22 P Q)] - —(f_QW =: Pop1(w; Q).

Noticing again that dgk,l(Q)—i-sz,l(l; Q) = 0, we may factor out (1—=z) from dg,_1(Q)+
ng_l(x; Q) for all k£ > 1. Hence, we write

Aoge—1(Q) + Bor—1(7:Q) = (1 — 2) s (23 Q).

It follows from (4.3.6) that

Foa(1,Q) = — fo (54%1(@) + Bog (3 Q))]

i l,kafl
_kQ(1+ Q)
T

r=1

We know from (4.3.1) that

rank(\) + & — 1
Z( (A) )xumqw

AeP 2k —1
an‘—l Zk‘—l
- [82%1 (Qk _ 1)!N('T727Q>] »
1

_ (Tq; @)n
— (_1 n 1qn(3n+1)/2xn
(7¢; @)oo gl ) (¢ @)n—1
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an—l Zk_l 1 .
e \ea e -y )|
! - (2¢; n /- 8
— —1)" 1 n(3n+1)/2xn G n n L n
(2¢; @)oo n;( )" (¢ q)n_l( 2k-1(q") + Bk (734" )

1—2z n—1 _n(3n n \Tq;q)n £ n
= (xq' q) Z(‘l) 1q Bnt1)/2g ((q q) )1F2k1(1’;q )
) 00 p>1 y 4 )n—

Applying (4.3.6) again, we have
rank(A) +k — 1Y |
> a0 (MM

AEP
|0 rank(A) + & — 1Y) 4 |y
_[0x2< 2%k — 1 )x -

AeP

1 n—1 _n(3n n (x(L q)n n n
- [(mq'q) Z(_l) LgrBnth/2y 7(q' 2 1F2k—1(ff;q )
»4)oo p>1 y 4 )n—

z=1

1 -1 _n(3n n\ 1 n
= _(q, Q) Z(_l)n 1q @ +1)/2(1 —4q )F2I<:—1(1; q )
14 )00 p>1
1 kq(k_l)”(l +qn>
— -1 n—lqn(3n+1)/2 1 — qn
(q; C])oo T;( ) ( ) (1 _ qn)2k+1
k o 1+ q"
— _ —1)" 1 _n(3n—1)/2+kn )
(4 @)oo ,;( )" (1 — qn)2*

This proves (4.1.18). Finally, (4.1.19) follows in light of (4.1.8).

4.3.2 Crank

Analogous to (4.3.1), we need to reformulate M(x, z; q).
Recall the limiting form of Jackson’s theorem (cf. [9, Theorem 3.2]):

o oS e )

Vw, —/w,wq/a, wq/b,wg/c " abe
_ (g, @)oo (wg/ab, g)oo(wg/ac, @)oo (wq/be, ¢)oo
(wq/a, q)oo(wq/b, @)oo(wq/c, q)oc(wq/abe, q)oo

(4.3.9)
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If welet w— 2z, a — 2, b— x/z and ¢ — oo, then (4.3.9) becomes

(4 Doo(T; @) oo 1 Z g (n+1)/2 (2¢; OJn1(1 — 2¢*)(1 = 2)(1 — x/z)

(245 D)oo (79/ 23 @)oo =1 (¢ Q)n(1 = 2¢")(1 — zq™/2)
(4.3.10)
Next, notice that
(-2 —2)(A —x/z) L—ag™
Oe-egfz) T
1 T
X (q"(l T - wq>) (4.3.11)
Substituting (4.3.11) into (4.3.10) yields
(¢ Doo (26 Do _ Jrgrn-1)/2 (2¢; OJn1(1 — 2¢*")
(2¢; @)oo (2q/ 2 @)oo - n; (@ D)n
-1 gntoty2 (265 @
i ,;1 (¢ @)n
1 x
x (q”(l " - m)) (4.3.12)

Letting n — oo in the following terminating very-well-poised 4¢3 series (see [83,
(2.3.4)]):

w, g/ w, —q qu_n n 1 ifn= 07
" Vu,—q/w | = (4.3.13)
Vw, —/w, wq 0 ifn>1,
we have
n>1 (@ @)n

Substituting (4.3.14) into (4.3.12) yields

(¢ Doo(TG Do S~/ yn=1 nnr1)/2 (LG Dn
(263 @)oo (20/ 25 @) 7;1( 1™ (¢ Qn

1 T
X (q"(l g + z(l — an)) (4.3.15)




Finally, we deduce from (4.2.11) the following result.
Theorem 4.3.3. We have

l—q n—1_n(n+1)/2 (zq; @)n
A4 2 = -1 TN
(@74) (1 = 29)(¢; @)oo gf A (4 @)n—1

1 T
X (q”(l ~ ) + z(l - M) ) (4.3.16)

z

Now notice that the reformulation (4.3.16) of M(x, z; q) also involves the auxiliary

functions
1 T

e L s

defined in §4.3.1. We therefore may carry out the same procedure to prove Theorems
4.1.3 and 4.1.4. The details are omitted.

a(zQ) =

4.3.3 Remark

It is worth mentioning more about the necessity of the odd order in the weighted

moments. Let us use NV, ,g(n) as an example. As we have seen, to obtain

Z n)q" = Z]j A) rank” (A |’\‘,

n>0 AEP

the last step is to apply the operator [0/0x],—1 to

Z rankk Jg™,

XEP
Our trick here is that by noticing that Ny (1;¢) = 0 when & is odd due to the symmetry
property of the rank function, one may factor out (1 — z) from Ny (z;¢q) so that (4.3.6)
can be applied. However, when k is even, we fail to get the factor (1 — z) as Ni(1;q) is

not identical to zero and hence the aforementioned trick cannot be used.

4.4 Andrews—Beck Type Congruences

It is fair to describe the origional motivation of this project.
Recall that the rank and crank statistics interpret Ramanujan’s congruences (4.1.1)—
(4.1.3) in the following way. Let N (k,m,n) (resp. M (m,n)) count the number of partitions

of n whose rank (resp. crank) is congruent to k£ modulo m.
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First, Atkin and Swinnerton-Dyer [30] proved that for 0 < i < 4,
. 1
N(i,5,5n +4) = 5p(5n +4)
and that for 0 <i <6,
) 1
N(i,7,Tn+5) = §p(7n +5).
On the other hand, Andrews and Garvan [23] showed that for 0 < i < 4,
. 1
M(i,5,5n+4) = 5p(5n +4),
that for 0 <i <6,
, 1
M(i,7,Tn+5) = ?p(7n +5)
and that for 0 < < 10,
. 1
M(i,11,11n 4 6) = ﬁp(lln +6).

One shall see how equally numerous subclasses occur.

In a private communication between George Beck and George Andrews, Beck made
a number of new conjectures along this line. Instead of considering the N(m, k,n) and
M (m, k,n) functions, Beck studied the total number of parts in the partitions of n with
rank congruent to m modulo k, which is defined by NT'(m, k,n), and the total number
of ones in the partitions of n with crank congruent to m modulo &, which is defined by

M, (m,k,n). Let me record one example that was proved later by Andrews in [18].

Theorem 4.4.1. Ifi =1 or4, then forn > 0,

NT(1,5,5n + i) + 2NT(2,5, 5n + i)
— 2NT(3,5,5n +i) — NT(4,5,5n+i) =0 (mod 5). (4.4.1)

But the arithmetic properties of Ny(n) are extensively studied. For example, (1.14)
and (1.15) of [14] state that

No(bn+1or4)=0 (mod 5)
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and

No(Tn+1or5) =0 (mod 7).

It is also trivial to see that

3 #(\) rank (A WEZ(NT(1,5,n)—|—2NT(2,5,n)

AEP n>0

—2NT(3,5,n) = NT(4,5,n))¢" (mod 5)
and
> #(\) rank(\)gM = 3 (NT(1,7,n) + 2NT(2,7,n)

AEP n>0

+3NT(3,7,n) — 3NT(4,7,n)

—2NT(5,7,n) = NT(6,7,n))¢" (mod 7).

We therefore arrive at both (4.4.1) and the below through the fact that
1

> (A rank(\) = —=Na(n).

AFn 2

Theorem 4.4.2. Ifi =1 or5, then forn >0,

NT(1,7,7n + i) + 2NT(2,7,Tn + 1)
+3NT(3,7,Tn +1) — 3NT(4,7,Tn + i)
—2NT(5,7,Tn +i) — NT(6,7,7n+i) =0 (mod 7).

(4.4.2)

In fact, utilizing the relations between ordinary and weighted rank and crank moments,

I [60] am able to discover over 70 congruences modulo 5, 7, 11 and 13 involving NT'(r, k, n)

and M, (r,k,n). Through a computer search, it is believed that the list below is to

some extent complete for these moduli (it should be noted that a handful of unlisted

congruences could be generated by congruences in the main theorems; see remarks below

each theorem).
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Theorem 4.4.3. Let

NTla1,a0)(n) ==Y a, (NT(?“, 5,n)— NT(5—r,5, n))

and
M,lay, as](n) := Z:I(LT (Mw(r, 5,n) — My,(5—r,5, n))
Then (i).
NT[1,2](5n+1)=0 (mod 5) (4.4.3-1)
NT[1,2](5n+4) =0 (mod 5) (4.4.3-2)
(ii).
M,[1,2](5n) =0 (mod 5) (4.4.4-1)
M,[1,2](5n+4) =0 (mod 5); (4.4.4-2)
(iif).
NTI0,1](5n) = M,[0,1)(5n) = M,[1,3](5n) = M,[2,0](5n)
= M, [3,2](5bn) = M,[4,4](5n) (mod 5), (
NTI[0,1](5n + 1) = M,[0,1)(5n 4+ 1) (mod 5), (
NT[1,0](5n + 1) = M,[0,3](5n + 1) (mod 5), (4.4.5-3
NTI[0,1](5n + 2) = M,[2,0](5n 4+ 2) (mod 5), (
NTI[1,0)(5n +2) = M,[0,3](5n +2) (mod 5), (
NT[1,3)(5n +3) = M,[1,3](5n +3) (mod 5), (4.4.5-6
NT[0,1](5n + 4) = M,[0,1](5bn +4) = M,[1,3](5bn+4) = M,[2,0](5n + 4)
= M,[3,2](5n +4) = M,[4,4](5n +4) (mod 5), (4.4.5-7)
NTIL,0](5n +4) = M,[0,3](5n 4+ 4) = M,[1,0](5n + 4) = M,,[2,2](5n + 4)
= M,[3,4](5n +4) = M[4,1](5n +4) (mod 5). (4.4.5-8)

Remark 4.4.1. It should be pointed out that one may derive more congruences from
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(4.4.5-2) and (4.4.5-3). For example,
NT[1,1](5bn + 1) = M,[0,4](5bn + 1) (mod 5),
which comes from

NT[1,1](5n + 1) = NT[0,1)(5n + 1) + NT[L, 0](5n + 1)
= M,,[0,1](5n + 1) + M,,[0,3](5n + 1)
= M,[0,4](5n +1) (mod 5).

Similarly, more congruences could be derived from (4.4.5-4) and (4.4.5-5), and from
(4.4.5-7) and (4.4.5-8). Also, in (4.4.5-1), we have M,[0,1](5n) = M,[1,3](5n) = ---
(mod 5). This is a consequence of (4.4.4-1) by noticing that

M,[1,3](5n) = M,[0,1)(5n) + M,[1,2](5n) = M,[0,1](5n) (mod 5).

Similar arguments could be applied to (4.4.5-7) and (4.4.5-8) with the help of (4.4.4-2).
We notice that (4.4.5-1) and (4.4.5-7) imply [47, (4.10)], and (4.4.5-3) and (4.4.5-5)
imply [47, (4.12)].

Theorem 4.4.4. Let

NTlay,as,a3](n) = Za,,(NT(T, 7,n)— NT(7—r,7, n))

and
M, a1, az, az)(n) = Z_:lar(M (r,7,m) — M,(7T—r,7 n))
Then (i).
NT[0,1,4](7n) =0 (mod 7), (4.4.6-1)
NTI[0,1,4](Tn+1) =0 (mod 7), (4.4.6-2)
NT[1,0,2)(Tn+1) =0 (mod 7), (4.4.6-3)
NT[1,0,2)(Tn+3) =0 (mod 7), (4.4.6-4)
NT[1,0,2](Tn+4) =0 (mod 7), (4.4.6-5)
NT[0,1,4)(Tn +5) =0 (mod 7), (4.4.6-6)
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NT[1,0,2](Tn+5) =0 (mod 7); (4.4.6-7)

M,[0,1,4](7Tn) =0 (mod 7), (4.4.7-1)

M,[1,0,2)(7n) =0 (mod 7), (4.4.7-2)
M,[0,1,4](Tn +1) =0 (mod 7), (4.4.7-3)
M,[1,0,2)(Tn+2) =0 (mod 7), (4.4.7-4)
M,[1,3,0](Tn+3) =0 (mod 7), (4.4.7-5)
M,[0,1,4](Tn+4) =0 (mod 7), (4.4.7-6)
M,[0,1,4)(Tn+5) =0 (mod 7), (4.4.7-7)
M,[1,0,2](Tn+5) =0 (mod 7), (4.4.7-8)
M,[1,0,2(Tn+6) =0 (mod 7). (4.4.7-9)

Remark 4.4.2. Linear combinations of (4.4.6-2) and (4.4.6-3) imply more congruences.
For example, 1 x (4.4.6-2) + 1 x (4.4.6-3) gives

NT[1,1,6)("Tn+1) =0 (mod 7),

which is the i = 1 case of [18, Theorem 1.2]. More congruences could be derived from
linear combinations of (4.4.6-6) and (4.4.6-7), of (4.4.7-1) and (4.4.7-2), and of (4.4.7-7)
and (4.4.7-8).

We notice that [47, (4.15) and (4.16)] are shown in Part (ii).

Theorem 4.4.5. Let
5
NTlay,az, a3, as, as)(n) =Y aT(NT(r, 11,n) — NT(11 —r, 11,n)>
r=1
and

5
M,lay, as, as, aq, asl(n Zar< (r,11,n) — M, (11 —r,ll,n)).

r=1
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We also adopt the notation

a1, a2, a3, a4, as Mw [al) a2, as, a4, (I5] (n)
by, by, bs, by, b M, [by, b, bs, by, bs](n
T LT R
C1, C2, C3, C4, Cj Mw[cl7627c3ac4705](n)
Then (i).

NT[0,1,4,10,9](11n) =0 (mod 11), (4.4.8-1)
NTI[1,8,5,9,4)(11n+1) =0 (mod 11), (4.4.8-2)
NT[1,3,7,3,3](11n+6) =0 (mod 11); (4.4.8-3)

(ii).

0, 0, 0, 1, 8 0]

0, 0, 1. 0, 6 0
M, 7 77 (11n) = (mod 11), (4.4.9-1)

0, 1, 0, 0, 4 0

1, 0, 0, 0, 2 _0_

0, 0, 0, 1, 8] 0]
M, 10, 0, 1, 0, 6] (1ln+1)= (0| (mod 11), (4.4.9-2)

0, 1, 0, 0, 4] 0

0, 0, 0, 1, 8] 0]
M, [0, 0, 1, 0, 6| (1ln+2)=[0| (mod 11), (4.4.9-3)

17 07 07 07 2 0

0, 0, 0, 1, 8] 0]
M, 10, 1, 0, 0, 4| (1ln+3)= [0| (mod 11), (4.4.9-4)

1, 0, 0, 0, 2 0

0, 0, 1, 0, 6] 0]
M, 10, 1, 0, 5, 0| (1ln+4)= [0] (mod 11), (4.4.9-5)

_1, 0, 0, 0, 2_ _0_

0, 0, 1, 0, 6] 0]
M, |0, 1, 0, 5, 0| (1ln+5)= (0| (mod 11), (4.4.9-6)

1, 0, 0, 0, 2] 0
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0, 0, 0, 1, 8 0
0, 0, 1, 0, 6 0

M, 7 77 (IIn+6) = (mod 11), (4.4.9-7)
0, 1, 0, 0, 4 0
1, 0, 0, 0, 2 0
0, 0, 1, 0, 6] 0]

M, |0, 1, 0, 0, 4| (1ln+7)= (0| (mod 11), (4.4.9-8)
1, 0, 0, 8 0 0
[0, 0, 1, 2, 0] 0]

M, |0, 1, 0, 0, 4] (1ln+8)= |0| (mod 11), (4.4.9-9)
1, 0, 0, 8 0 0]
0, 0, 1, 0, 6] 0]

M, |0, 1, 0, 0, 4] (1ln+9)= |0| (mod 11), (4.4.9-10)
1, 0, 0, 0, 2] 0]
0, 0, 0, 1, 8 0]

M, 10, 1, 0, 0, 4| (11n+10)= |0| (mod 11). (4.4.9-11)
1, 0, 0, 0, 2 0

Remark 4.4.3. Each of (4.4.9-1)—(4.4.9-11) may lead to more Andrews—Beck type con-
gruences modulo 11 for M,,.

We notice that (4.4.8-2) is [47, (4.6)] and (4.4.8-3) is [47, (4.5)].

Theorem 4.4.6. Let

6
NTlay, a9, a3, a4, as, ag)(n) := Z a, (NT(?", 13,n) — NT(13 — r, 13, n))

r=1
and
M, a1, as, a3, ay, as, ag)(n) := Z a, (Mw(r, 13,n) — M, (13 — r, 13, n))
r=1
Then (i).

NT[0,1,4,12,10,3)(132) =0 (mod 13), (4.4.10-1)
NTI[1,1,6,0,0,3](13n+1) =0 (mod 13), (4.4.10-2)
NT[0,0,1,9,6,8](13n+2) =0 (mod 13), (4.4.10-3)

NT[1,0,3,9,1,11](13n +3) =0 (mod 13), (4.4.10-4)
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NT[1,5,8,7,12,12)(13n+5) = 0 (mod 13), (4.4.10-5)
NTI[1,2,8,0,7,11](13n+6) =0 (mod 13), (4.4.10-6)
NT[1,12,8,7,10,7)(13n +7) =0 (mod 13), (4.4.10-7)
NTI[1,6,11,8,0,0](13n+9) =0 (mod 13), (4.4.10-8)
NTI[1,9,4,5,10,7)(13n + 10) = 0 (mod 13); (4.4.10-9)

(ii).
M,[1,2,3,4,5,6](13n) =0 (mod 13). (4.4.11-1)

Remark 4.4.4. We notice that (4.4.10-2) is [47, (4.7)] and (4.4.10-4) is [47, (4.8), corrected].

Proofs of the above congruences also rely on relations between ordinary rank and
crank moments Nog(n) and Mays(n) derived by Atkin and Garvan [29]. See [60] for details.
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Chapter 5

Partitions with Bounded Part Differences

This chapter comes from

e S. Chern, A curious identity and its applications to partitions with bounded part differences, New
Zealand J. Math. 47 (2017), 23-26. (Ref. [49])

e S. Chern, An overpartition analogue of partitions with bounded differences between largest and
smallest parts, Discrete Math. 340 (2017), no. 12, 2834-2839. (Ref. [50])

e S. Chern, On a conjecture of George Beck, Int. J. Number Theory 14 (2018), no. 3, 647-651.
(Ref. [51])

¢ S. Chern, On a conjecture of George Beck. II, Math. Student 88 (2019), no. 1-2, 159-164.
(Ref. [52])

¢ S. Chern and A. J. Yee, Overpartitions with bounded part differences, European J. Combin. 70
(2018), 317-324. (Ref. [68])

5.1 Introduction

In a paper of Andrews, Beck and Robbins [19], they considered partitions where
the difference between largest and smallest parts is a fixed integer ¢. Let p(n,t) be the
number of such partitions of n. We have, for example, p(4,1) = 1 since 4 has only
one such partition: 24 1+ 1. In fact, Andrews et al. showed that p(n,0) = d(n) and
p(n,1) = n — d(n) where d(n) denotes the number of divisors of n. For ¢ > 2, they
obtained the following generating function

¢ '(1—q) ¢ '(1—q) q

> p(n,t)g" = — + . (5.1.1)

et (I-=g)1—=¢") (A=) —¢"Ngq: (- 1)(gq:

Motivated by their work, Breuer and Kronholm [41] studied the number of partitions
of n with the difference between largest and smallest parts bounded by ¢, denoted by
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pi(n), and they showed that the generating function is

" 1 1
;pt(n)q =1 4 (W — 1) : (5.1.2)
The proof of Breuer and Kronholm has a geometric flavour, and their main tool used in
the proof is polyhedral cones.

Subsequently, Chapman [48] also provided a simpler proof, which involves g-series
manipulations.

In this chapter, we will further consider other types of partition with bounded part

differences. In fact, their generating functions fit into a general framework.

5.2 A General ldentity

Let t be a fixed positive integer. Assume that «, (3, ¢ are complex variables with
lql <1, ¢ #0, a# Bq and (8q;q); # 0. We define the following sum

S(a, Biqit) ==Y (1-aq)d —ag™)---(1 - ag™") (5.2.1)

q
= (=8¢ = Bg )+ (1= Bg ™)
We have the following identity.

Theorem 5.2.1. We have

Coa) q (a;q)e B
Sl frait) = (Bg—a)(1 - ¢ ((ﬁq; q)t 1) ' (5:2.2)

First let us recall two basic hypergeometric series identities.

Lemma 5.2.2 (First ¢-Chu—Vandermonde Sum [16, Eq. (17.6.2)]). We have

2¢1 (a, Z—”;q’ an) _ w' (5_2.3)

a (¢;qQ)n

Lemma 5.2.3 (¢-Analogue of the Kummer—Thomae—Whipple Transformation [83, p.
72, Eq. (3.2.7)]). We have

a,byede )  (e/a;q)so(de/bc; q)oo a,d/b,d/c e
> ( de'" abc) " (e )eldefabe; ) ( d,defbe a) - 624
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Proof of Theorem 5.2.1. We have

S(a, B;¢;t) (5.2.5)
(I-ag)(1—ag"h)---(1-ag*?)

= (L=B¢) (1= pg ) --- (1= pg ) 1

(Oza Q)H—t 1(6 q)rq,«

(@3 @) (B5 @)rie1

(057Q)r+t<67 )r+1 r+1
(aa q)T-i-l(ﬁv )r+t+2

_ g1 = B)(a;9): (4:9)-(Bg; 9)r(ag’59)r
(1 = a)(B; Der2 55 (@ D)r(g; ¢)r (B2 9)r

UIGUT IS q,ﬁq,aqt_q .
Bt )1 > \ag, g+
Qi1 (BE 0) oo (6% @)oo /B, ¢ t
- q((ﬁaqq; qq)iﬂl ((62”2;?)00((2; ;))oo 302 (q O;q’ qg 19,84 “) (by Eq. (5.2.4))

 qlog; q)i (/B ) (@5 [ oy
(1= 9)(Bg; Q)tg (aq; q)r (g2 q)r (5q+ )
a)

(1—q) (f%f Q)TH (G5 Q)11 ( t+1)’"+1
" (1-9)(Bg: a): B (1 ~ 21— (@G Drn

5
= q BQ’q 1]
(Bg —a)(¢" = 1) qu (¢< ”5(] ) 1)
(6(1

(Bq — Oj (¢ — 1) 561 n 4): ) (by Eq. (5.2.3))

T

'gM *xM |

=2

q(q; q)i—1 (1—

B q (@)
- (Bg—a)(1—¢) ((ﬁq Qs 1)
0

Let us see how to make use of Theorem 5.2.1 to recover (5.1.2). Note that the

generating function for partitions counted by p,(n) with smallest part equal to r is

T

q
(=g —q*)--- (1 —qtt)

99



It follows that

T

0 q
> pn)g" = 7%:1 (1—g)(1—gt1)- (1 —grt)

n>1

= 5(0,1;¢;1).

Hence, by Theorem 5.2.1, we have

S pi(n)g" = 1_1qt< ‘1 _1>.

n>1

Analogously, we have the following results.

Theorem 5.2.4. Let pdi(n) count the number of partitions of n in which all parts are
distinct and the difference between largest and smallest parts is at most t.

Then )
> pd(n)q" = T (6@ — D). (5.2.6)

n>1
Theorem 5.2.5. Let po,(n) count the number of partitions of n in which all parts are

odd and the difference between largest and smallest parts is at most t.
Then

> pou(n)g" = - _1q2t (< : - 1) . (5.2.7)

n>1 ¢ q?

5.3 Overpartitions

A more intriguing problem is about overpartitions with bounded differences. Let
gi(m,n) count the number of overpartitions of n in which there are exactly m overlined
parts, the difference between largest and smallest parts is at most ¢, and if the difference
between largest and smallest parts is exactly ¢, then the largest part cannot be overlined.
Then

(1 + z)q” 1 + ZqT-I—l 1 + qu+t—1 1
1 — qr 1 — qr+1 1 — qr+t71 1 — qr+t

n>1m>0 r>1

= (14 2)5(—2q,¢; ¢; 1).

The following result immediately follows from Theorem 5.2.1.

Theorem 5.3.1. We have

S Y almon)zrg = — <(_Zq; e _ 1> . (5.3.1)

n>1m>0 I qt (qa q)t
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Next, we will turn to the combinatorial aspect.

5.3.1 A Semi-Combinatorial Proof

We show the z =1 case of (5.3.1) from the viewpoint of over g-binomial coefficients.

Let g;(n) count the number of overpartitions of n in which the difference between
largest and smallest parts is at most ¢, and if the difference between largest and smallest
parts is exactly ¢, then the largest part cannot be overlined.

Letting z = 1 in (5.3.1) yields the following identity.

Theorem 5.3.2. We have

> gin)g" = - ! qt <(_q; 2 _ 1) | (5.3.2)

n>1 ((J§Q)t

Recall that the ¢g-binomial coefficient

M+ N
N

M+ N
N

q

is the generating function for partitions where the largest part is at most M and the
number of parts is at most N. In a paper of Dousse and Kim [75], they introduced the

over g-binomial coefficient, denoted by

M+ N
N

M+ N
N

, (5.3.3)

q

which is an overpartition analog of g-binomial coefficient defined as the generating
function for overpartitions where the largest part is at most M and the number of parts

is at most N. They showed that for positive integers M and N,

M+ N]| mm%’m S5 (4: @) are - (5.3.4)
N ' (6 Dk(¢ O nr—1( Q) N—k

Of course, if we agree that the number of such overpartitions of 0 is one, then this identity
also holds for M =0 or N =0.

Over g-binomial coefficients have many properties similar to those of the standard
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g-binomial coefficients. For example, the following recurrence relation

M+ N
N

(5.3.5)

M+N-1]
N-1

M+N-1
N

M+N-2
N -1

holds for any positive integers M and N (see [75, (1.1)]). In fact, it can be proved
combinatorially.

Now we denote by P;(q) the generating function of overpartitions in which the
difference between largest and smallest parts is at most ¢.

Let A = (Aq,...,\¢) be an overpartition of n with exactly ¢ parts, A\, =r > 1, and
A <r+t Then p= (A —r,..., A1 —7) is an overpartition of n — ¢r with at most
¢ — 1 parts and greatest part < t. Note that the first occurrence of the smallest part of A

can be either overlined or not. Hence the generating function for such overpartitions is

t+40—1
2(7" ’
ool ]
and hence
_ St —1 ¢ |t+l-1
Pq)=2>>"¢" =2) : (5.3.6)
>1r>1 13 14+ 4 4

We remark that this identity also holds for ¢t = 0.
On the other hand, overpartitions where the difference between largest and smallest

parts is at most ¢ can be divided into three disjoint cases:
(i) The largest part is at most t;

(ii) The largest part is greater than ¢, the difference between largest and smallest parts

is exactly ¢, and the first occurrence of the smallest part is overlined;
(iii) Otherwise.
For Case (i), one readily sees the generating function is

(—4:9):
(¢:9):

—1.

For Case (ii), its generating function is

Z qr 1 + qr+1 o 1 + qr+t71 qurt _ Pt(Q) _ Ft—l(Q)
1— qr 1— qr+1 1 — qr—i-t—l 1— qr—i-t 2 :

r>1
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Finally, let A = (A1,...,A¢) be an overpartition of Case (iii) with \y = r + ¢ (and so
r > 1). We note that = (A — 7, ..., \p — r) is an overpartition of |A| — ¢r with at most

¢ parts and largest part being exactly t. Hence the generating function is

t+0—1 ¢t t+0—1
¢ 1])521 Z( ])'
- ng q t_l

t+0—1
t—1 ||
Now we take M — ¢ and N — ¢ in (5.3.5) and rewrite it as

t+€—1 t( t+£—1)
=q + :
t—1 t—1

We then multiply both sides by ¢‘/(1 — ¢*) and sum over ¢

t+/
t

t+/

quér(

(>1r>1

We therefore have

(q; Q)t £>1

A4
t

4
t

t+¢—-1
t

5 ¢t t+ /¢ t+0—1
ngl_qz t t—1
¢ ¢
q t+0—-1 q t+40—-2
:qt Z]_ 7 +Zl ] .
>1 —dq t >1 —q t—1

From the foregoing argument, we therefore have

- (—¢; ) Py(q) — Pi-1(q) +Pi(q) + Pi_1(q)
Py(q) — ( (@ ) — 1) — 5 =q 9 :
Hence, B B
Py(q) + Pi-1(q) 1 (=)
Pl _ L ( ik 1) | (5.3.7)

Finally, we observe that

Py(q) + Pralq) =2

7" 1 r+1 1 r+t—1 1 r+t
+q +q ( +q +1>
r>1

1—q L—gtl 1 —grtt1\1— gt
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qr 1_|_qr+1 1+qr+t—1 1

=4 Ce
= 1 — qr 1 — qr+1 1 — qr+t71 1 — qr+t

=2> g(n)g" (5.3.8)
n>1

Theorem 5.3.2 therefore follows from (5.3.7) and (5.3.8).

5.3.2 A Real Combinatorial Proof

As one might realize, our combinatorial proof of (5.3.2) is kind of cheating as many
g-series manipulations are still involved. This is why I call it a semi-combinatorial proof.
Our next task is to prove not only (5.3.2) but (5.3.1) in a completely combinatorial

manner.

Let #(A) be the number of parts of a partition or an overpartition \. When A is an
overpartition, we use o(A) to count the number of overlined parts in A. We write parts in
weakly decreasing order.

For a positive integer ¢, we denote by P; the set of (nonempty) overpartitions with
parts less than or equal to ¢ and no parts equal to t overlined, and by G, the set of
(nonempty) overpartitions with the difference between largest and smallest parts at most
t and the largest part not overlined when the difference between largest and smallest
parts is exactly t. Also, B; denotes the set of bipartitions where the first subpartition,
which can be an empty partition, consists of only parts equal to ¢, none overlined, and

the second subpartition is a nonempty overpartition with parts less than or equal to t.

5.3.2.1 Partition Sets G; and P;

We first construct a weight preserving map ¢ from G, to P;.

For an overpartition m = (7, ma,...,m) in Gy, let s(mw) = |m,/t]|, where |a] denotes
the largest integer not exceeding a, and let k(m) be the positive integer k such that
7 > (s(m) + 1)t and w4y < (s(m) + 1)t. If there is no such k, then we let k(m) = 0.

We now define a map ¢ : G; — P; as follows. For an overpartition 7 € Gy, let #(7) = ¢,
s(m) = s and k(7)) = k. Then

Qb: (7T1a7T27"'77T£)
= (Gt t Ty — Sty e —stym — (s+ Dt .o e — (s + 1)1,
~—_————

s(b—k)+(s+1)k

times
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where all the parts equal to ¢t are not overlined, and if m; is overlined, then 7; — st
(or m; — (s + 1)t depending on the value of i) is overlined. In other words, ¢ takes
7 to (t,t,...,t,a1,...,as) where ay,...,ap are my,...,m, reduced modulo ¢, cyclically
permuted to make them weakly decreasing.

Here we note that there may be parts equal to 0 in ¢(). If there are any parts equal

to 0, then we delete them so that ¢(m) has positive parts only.
Theorem 5.3.3. ¢ is a weight preserving map from G, to Py.

Proof. Since m —my < t, s = |m/t], and 7, > (s + 1)t > 741, we have
t>mppr—st>-->m—st>m—(s+ 1)t > >m — (s+ 1)t

Thus the parts of ¢(m) are less than or equal to ¢, and if there are overlined parts, they
are less than ¢.

We now show that no more than one part of the same size is overlined. Since 7
is an overpartition, at most one part of the same size is overlined in 7. Hence, of
m — st, ..., m — st, if there are overlined parts, then they must be of different sizes. For
the same reason, of w1 — (s+ 1)t, ..., 7 — (s + 1)t, overlined parts must be of different
sizes. Thus, if mp — st > m; — (s + 1)¢, then it is clear that all the overlined parts of ¢(m)
have different sizes.

Let us suppose that my — st = m; — (s + 1)t. Then, we have m; — 1, = t. By the
definition of G;, we know that all the parts equal to 7, are not overlined. Thus, for parts
in ¢(7) that are equal to m, — st = m — (s + 1)t, either the first occurrence or none may
be overlined. Therefore, ¢(7) € P;.

We also note that the map ¢ preserves the weight of 7, that is, |¢(7)| = |7]. O

As we see in the following example, the map ¢ is not a bijection.

Example 5.3.1. Let t =3, 7 = (7,4) and 7 = (4,4, 3). Then

o~
S
3
N—
I

1, o(m) = (3,3,3.1,1), |o(r)| = |r| = 11:
0, 6(7)=(3,331L1), |7 =I7=1L

However, ¢ is a surjection since P; is a subset of G; and ¢(7) = 7 for any m € P;. So,
we will count how many pre-images each p € P, has under ¢.

Let m € G;. We describe how to recover 7 from ¢(r). First, note that it is clear from
the definition of s(7) and k(7) that m; — (s(7) + 1)t and m; — s(m)t are the remainders
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of m; and 7; when divided by ¢ for 1 < i < k(m) and j > k(7). If the remainders are
equal to 0, then they are deleted in ¢(m). Thus if we know the number of such deleted
remainders, we can determine f(7). Also, one of the deleted remainders may have been
overlined.

We then need to find s(7) and k(m), where s(m) is the quotient of the smallest part
of 7 when divided by ¢ and k(7) counts the number of parts whose quotients are equal
to s(m) + 1. Therefore, once we have f(w), k(7), and s(7) along with the information
on existence of an overlined deleted remainder, it is clear that we can recover 7. Thus
possible choices for f(7), k(m), and s(7) with having a deleted remainder overlined or
not will determine the number of pre-images under ¢.

In the following lemma, we will see the range for #(w). For any u € P, we use

m(u) = my(p) to count the number of parts of p equal to t.

Lemma 5.3.4. Let m be a nonempty overpartition in Gy and u = ¢(m) in P;. Then we

have
(i) #(m) < t(n);
(i) #(m) > (1) — M) + Osu),m(u), Where Oy)m(uy s the Kronecker delta.

Proof. First, (i) is almost trivial. Under ¢, each part of 7 splits into its residue modulo ¢
and as many t’s as the quotient, i.e., each part m; contributes [m;/t] to the number of
parts of p. Thus f(7) < #(u).

Next, we prove (ii). If all of the parts of p are t, i.e., #(u) = m(u), then

ﬁ(:u’) - m(:“’) + 5ﬁ(u),m(u) =1< 87

where the last inequality follows from the fact that 7 is nonempty.
We now suppose that p has a part not equal to ¢, i.e, () — m(u) > 1. From the
definition of ¢, we know that the parts of u not equal to ¢ are the positive remainders of

the parts of 7, so at most ¢ parts of u are not equal to t. Hence

B(k) — mp) + Op(uymu) = £(1) —m(p) < L.

This completes the proof of (ii). O

It follows from Lemma 5.3.4 that

Saguyamiy < H(m) = (B() — m(p)) < m(p), (5.3.9)
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where §(7) — (jj(,u) - m(,u)) is the number of multiples of ¢ in 7.

Lemma 5.3.5. Let n be a fized positive integer, and n’ a fixed nonnegative integer. Then

the following system of equations

xr + =n,
Y (5.3.10)

sx+(s+ 1y =n
has exactly one simultaneous solution (x,y,s) € Zso X Lo X L.

Proof. We readily see that y =n’ — sn. Also, since > 0 and y > 0, it follows from the
first equation that 0 < y < n. Hence

nl

——1<s<
n

==

from which it follows that s = |n’/n]. Therefore, there is only one solution (x,y,s). O
We are now ready to determine how many pre-images an overpartition in P, has.

Theorem 5.3.6. Let i be a nonempty overpartition in Py.

(i) If #(p) = m(u), then there are exactly 2m(p) pre-images in G; under ¢. Moreover,
of those pre-images, exactly m(u) pre-images have no overlined parts, and the other m(u)
pre-images have the first occurrence of the smallest parts overlined.

(ii) If $(u) > m(u), then there are exactly 2m(u) + 1 pre-images in G; under ¢.
Moreover, of those pre-images, exactly m(u) + 1 pre-images have the same number of
overlined parts as p and the other m(u) pre-images have one more overlined part than p

does.

Proof. Let m be a pre-image of y. By Lemma 5.3.4, we know that

B(1) = m(p) + Oy mey < 8(m) < B(p)- (5.3.11)

Hence, for any integer £ in this range, we want to know how many 7 € G; with #(r) = ¢
can be pre-images of p.

In order for m to be a pre-image of u with #(7) = ¢, s(7) and k(7) must satisfy

s(m)(l — k(7)) + (s(m) + Dk(r) = m(p). (5.3.12)
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By the definition of k(7), it should be less than §(n), i.e., { — k(7) > 0. Thus, (5.3.12)
is equivalent to that (€ - k(w),k(w),s(w)) is a solution to (5.3.10) with n = ¢ and
n' = m(u), which is unique.

(i) Suppose that §(u) = m(u). By (5.3.11), there are m(u) choices for £. For a fixed
¢, k(m) and s(7m) are uniquely determined as seen above. With these (6, (), s(w)), we
can construct 7, in which parts are multiples of ¢ differing by at most ¢ and there are no
overlined parts.

For each 7, by having the first occurrence of the smallest parts overlined, we obtain a
different pre-image. Therefore, the total number of pre-images must be equal to 2m(u) as
claimed. Also, m(u) pre-images have no overlined parts and the other m(u) pre-images
have one overlined smallest part.

(ii) Suppose that () > m(p). By (5.3.11), there are (m(u) + 1) choices for /. For
a fixed ¢, k(m) and s(m) are uniquely determined. With these (f, k(m), s(w)), we can
construct 7, in which no multiples of ¢ are overlined.

Note that from the construction of ¢, §(x) — m(p) counts the nonzero residues of the
parts of 7 modulo t. So, if #(7) > #(u) — m(p), then 7 must have multiples of ¢ as parts.
For such 7, by having the first occurrence of the smallest multiples of ¢ overlined, we
obtain a different pre-image.

Therefore, the total number of pre-images must be equal to (2m(,u) + 1) as claimed.
Also, (m(,u) + 1) pre-images have the same number of overlined parts as p and the other

m(u) pre-images have one more overlined part than u does. [

Theorem 5.3.6 yields

32 20 = 3 (L dm) + (14 m() g0 (5313)

TEG, UEP;
In the following example, we present how to find all the pre-images 7 of p.

Example 5.3.2. Let t = 3.
(i) Let p = (3,3,3). Since #(1) = m(u) = 3, by Lemma 5.3.4

1 <f(m) <3.

By solving (5.3.12), we have (#(r), k(r), s(r)) = (1,0,3),(2,1,1),(3,0,1), which yield

(9), (9),
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(6,3), (6,3),
(3,3,3),(3,3,3),

respectively. There are 2m(u) pre-images.
(i) Let u = (3,3,3,1,1). Since £(x) =5 and m(u) = 3, by Lemma 5.3.4

2 <(m) <5.

By solving (5.3.12), we have ((r), k(r), s(r)) = (2,1,1),(3,0,1), (4,3,0), (5,3,0), which
yield

(7.4),

(4,4,3),(4,4,3),
(4,3,3,1),(4,3,3,1),
(3,3,3,1,1),(3,3,3,1, 1),

respectively. Thus, there are 2m(u) + 1 pre-images.

5.3.2.2 Partition Sets P; and B;

We next construct a weight preserving map ¢ from P, to B;.

Let us recall the definition of By, from which it is clear that

—2q;
Z 20WB)glBl — QI+q +g*+-) ((QC])t B 1)
8eB, (4:9):

_ ! <<_zq5Q)t—1>, (5.3.14)

1—¢' \ (¢:q)

where o(f) denotes the number of overlined parts in 3, which is indeed the number of
overlined parts in the second subpartition of /.

We now construct a map v : B, — P; as follows:

(1) First collect all parts equal to ¢ in both subpartitions and replace an overlined ¢ by

a non-overlined ¢;

(2) and then append the remaining parts in the second subpartition to the parts
collected in (1).
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For example, [(3), (3,3,1,1)] and [(3), (3, 3,1, 1)] are both mapped to (3,3,3,1,1) under
.
Let 1 € Py. Suppose that #(u) = m(u), i.e., u has parts equal to ¢ only. Then, its

pre-image (5 must be a bipartition of this form

m(p)—z z

for some x > 0 with either the first occurrence or none of ¢’s in the second subpartition
overlined. Thus there are 2m(u) pre-images of p in By under 1. Of those pre-images,
m(p) pre-images have the same number of overlined parts as p, and the other m(u)
pre-images have one more overlined part than .

Suppose that §(u) > m(u), i.e., u has a part not equal to t. Then, its pre-image 7

must be a bipartition of this form

[(t, PN ,t), (t, PN ,t,ﬂm(u)+1, .. )]
N—_——

m(p)—z T

for some x > 0 with either the first occurrence or none of ¢’s in the second subpartition
overlined. Thus there are 2m(u) + 1 pre-images of u in B; under 1. Of those pre-images,
(m(u) 4 1) pre-images have the same number of overlined parts as u, and the other m(u)
pre-images have one more overlined part than pu.

Therefore, it follows from the map v that

> (1= Syam(ny) + (14 2)m(p)) 220 gh! = 37 220glfl, (5.3.15)

HEPy BEB:

By (5.3.13), (5.3.14), and (5.3.15),

m,n)z"q" = 5ol \WI — ol |,8| 1 (—2q; ) B
o "5 2 1—qt<(‘ 1)’

n>1m>0 req, BeB, ¢ Q)

which completes the proof of (5.3.1).

5.4 George Beck’s Conjecture

Let us turn our attention to a conjecture due to George Beck (cf. A034296 in the
OEIS [163]).
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Conjecture 5.4.1. The number of gap-free partitions (i.e. partitions with the difference
between each pair of consecutive parts being at most 1) of n is also the sum of the
smallest parts in the distinct partitions (i.e. partitions with distinct parts) of n with an

odd number of parts.

Let gf(n) denote the number of gap-free partitions of n. This sequence is listed as
A034296 in the OEIS [163]. To determine the generating function of gf(n), we only need

the following trivial observation (cf. [17]):

The conjugates of gap-free partitions are partitions where only the largest

part may repeat.

Hence we have .

> ef(n)g" =2 5 . (G2 (5.4.1)

Now let us show that, if sspt,;(n) denotes the sum of the smallest parts in the distinct

partitions of n with an odd number of parts, then

t

> sSPtgp(n)g" =) 1 E 7 (—¢; @)1 (5.4.2)

n>1 t>1

The following result is a consequence of (5.4.1) and (5.4.2).
Theorem 5.4.1. Conjecture 5.4.1 is true.
To confirm (5.4.2), we require a bivariate generating function identity.

Theorem 5.4.2. Let 9 be the set of distinct partitions. Let o(w) denote the smallest
part of a partition 7, and §(m) the number of parts of m.
Then

Z U(W)Zﬁ(w)qlﬂl - Z

TEY t>1

- ((—z; q) — 1). (5.4.3)

Hence,

> 5Dtge(n)g" = ; o(r) (1= (—1)™) g

n>1 T€Y
1 q" q"
=5 —1;¢)i—1) - Lig) —1
2<t211_qt(( )t ) tzzll_qt« )t )
t
q
= (—¢;q)e-1,
>1 1—¢

which is as desired.
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5.4.1 An Analytic Proof of (5.4.3)

We have

Z xo(ﬂ)zﬂ(ﬂ)qlﬂ _ szrqr(l + qu+1)(1 + qu+2) .
TED r>1

=2> "¢ (=24 @)oo
r>1

= 2(—24; ¢)oo 2 (_x?

2q;q)r

= 2(—2¢; @) o (2¢1 (0’ 1 . q, xq) — 1).
_2q

Recall Heine’s first transformation [16, Eq. (17.6.6)]:

b (a,b;%z) _ (b q)w(az;Q)W2¢1 (C/b»z;%b) , (5.4.4)

c (¢ @)oo (25 @)oo

Then

> a7 MMl — (( ))°°¢ <_Z xq,%q) 2(=2G; @)oo

T€ED xq;q 0
4 9)oo —2@)n(2¢; @)nq" ‘
a (xq )o n;] (¢;0)n —A )
P I i wiil | LR,

70 (6 D25 @)oo
Applying the operator [0/0z],—; yields

> o(m)FMg = (,iz(q;Q)ooZ _(—Z;q)an ]

n>0 (q7 Q)n(quJrlv Q)oo

T€YD r
= 2(¢; @)oo n§>:o (_(f] Z)):q _ai; (:rq"+11; Q)ooLzl
= 2(¢; ¢)os nzz,; <_(Z: (Z]))an (:vq”+11 Q)oo t>zn;r1 1 _q;qt] z=1
= 2(g; Q)oon; (_(;; q;:oq t Xn: 1—¢'
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=2 1 Z

> —

Z Z?Q)t_l
t>1

z

( )= 1)

t>1

This is (5.4.3).

5.4.2 A Combinatorial Proof of (5.4.3)

It is notable that (5.4.3) looks quite similar to (5.2.6). Hence, it is natural to expect
a combinatorial proof analogous to that in §5.3.2.
Our starting point is the following double counting argument.

Let A(m) denote the largest part of a partition 7. For a nonnegative integer ¢, we
define
Dy = {7T €2 : ANm)>t+1and A(7) —o(m) < t}.

Now given any m € 2, if 1 € Z;, then A(7) — o(7) <t < A(w) — 1 by the definition.
Hence, 7 is exactly contained in the following o(7) partition sets: Zx(x)—1, Pa(x)—2, - - -

DA (r)—o(x)- The following statement holds immediately.

Theorem 5.4.3. We have

Z ﬂ(Tr IW\ Z Z IW\ (5.4.5)
= t>0 7€ 7
One then sees that the remaining task is to study the generating function for %, with
t > 0. For convenience, we now consider the generating function for &, | with ¢t > 1.
Let %, be the set of partition pairs (u,r) where u is nonempty and its parts all have
size t, and v is a nonempty distinct partition with 0 being allowed as a part and the

largest part being at most ¢ — 1. For example,
((5,5,5,5,5), (4,2,1,0)) € %s.

For m = (my,ma,...,m) in Y1, we put s = |m/t|. We also let k be the positive
integer such that m;, > (s + 1)t and 741 < (s + 1)t. If there is no such k, then we let
k= 0.
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Now we construct a map ¢; : Z;_1 — %, defined by

O (7Tl,7T2,--->7T£)

— ((t,t,t,...,t), (Mot —st,...,m—st,m—(s—i—l)t,...,ﬂk—(s—i—l)t)).
——

s(l—k)+(s+1)k

times

Note that the second subpartition can be treated as (my, 7o, ..., m;) reduced modulo ¢,
cyclically permuted such that they are weakly decreasing.

Similar to Theorem 5.3.3, we have

Lemma 5.4.4. ¢; is a weight preserving map from 9,1 to XB;. Furthermore, the number

of parts is preserved by the second subpartition of the image.

Proof. Let (u,v) = ¢(m). We first show that p is nonempty. Since m € Z;_;, we have
m > (t — 1) + 1 =t. Hence we take out at least one ¢ from 7; to form pu, which implies
that p is not empty.

On the other hand, we know that 7 is a distinct partition. Since my — 7, <t —1 < t,

s = |me/t], and mp > (s + 1)t > mg41, we have
t> Mg —st>-->m—st>m—(s+ 1)t > >m — (s+ 1)t.

Note that m; — (s + 1)t could be 0 since 7 could be (s + 1)t. Hence v satisfies the
conditions. It follows that (u,v) € %;.
At last, it is obvious from the definition of ¢; that |¢;(7)| = || and f(v) = §(7). O

The rest is different to the argument in §5.3.2. We shall show
Lemma 5.4.5. ¢; is invertible.

Proof. Let (u,v) € %;. Let the number of ¢t in p be r > 1 and let v = (v, 1,...,14).
Now we write r = mf 4+ r* with m > 0 and 0 < r* < /¢ — 1 being integers. We construct

the inverse ¢; ' : B, — 2,_; as follows.
o7t () = Wi+ (m+ Dt v+ (m+ Dt,vg +mit, . ve e +mit).

We now show that the image is in Z;_;. Recall that 0 <y < --- <1y <t—1. If

r* £ 0, since vy + t > v1, we have
Ve +(m+ Dt > >vy+(m+ 1)t >v +mt > > v +mt.
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Notice that vy_.«y1 + (m + 1)t > t. We further notice that v,_,« is not the smallest
part of v, and hence v,_,~ > 0. At last, we have (vy_,11 + (m + 1)t) — (Vp_p + mt) =
t — (Vp—p — Vp—pry1) <t — 1. Hence in this case the image is in Z;_;.

If r* =0, then m > 1 since r > 1. We have vy +mt > --- > v, + mt > 0 and
v1 +mt > t. We also have (vy +mt) — (v, + mt) = vy, — 1y, <t — 1. Hence the image is
also in Z;_;.

From the definition of ¢; and ¢; ', it is apparent that ¢; *(¢¢(7)) = 7. Hence ¢, is

invertible. O
Example 5.4.1. For the partition sets Z; and %5, we have

9.7.6,5) <= ((5,5,5.5), (4.2,1,0))

o5

and
(10,9,7,6) ﬁLs ((5,5,5,5,5), (4,2,1,0)).
¢

It follows from Lemmas 5.4.4 and 5.4.5 that ¢, is a bijection from %;_; to %;. Hence,
fort > 1,
T LI S R (5.4.6)

TE€EDs—1 (p,v)ERBt

The generating function for %; is easy to get:

t
1% L 1% q
> A gt = W((_Z;Q)t - 1)7 (5.4.7)

(w,v)ES:

where ¢'/(1 — ¢') comes from the first subpartition whereas (—z;¢); — 1 comes from the

second subpartition. Consequently, we have

Theorem 5.4.6. Fort > 1,

> A gl = tht((—z;q)t — 1). (5.4.8)

ﬂef@t_1 1

Together with (5.4.5), we have

5 o= 5 (0, 1),

¢
€D >1 q

which completes the proof of (5.4.3).
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5.5 Endnotes

Quite recently, Bernard Lin [125] refined (5.3.1) and therefore presented a new proof

of the general identity (5.2.2) in a combinatorial manner.
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Chapter 6
Span One Linked Partition ldeals:

Kanade—Russell Conjectures

This chapter comes from

e S. Chern, Linked partition ideals, directed graphs and g-multi-summations, Flectron. J. Combin.
27 (2020), no. 3, Paper No. 3.33, 29 pp. (Ref. [54])

e S. Chern and Z. Li, Linked partition ideals and Kanade-Russell conjectures, Discrete Math. 343
(2020), no. 7, 111876, 24 pp. (Ref. [65])

In this series of three chapters, we will develop a theory on the Andrews—Gordon type
generating function of span one linked partition ideals and related Rogers-Ramanujan

type identities.

6.1 Introduction

6.1.1 Rogers—Ramanujan Type ldentities and Kanade—Russell Conjectures

Let us warm up with the two Rogers—Ramanujan identities [145,156], which state as

follows.

Theorem 6.1.1 (Rogers—Ramanujan identities). (i). The number of partitions of a
non-negative integer n into parts congruent to £1 modulo 5 is the same as the number of
partitions of n such that each two consecutive parts have difference at least 2.

(ii). The number of partitions of a non-negative integer n into parts congruent to +2
modulo 5 is the same as the number of partitions of n such that each two consecutive

parts have difference at least 2 and such that the smallest part is at least 2.

There are a number of identities of the same flavor discovered by Schur [160], GleiBberg
[84], Gordon [86], Gollnitz [85] and so forth. Among these Rogers—Ramanujan type iden-

tities, two types of partition sets are considered. One partition set is consist of partitions
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under certain congruence condition. For example, in the first Rogers-Ramanujan identity,
we enumerate partitions into parts congruent to £1 modulo 5. The other partition set
contains partitions under certain difference-at-a-distance theme. Let us first adopt a
definition in [108].

Definition 6.1.1. We say that a partition A = Ay + Ay + - - - + A, satisfies the difference
at least d at distance k condition if, for all j, A\; — X1 > d.

In this setting, we may paraphrase the corresponding partition set in the first Rogers—

Ramanujan identity as the set of partitions with difference at least 2 at distance 1.

In 2014, Kanade and Russell [108] proposed six challenging conjectures on partition
identities of Rogers-Ramanujan type. For example, the first of their conjectures reads as

follows.

Conjecture 6.1.1 (Kanade—Russell conjecture I;). The number of partitions of a
nonnegative integer n into parts congruent to 1, 3, 6 or 8 modulo 9 is the same as
the number of partitions of n with difference at least 3 at distance 2 such that if two

consecutive parts differ by at most 1, then their sum is divisible by 3.

It should be remarked that these conjectures are intriguingly related to the represen-
tation theory of affine Lie algebra. For a detailed description of the idea behind them,
one may refer to Kanade’s Ph.D. Thesis [106].

On the other hand, in Russell’s Ph.D. Thesis [158], companions to the Kanade—
Russell conjectures I,—Ig were considered. Further, several more conjectures of the same
flavor were proposed in [109]. In particular, among these conjectures (including the six
conjectures in [108]), there are eleven of them involving the modulus 12. It is notable
that in a very recent paper of Bringmann, Jennings-Shaffer and Mahlburg [43], seven of
the modulo 12 conjectures were proved, while the rest were, although not completely
proved, simplified to a great extent.

One major difficulty of proving the Kanade—Russell conjectures is that it is not always
easy to find generating functions for partitions under certain difference-at-a-distance
themes. Fortunately, this problem was settled in two recent papers of Kanade and Russell
[109], and Kursungoz [116], in which different sets of identities (but with some overlap)
were demonstrated, respectively. However, their proofs, although different, are both
purely combinatorial.

Hence, a natural question arises: Is it possible to obtain the Andrews—Gordon type
generating function for the partitions under certain difference-at-a-distance themes in a

more algebraic mannar?
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6.1.2 Span One Linked Partition Ideals

In the 1970s, George Andrews [8,10,11] have already started a systematic study of
Rogers-Ramanujan type identities and developed a general theory in which the concept
of linked partition ideals was introduced. However, in this series, we will not go into
details of this concept due to its lengthy definition. The interested readers may refer to
Chapter 8 of Andrews’ monograph: The theory of partitions [12].

What we are interested in this paper is a special case of linked partition ideals —
the span one linked partition ideals. In fact, this special case is enough to cover most

partition sets under difference-at-a-distance themes.

Let us first fix some notations.

Let & be the set of all partitions. We define a map ¢ : & — & by sending a
partition A to another partition which is obtained by adding 1 to each part of A. For
example, ¢(5+3+3+2+1) = 6+4+4+3+2. Let ¢°(\) = X and for n > 1 we recursively
define ¢"(\) = ¢(¢"1()\)). Hence, ¢"(\) could be obtained by adding n to each part
of A. Also, for two partitions A\ and 7, their sum \ @ 7 is constructed by collecting the
parts of A and 7 in weakly decreasing order. For example, if A =3+ 2+ 1+ 1 and
T=44+24+2+1+1,then \dr=4+3+2+2+2+1+14+1+1.

Let II be a finite set of partitions containing the empty partition (). For each partition
7 € I, we define its linking set L(m) by a subset of II containing the empty partition.
Also, we require that the linking set of the empty partition, £(0), equals II. Tt is possible

to construct finite chains
A=Al = Xy — - = A (6.1.1)

such that \g € II, A\ # 0 and for all 1 <k < K, \y € L(Ax_1). We may further extend

such a finite chain to an infinite chain ending with a series of empty partitions
C:do—= M= D= = A —=>0—=0—---. (6.1.2)

Let S be a positive integer no smaller than the largest part among all partitions in II.

The above infinite chain C uniquely determines a partition by

M@ (N) @ P (N2) @ - @ " (k) @ ETVID) @ oK) -, (6.1.3)
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which is equivalent to
Ao @ % (M) @D (N) - @ "5 (\g). (6.1.4)

Let us collect such partitions along with the empty partition A = () (which corresponds
to the infinite chain ) — () — ---) and obtain a partition set & := . ((I, £), S). Then

S is called a span one linked partition ideal.

Example 6.1.1. In the first Rogers—Ramanujan identity, we consider partitions with
difference at least 2 at distance 1. It is not hard to verify that this partition set is a span
one linked partition ideal .# (({II, £), S) where IT = {0, 1,2}, the linking sets are

L0)y={0,1,2}, £L£(1)={0,1,2}, L(2)=1{0,2},

and S = 2.

Finally, we consider a bivariate generating function for any subset . of &:

Go(z) = Gy(r,q) =Y Mg (6.1.5)
AeS

Let .# = Z((I1,£),S) be a span one linked partition ideal. Let the S-tail of a
partition A be the collection of parts < .S in A. If we further define ., to be the set of
partitions in .# whose S-tail is 7 € II, then (8.4.13) in [12] tells us that

S gl = gl S ST () g, (6.1.6)

HE I wel(n) VEIw

In other words,
Gy (x)= xﬁ(”)q‘7r| Z Gy (xqs). (6.1.7)

weLl(m)

6.1.3 Andrews’ Guess

In a private communication between George Andrews, Zhitai Li and me, Andrews

provided a basis of “guessing” the generating function for a linked partition ideal:

'Here 1 denotes a partition containing one part of size 1 and likewise 2 denotes a partition containing
one part of size 2.
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Conjecture 6.1.2 (Andrews). Every linked partition ideal has a bivariate generating

function of the form

(_1>L1(n1,...,nr)qQ(ru,...,n,«)—l—Lg(n1,...,nr)l.Lg(nl,...,nr)

(6.1.8)

n1, >0 (g%5q%)n, -+ (@%75.4% ), ’
in which L;, L, and L3 are linear forms in nq,...,n, and ) is a quadratic form in
ni,...,n,. Here the coefficient of the £™¢" term is the number of partitions of n in this

linked partition ideal with exactly m parts.

This conjecture has numerous pieces of empirical evidence:

1. Recall that in the first Rogers-Ramanujan identity, we consider partitions of n such
that each two consecutive parts have difference at least 2. We know that the generating

function for such partitions is

n2

Z q
n>0 (¢ @n
A generalization of the Rogers—Ramanujan identities is due to Gordon (cf. Theorem
7.5 in [12]). In a special case of Gordon’s generalization, we deal with partitions of

the form A; 4+ Ay + - - + Ap, where for all j, A\j — A\j -1 > 2 with £ > 2 fixed. It can

be shown that the generating function is

NP+NG+-+NZ_

Z q

ni,mn,...,ng_1>0 <q7 q)nl (Q? q)nQ o (Q? q)nk71 7

where N; = nj +nj41 + - - + ng_1. Andrews showed that this partition set is a linked

partition ideal.

2. In the first Gollnitz—Gordon identity, one studies partitions of the form A\;+ Ao+ - -+ Ay,
in which no odd part is repeated, \; — A\;_; > 2if \; odd and A\; — \;_; > 2 if \; even.

It can be shown that the generating function is

(_ 1)712 qnf-&-Zm na+no

(6% >

ni,n2>0 (q27 q2)n1 (q27 q2)n2 '

This partition set is also a linked partition ideal as claimed by Andrews.

With the aid of the above conjecture and necessary computer algebra systems, if we

want to find a generating function identity for a linked partition ideal, we are able to
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single out the promising candidates by running through a number of functions in the

above fashion and comparing the series expansions.

6.2 Systems of g-Difference Equations

As we will see in the next section, a crucial point there can be summarized as the

following question: Suppose we have a system of q-difference equations, say,

Fi(z) = p11(x) Fi(2q”) + pra(x) Fa(zq”) + - + pr (@) Fi(xq®)

Fy(z) = poi (@) Fi(2q”) + poo(@)Fa(zq®) + - - + pos(x) Fi(xq®)
, (6.2.1)

Fi(z) = pe1(2) F1 (2¢°) + pro(@) Fa(zq®) + - + pri(z) Fi(zq®)

where the F'’s and p’s are in x and q, is it possible to deduce a q-difference equation
merely involving Fy ? Fortunately, an affirmative algorithm is provided by Andrews in
the proof of [12, Lemma 8.10]. We would like to translate Andrews’ algorithm to the

matrix form to make it more transparent.

At first, the system (6.2.1) can be written in the matrix form

Fi(z) pri(z) p172(x) pl,k(fﬂ) Fy(zq™)
P | | ple) pale) o gt || B
Fy(z) Pra(®) pra(z) - prx(z) Fy(zq™)

Step (1). We put uy(z) = Fi(x). Then (6.2.2) becomes
u () pri(z) p172(x) pl,k(f) uy(rq™)
P | o) o) ol | | B
Fy(z) Pra(®) pra(z) - prx(z) Fy(zq™)

If prao(x) = prs(x) = -+ = p1x(x) = 0, then we shall terminate at this place by

noticing that
ur () = pra(z)us(zq™).

For Steps (s) with 2 < s < k, we proceed iteratively as follows.
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Step (s). Supposing that in the (s — 1)-th Step, we obtain

uy () ur(zq™)

Us—1(x) P, us—1(zq™) , (6.2.4)
Fy(z) Fy(zq™)
Fi(z) Fi(zq™)

where P, ; is a k x k matrix with the (i, j)-th entry being p; ;().

Since we have arrived at the sth Step, we know that at least one of the ps_1 (),
Ds—15+1(T), ..., Ps—1x(x) is not identically zero. Otherwise, the program should be
terminated at the (s —1)-th Step. Further, if ps_; s(x) is identically zero and ps_1 +(z) (for
some t with s + 1 <t < k) is not identically zero, (6.2.4) can be rewritten by swapping
F, and F,. In such a case, P,_; should be rewritten by swapping Ds.s(x) and pyi(x),
swapping ps(x) and py s(x), swapping p; s(z) and p;(x) for i # s, t, and swapping ps ;(z)
and p; ;(z) for j # s,t. For notational convenience, we simply rename Fy by F; and F}
by Fs so that the new relation is still of the form (6.2.4) while p,_1 s(x) is not identically
Z€ro.

We then make the following substitution

Us(xqm) = ﬁs—l,s(x)Fs(xqm) + ﬁs—17s+1($)Fs+l(qum) +oe +ﬁs—1,k(x)Fk(xqm>~ (625)

Written in the matrix form, we have

ua (xq™) ur(wg™)
uz(zq™) uz(xq™)
us—1(xq™) —T(s us—1(zq™) 6.2.6
us(zq™) (@) Ey(zq™) | (620
Fs+1<xqm) FS+1(xqm)
Fy(zq™) Fy(zq™)
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where

1 0
0 1
1 0 0 0
T(z) = i i X
0 ps—l,s<x> ps—l,s—l-l(x) T ps—l,k(x>
0 0 1 0
00 -0 0 0 1

Here all diagonal entries in the k X k matrix T'(x) are 1 except for the sth diagonal entry.
In the sth row of T'(z), for s <t < k, the (s, t)-th entry is ps_; ¢(x). All remaining entries
in T'(x) are 0.

Since ps—1s(x) is not identically zero, the matrix T'(z) is invertible. In particular, we

have
1 --- 0 0 0 e 0
T(x)_l = 1 Ps—1,5+1() Ps—1,6(%)
O O T 0 ﬁsfl,s(m) B ﬁ.sf’l,-:(x) T _ﬁsfl,,s(x)
0 0 1 0

It follows from (6.2.4) and (6.2.6) that

uy () uy(xq™)
uste) | p | usled”) (6.2.7)
Fopi(2) ’ Fopa(zq™) ’

where

P, =T(xq ™) P,_,T(x)".
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Claim 6.2.1. The matriz P, obtained above is of the form

2 3 4 --- s s+1 k

x 1 0 0 --- 0 0 0

21« « 1 0 --- 0 0 0
s—1

s * * * *

E\x % x % * * *

More precisely, in rowr (1 <1 < s—1) of Py, the (r,r+1)-th entry is 1 and the (r, c)-th

entries are 0 for all ¢ > r + 1.

Proof. We argue by induction on s. When s = 1, there is nothing to prove. Assuming
that the result is true for some s — 1 and noticing that P,_; is such a matrix obtained in
the (s — 1)-th Step, we know that p,,.1(x) =1 for all » < s — 2 and that p,.(z) = 0 for
allr <s—2ande¢>r+1.

It is obvious that the first s — 1 rows of T'(xzq~™)P,_; are identical to the first s — 1
rows of P,_;. Let the (j,c)-th entry of T'(z)~" be Tj(;l)(m).

For r < s — 1, the (r, ¢)-th entry of P, = T'(xq~™)P,_,T(x)" is given by

1)
me T( (2).
If ¢ = r + 1, then the only non-zero contribution in the above summation is

1-1 ifr<s—2
Dros1 ()T b (@) = { .
Porsl®) o Hr=s-1

=1.

If ¢ > r+ 1, then we first treat the r = s — 1 case. One has

S P OT 0) = s T ) o T )

126



= ﬁs—l,s(x) : <_W> +ﬁs—1,c(l‘) -1

ﬁs—l,s (l‘)
= 0.

For r < s — 2, we simply notice that p, ;(z) = 0 for j > r + 1 from our assumption and
that Tj(;l)(:c):0f0rj§r—|—1sincejgs—landj#c. O

Let pp5™(x) be the (4, j)-th entry of P, If Pag¥(z) = 0 for all t > s+ 1, then we shall

stop at this place by noticing with the help of Claim 6.2.1 that

ur(z) = oy (@)ua(2q™) + ua(wq™),

up(w) = py5" (x)ur (2q™) + Pag” (x)uz(xq™) + us(zq™),
us_1 (1) = Py (2)ur (™) + oy o (z)ua(zq™) + - - - + us(zq™),
us(z) = pos" (2)ur (xq™) + prs” (2)ua(xq™) + - - - + P (€)us(zq™).

Final setup. Assuming that the above program is terminated after ¢ (< k) steps,
we obtain a new system of g-difference equations

ui(z) = ri1(x)ur(zg™) + uz(zq™),

ug(x) = roq(x)ur(zq™) + rog(x)uz(zq™) + ug(zq™),

w1 (x) = re—11(@)ur(xq™) + re—12(x)ua(q™) + - -+ rm -1 (@) ue—1 () + ue(zg™),

w(z) = rp1(z)ur(zq™) + rea(x)ua(xg™) + - + o1 (@) up—1(xq™) + rep(x)ue(zg™),

where the r’s are in x and gq.
With this new system, a g-difference equation involving merely u; can be obtained

by simple eliminations. Finally, we recall that Fj(z) is set to be uy(x) in Step (1).

6.3 Kanade—Russell Conjectures

We may summarize the following four types of partition sets under difference-at-a-

distance themes from the Kanade—Russell conjectures.
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« TYPE I
Partitions with difference at least 3 at distance 2 such that if two consecutive parts

differ by at most 1, then their sum is divisible by 3.
o TyPE II:

Partitions with difference at least 3 at distance 2 such that if two consecutive parts

differ by at most 1, then their sum is congruent to 2 modulo 3.

o TypE III:
Partitions with difference at least 3 at distance 3 such that if parts at distance 2 differ

by at most 1, then the sum of the two parts and their intermediate part is congruent to
1 modulo 3.

o« TYPE IV:
Partitions with difference at least 3 at distance 3 such that if parts at distance 2 differ

by at most 1, then the sum of the two parts and their intermediate part is congruent to
2 modulo 3.

In this section, we investigate partition sets of types I, II, IIT and IV under the setting

of linked partition ideals.

6.3.1 Partition Set of Type |

Recall that the partition set of type I is the set of partitions with difference at least 3
at distance 2 such that if two consecutive parts differ by at most 1, then their sum is
divisible by 3. In other words, if A = Ay + Ay + - - - + Ay is in this partition set, then

(1) A = Aig2 = 3;
Let #7; denote the partition set of type L.

Claim 6.3.1. .5, is a span one linked partition ideal % ((11, L), S) where S = 3, and
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IT = {my, ™, ..., 77} along with the linking sets given as follows.

IT linking set
m =0 {7T1, T2, T3, T4, N5, Te, 7T7}
Ty = {7T1, T2, T3, T4, Ts5, T6, 7T7}
3 = 2+1 {7"17 To, T3, T4, T5, Tg, 7T7}
T =3+1 {m, w5, 7, ™7}
Ty = 2 {7'('1, To, T3, T4, T5, Tg, 7T7}
6 = 3 {7, 75, me, ™7}
Ty = 3+3 {7'('1, 76, 7T7}

Proof. A straightforward verification tells us that any partition in . ((Il, £), S) satisfies
distance conditions (i) and (ii) above and hence is in .Zr;.

On the other hand, given a partition A € .#;, we decompose it as
Ao @ ¢° (M) © ¢ (o) @ -+ B ¢ (Nie).

Note that for 0 < k < K, ¢3(\;) is simply the collection of parts in A of size between
3k + 1 and 3k + 3. First, to ensure the distance conditions (i) and (ii), we must have
M € 11 for all k. Now we only need to check case by case. For example, if A\, =76 =3
for some k, then there is only one part of size 3k + 3 between 3k + 1 and 3k + 4. We
consider parts of size between 3k + 4 and 3k + 6. The distance conditions (i) and (ii)
sieve the following four choices: 0, (3k 4+ 5), (3k + 6) and (3k + 6) + (3k + 6). Hence, we
have four choices for Ay 1: 71, 75, mg and 7. For the remaining cases, we may carry out
the same argument. Hence, A is in & ((II, £), S).

Consequently, 1, = (I, L), 5). O

Let us denote by H;(x) = H;(z, q) the generating function of partitions A in %, with

3-tail equal to m; for i = 1,2,...,7 where the 7;’s are as defined in Lemma 6.3.1.

Following (6.1.7), we have

Hy(z) = Hi(zq®) + Hg(ajq?’) + Hy(2q®) + Hy(2q?) + Hs(xq®) + He(xq®) + Hr(zq?),

)
(6.3.1)
a g Hy(2) = Hi(2q°) + Ha(2q®) + Hs(x¢”) + Ha(xq®) + Hs(2q”) + He(2q’) + Hr(2q),
(6.3.2)
@ 2q  Hy(x) = Hi(2¢®) + Ha(2q’) + H3(2q’) + Ha(xq”) + Hs(x¢”) + He(2q®) + Hr(2q?),
(6.3.3)
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72q* Hy(2) = Hi(v¢*) + H5(2¢®) + He(2q®) + Hr(24%),

(6.3.4)
7 'q 2 Hs () = Hi(2q”) + Ha(2q°) + H3(2q’) + Hy(xq’) + Hs(vq%) + He(zq*) + Hr(zq%),

(6.3.5)
7 'q He(z) = H1(2q*) + H5(2q®) + He(2¢®) + Hr(2q?),

(6.3.6)
72 " Hr(z) = Hy(2q°) + He(xq’) + Hr(xq°).

(6.3.7)

Let Gy | (x) = G, (x,q) (resp. Gy, (x), Gy, (x)) denote the generating function
of partitions in .7, whose smallest part is at least 1 (resp. 2, 3).
It follows that

G]TL1 ({L‘) — Hl(flf) + HQ(ZE) + Hg(ZL‘) + H4(ZL‘) + H5(l‘) =+ H6<$) + H7(JZ)

= Hi(zq™?), (6.3.8)
Gy, (2) = Hi(x) + Hs(x) + He(x) + Hr ()

= 27 Hy(2q ™), (6.3.9)
Gy, () = Hi(z) + H(x) + Hr(z)

=2 ?Hy(2q™?). (6.3.10)

Hence, to determine g-difference equations satisfied by Gz, (2), Gz, (2) and G | (2),
it suffices to find g¢-difference equations for Hy(z), Hg¢(z) and H7(x), respectively.

We now deduce from (6.3.1), (6.3.2), (6.3.3) and (6.3.5) that

Hy(x) = xqH, (), (6.3.11)
Hs(z) = 2°¢*Hy (), (6.3.12)
Hj(v) = v¢*Hy(z), (6.3.13)

and likewise from (6.3.4) and (6.3.6) that
Hy(x) = xqHg(x). (6.3.14)

As a result, the system (6.3.1)—(6.3.7) can be rewritten as
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Hi(z) = (1 +z¢* + 22¢° + 2¢®)Hy(2¢®) + (1 + 2¢")He(xq®) + Hr(zq%),
Ho(x) = (xq° + 2*¢*)Hi(2q”) + 2q’ Ho(2q”) + g Hr (24°),
Hy(z) = 22¢°Hy (2¢®) + 2%¢° Ho (2q*) + 2°¢° H7 (2¢?).

(6.3.15)
(6.3.16)
(6.3.17)

We first use the algorithm in §6.2 to deduce the g-difference equation satisfied by

Hi(z) and accordingly Gz, ().
Step (1). We put u;(z) = Hy(z). Then

uy (z Ui (7g°)
Hg(z) | = P1 | Hg(z®) |
Hi:(z Hy(xq?)
where
142t +2%° +2¢° 1+a¢* 1
]51 = xq3 + x2q8 xq?’ xq3
2240 225 2P

Step (2). We put ug(z) = (1 + z¢*)Hg(xq*) + H7(2¢®). Then

up () up(2q®)
Ue\T = 1 U6(5UCI3) )
Hy () Hr(zq?)
where
1+ 2¢* + 2¢® + 2%¢° 1 0
Py = |2q*(1+2q+ o¢* + o¢’ + 22¢6) 2CUEretee) o (beend)
fEQ 6 ws 10
x2q6 1+a(clq4 1+(a]cq4

Step (3). We put uz(z) = W(;I—WHAQ;QP’). Then

U1<I Ul(xqs)
ug(z) | = Ps | u(2q®) |
ur(x U?@QS)
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where

1+ z¢* + zq° + 2%¢° 1 0

Py = | 2¢*(1 4+ 2q + 2¢® + x¢° + 2%¢°) 7@3(1112?”3) 1
atq"(1tataqg—?) atq"(Itataq ?)  aPq*(Itatwg”?)
1+zq (I+zq)(1+zq*)  (1+zq)(1+zg+zq?)

For convenience, we write

uy (7) = ri1(z)uy (v6°) + ug(zq?), (6.3.21)
ug(x) = 16,1 (0)ur (vq°) + 16 6(7)us(2q°) + ur(2g?), (6.3.22)
ur(x) = 171 ()ur (v¢°) + 17 6(7)us(2g*) + 17 7u6(26%), (6.3.23)

where the coefficients are rational functions in z and ¢ given by P;.
Noting from (6.3.8) that

Gy, () = Hi(2q?) = up(zq?), (6.3.24)
we may eliminate ug(z) by (6.3.21)
ug(z) = GJTLI (x) — 7“1,1(513(1_3)GJTL1 (a:q3). (6.3.25)
Substituting (6.3.25) into (6.3.22), we may eliminate uz(z)

() = Gy, (20) — (raa ™)+ rao(0) Gy, ()
+ (r1,1(xq*3)r6,6(xq*3) - rﬁ,l(xq’?’)) G, (zq*). (6.3.26)

Substituting (6.3.24), (6.3.25) and (6.3.26) into (6.3.23), we arrive at, after simplifi-

cation, the following g-difference equation for Gz, ().

Theorem 6.3.2. It holds that

po(, Q)GﬂTLl (x) + p3(z, q)GJTL1 (2q°) + ps(z, q)GjTL1 (2¢°)
+py(2,9) Gy, (4°) = 0, (6.3.27)

where

po(z,q) =1+ z(¢* + ¢°),
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ps(z.q) =—1—2(g+ P+ + "+ ) -2+ "+ +2° + "+ ¢+ Q)
— (" + ¢+ ¢ +¢"),
p6($7Q) — IB(qH +q13> +x4(q14 +q15 +q16 +C]17 +q18) +:(:5(q19 +q21)7

and
po(x,q) = 2°¢°" + 2%(¢*® + ¢*°).

In the same manner, we may find the g-difference equations for Hg(x) and Hr(z),

and accordingly G s, (z) and Gz, (7).
Theorem 6.3.3. It holds that

po(, 4)Gsy , (@) + p3(2, )G sy, (26°) + ps(w, 0) G sy, (00°)
+py(2,9) Gy, (w4”) = 0, (6.3.28)

where

po(z,q) =1+ z(¢" + ¢°),
p3(z,q) = -1-2(*+ ¢ +q" + ¢+ %)
—$2(2q6 +q7 +q8 +q9 +q10 +q11 +q12) _$3(q11 + 2q14 +q17)7
p6(x7q) — x3(q16 + q17) +x4(_q17 + q18 + qlg _|_ q21 +q22 +q23 + q24)
+2°(¢* + ¢*),

and

po(x,q) = 2°¢* + 2°(¢* + ¢*).

Theorem 6.3.4. It holds that

po(, q)GﬂTL3 (x) + p3(z, q)GJTL3 (2q°) + ps(z, q)GjTL3 (2¢°)
+py(2,9) Gy (4”) = 0, (6.3.29)

where

po(z,q) =1+ 2(¢° + "),

133



ps(x,q) = =1 —2(® + ¢ + "+ "+ ¢")
. 56'2((]6 +q8 +2q9 +2q10 +q11 +q12) . xS(qw _|_q13 _'_q15 +q16)’
p6<17,q> — x3(q16 +q17) —|—x4(q20 +q21 +q22 +q23 +q24) —|—x5(q27 +q28>7

and
po(z,q) = 2°¢*° + 2°(¢* + ¢").

6.3.2 Partition Set of Type Il

Recall that the partition set of type II is the set of partitions with difference at least
3 at distance 2 such that if two consecutive parts differ by at most 1, then their sum is
congruent to 2 modulo 3. In other words, if A = Ay + Xy 4+ - - - 4+ A is in this partition set,
then

<i> Ai — iy > 3;

Let .1, denote the partition set of type II.

Claim 6.3.5. Zp, is a span one linked partition ideal % ((11, L), S) where S = 3, and

Il = {m, m, ..., 77} along with the linking sets given as follows.
II linking set
m =0 {7T1, T2, T3, T4, Ts5, T6, 7T7}
Ty = 1 {7"17 To, T3, T4, T5, Tg, 7T7}
T3 = 1+1 {7'('1, T, T3, T4, M5, Tg, 7T7}
7T4:3+1 {7'('1, T5, Tg, 7T7}
5 = 2 {m1, m2, w4, T, e, T}
6 :3+2 {71'1, 5, Tg, 7T7}
7 :3 {7'('1, T5, Tg, 71'7}

Similarly, let us denote by H;(x) = H;(x, q) the generating function of partitions A in
J1,, with 3-tail equal to m; for i = 1,2,...,7 where the m;’s are as defined in Claim 6.3.5.

Following (6.1.7), we have

Hi(z) = Hi(2¢”) + Ha(2q®) + H3(xq®) + Hi(2q) + Hs(2¢%) + He(xq®) + Hr(zg®),
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g Hy ()
x72q 2 Hs(x)
x 72 Hy(x)
x g 2 Hs(x)
x7 2"  Hg(x)

x_lq_3H7(J;)

Let Gy | (x)

(6.3.30)

= Hy(zq*) + Ha(2q®) + Hs(xq”) + Hy(xq*) + H5(2q®) + He(2¢®) + Hr(2q%),

(6.3.31)
= Hi(x¢%) + Ha(2¢%) + H3(2¢°) + Ha(2q”) + H5(2q°) + Ho(2q”) + Hr(2q”),

(6.3.32)
= Hy(2¢®) + Hs(2q®) + He(wq®) + Hq(zq?),

(6.3.33)
= Hy(2¢*) + H2(2q”) + Ha(2q®) + Hs(2q*) + He(zq*) + Hr(2¢?),

(6.3.34)
= Hi(2¢%) + Hs(x¢”) + Ho(2q”) + Hr(2q°),

(6.3.35)
= Hi(2¢%) + Hs(x¢”) + Ho(2q”) + Hr(2q°).

(6.3.36)

=G jTHl(x,q) (resp. G ij(:c)) denote the generating function of

partitions in .#r, whose smallest part is at least 1 (resp. 2).

Let G s, () denote the generating function of partitions in .#z;; where 1 appears at

most once.
It follows that

CTVJTH’1 (l’)
GfTILQ (I)

CTYJTILG (ZL‘)

= Hy(z) + Hy(x) + Hs(x) + Hy(x) + Hs(z) + He(z) + H7(2)

— Hy(oq %), (6.3.37)
= Hi(z) + Hs(z) + Hg(z) + Hy(x)

= &~ Hy(2q7?), (6.3.38)
= Hi(z) + Hy(x) + Hy(x) + Hs(x) + He(x) + Hr(z)

= 27 qHs(2q7?). (6.3.39)

We may deduce from (6.3.30), (6.3.31) and (6.3.32) that

Hy(x) = xqH, (), (6.3.40)
Hs(z) = 2°¢*H, (), (6.3.41)
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and likewise from (6.3.33), (6.3.35) and (6.3.36) that

Hy(x) = xqH7(x), (6.3.42)
Hg(z) = vq¢* Hy (). (6.3.43)

Hence, the system (6.3.30)—(6.3.36) can be rewritten as

Hy(z) = (14 2q¢" + 2°¢°) Hi (2¢*) + Hs(2¢*) + (1 + 2q* + 2¢°) Hy(xq%), (6.3.44)
Hs(z) = (xq2 + x2q6)H1 (xq3) + xq2H5(xq3) + (a:q2 + 225 + x2q7)H7(:cq3), (6.3.45)
Hq(z) = 2¢* Hi(v¢%) + 2¢* Hs(2¢°) + (2¢° + 2°¢®) Hr (2¢?). (6.3.46)

Using the algorithm in §6.2, we are able to prove the following g-difference equations

for G (%), Gryp () and Gy (), respectively.

Theorem 6.3.6. It holds that

Po (xa q>GjTII,1 (ZI?) + b3 (l’, q)GjTII,l (q,’qg) + p6<fﬂ, Q)G]Tn,l (Iq6)
+py(2,9) Gy, (26”) = 0, (6.3.47)

where

po(z,q) = 1+ z(¢* + ¢°),

p3(r,q) = -1 -2+ +E+¢* +) —22( +¢* +2¢° +2¢° + ¢+ ¢°)
— (¢’ + 4"+ 4" +¢"),

po(z,q) = (¢ + ¢") + 2 (¢ + ¢ + ¢ + 4"+ ¢'%) + 2°(¢"T + "),

and

po(z,q) = 2°¢*° + 2°(¢°" + ¢*).

Theorem 6.3.7. It holds that

po(z, Q>GJTILQ () + ps(z, C])GleL2 (2¢°) + ps(z, Q)GJTM (x4°)
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+p9(2,0)Gy, (26”) = 0, (6.3.48)

where

po(z,q) =1+ z(¢" +q"),
p3(z,q) =-1-2(+ ¢+ ¢+ +4¢")

_ $2<q5 +q6 _'_q7_|_2q8 +q9 _|_q10 +q11) _$3(q10 +q12 +q13 +q15)’
pe(il?,q) _ mS(qM +q16) +x4(q18 +q19 +q20 _|_q21 +q22) +£L'5(q24 _'_q26>’

and

po(z,q) = 2°¢** + 2%(¢** + ¢*°).

Theorem 6.3.8. It holds that

po(z, Q)GJTILG () + p3(z, q)Gan,a (zq*) + ps(, q)GjTIM (2¢°)
+py(2,9) Gy, (24°) =0, (6.3.49)

where

po(z,q) =1+ z(¢" + ¢°),
ps(z,q) =-1-2(q+ ¢+ ¢ +q" +¢°

(P 2P P g0+ g — 2P+ ¢+ g+ ),
p(j(x,q> — x3(_q12 +q13 + q14 + q15>

+$4(—q13 + q15 +q16 +q19 + q20 + q21 + q22) +$5(q23 + q27)’

and
po(z,q) = 2°¢* + 2%(¢*° + ¢**).

6.3.3 Partition Set of Type Ill

Recall that the partition set of type III is the set of partitions with difference at least
3 at distance 3 such that if parts at distance 2 differ by at most 1, then the sum of the
two parts and their intermediate part is congruent to 1 modulo 3. In other words, if

A=A + Ao+ -+ + A is in this partition set, then
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(1) A — Aigs = 3;
(11) )\1 — >\i+2 S 1 lmphes )\l + )\i+1 + )\i+2 =1 (mod 3)

Let Z5,,, denote the partition set of type III.
Claim 6.3.9. .1, is a span one linked partition ideal 7 ({11, L), S) where S = 3, and

II = {m,mo,...,ms5} along with the linking sets are given as follows.
II linking set
m =0 {771’ T2, T3, T4, Ts5, Te, 7, N, T9, W10, 11, T12, 713, 714, 7T15}
T =1 {m1, ma, W3, W4, W5, W6, W7, W, M9, W10, M1, W12, W13, W14, T15}
m3=1+1 {7T17 T2, T3, T4, Ts5, T6, T7, T8, T9, T10, 11, T12, T13, 714, 7T15}
Ty =2 {m1, w2, w3, My, W5, W6, W7, T8, W9, Wi, W11, W12, W13, Ti4, W15}
s =2+1 {771’ T2, T3, T4, T5, Te, M7, T8, M9, T10, 711, T12, T13, T14, 7T15}
me=2+1+1 {m1, ma, W3, W4, W5, W6, W7, W, M9, W10, M1, W12, W13, W14, T15}
mr=2+2 {m1, m, M4, W5, ™7, Mg, W9, W11, M2, T13, M4, W15}
Ty =3 {m1, w2, M4, 75, W7, M8, To, W11, Ti2, M3, M4, T15}
mg=3+1 {7T1, T2, T4, 5, M7, T8, T9, T11, W12, T13, T14, 7T15}
mo=3+1+1 {m1, o, M4, W5, W7, M, Ty, W11, T2, W13, Ti4, T15}
T =3+ 2 {m1, o, My, W5, W7, Mg, Ty, W11, Ti2, W13, Ti4, 715}
m2=3+2+1 {7T17 T2, T4, M5, M7, T8, T9, T11, W12, T13, 714, 7T15}
M3 =3+2+2 {7’(’17 T4, T7, TR, T11, T13, 7T14}
14 :3+3 {71'17 o, T4, T8, T9, T11, T14, 7T15}
ms=3+3+1 {m1, ™2, m4, T8, M9, W11, 14, Ti5}

Let us denote by H;(z) = H;(x,q) the generating function of partitions A in &,

with 3-tail equal to 7; for + = 1,2, ..., 15 where the 7;’s are as defined in Claim 6.3.9.

Following (6.1.7), we have

Hy(x) = Hy(2¢®) + Ho(2q®) + H3(2q*) + Hy(xq®) + Hs(2q®) + Hg(2q*)
+ Hq(2q%) + Hs(2q%) + Ho(2q”) + Hio(xq”) + Hi1(2q°)
+ Hip(2¢%) + Hiz(2¢®) + His(2¢®) + His(2q?), (6.3.50)
o=l q Ha(x) = Hi(2¢%) + Ha(2¢%) + Ha(2¢”) + Ha(2q®) + Hs(2q") + He(2q")
+ Hr(2q”) + Hs(2q”) + Ho(xq”) + Hio(xq”) + Hi1(2q®)
+ Hyg(2q®) + Hiz(2q?) + His(2q®) + His(2q?), (6.3.51)
©72q *Hy(x) = H1(2¢") + Hz(2¢") + Ha(2q") + Ha(2q") + Hs(2q") + He(wq")
+ Hy(2q®) + Hs(wq®) + Ho(q®) + Hio(xq®) + Hu(xq°)
+ Hia(2q?) + Hi3(wq®) + His(2q®) + His(2q?), (6.3.52)
v g Hy(x) = Hy(2¢®) + Ho(2q®) + Hz(2q*) + Hy(xq®) + Hs(2q®) + He(2q%)
+ Hq(zq%) + Hs(2q%) + Ho(2q”) + Hio(xq") + Hi1(2q°)
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+ Hio(2q®) + Hiz(2q®) + His(xq®) + His(xq?), (6.3.53)
@=2q Hy(x) = Hi(2q®) + Ha(2q”) + Ha(2q”) + Ha(wq®) + Hs(q®) + He(2q®)
+ Hr(zq”) + Hs(2q®) + Ho(q®) + Hio(2q”) + Hui(2q°)
+ Hi2(2q®) + Hi3(2q®) + Hia(wg®) + His(2q?), (6.3.54)
@3 " Ho(x) = Hi(2¢%) + Hz(2¢%) + H3(2¢”) + Ha(2q®) + Hs(2¢”) + He(2q")
+ Hz(2¢”) + Hs(2q®) + Ho(x¢”) + Hio(2q®) + Hi1(2q°)
+ His(2q”) + His(2¢®) + Hia(zq®) + His(2¢?), (6.3.55)
v 2 Hy(x) = Hy(2¢®) + Ho(2q®) + Hy(2q*) + Hs(xq) + Hr(2q®) + Hg(2q%)
+ Ho(zq%) + Hi1(2¢”) + Hi2(2¢) + Hi3(2q®) + Hia(zq”)
+ Hys(zq°), (6.3.56)
@~ g Hy(x) = Hi(2¢") + Ha(xq’) + Ha(zq®) + Hs(2q®) + Hr(2q") + Hg(xq)
+ Ho(zq%) + Hi1(2q”) + Hi2(xq”) + Hi3(zq%) + Hia(zq”)
+ Hys(zq?), (6.3.57)
@~%q" " Hy(z) = Hi(zq’) + Ha(2¢”) + Ha(2q®) + Hs(xq”) + Hr(x¢*) + Hs(2q’)
+ Ho(2q%) + Hi1(2¢”) + Hiz(2¢) + Hi3(q®) + Hia(2q?)
+ Hys(2q%), (6.3.58)
3 S Hyo(x) = Hy(2g®) + Ha(2g®) + Hy(2q?) + Hs(2q?) + Hr(2¢?) + Hs(2q?)
+ Ho(zq%) + Hi1(2¢”) + Hi2(2¢”) + Hi3(xq®) + Hia(zq®)
+ His(zq%), (6.3.59)
v 2q 7 Hyy (2) = Hy(2¢®) + Hao(2q®) + Hy(2q®) + Hs(2q*) + H7(2¢*) + Hg(2zq?)
+ Ho(xq”) + H11(2¢) + Hi2(2¢®) + Hiz(zq*) + Hia(2q?)
+ His(zq?), (6.3.60)
27 %q " Hia(x) = Hi(zq) + Ha(2¢*) + Ha(2q’) + Hs(xq”) + Hr(x¢*) + Hs(wq’)
+ Ho(2q%) + Hi1(2¢”) + Hiz(2¢) + Hi3(wq®) + Hia(2q?)

+ His(xq?), (6.3.61)
x3q" THys(x) = Hi(xq”) + Ha(2q’) + Hr(2¢”) + Hs(2q”) + Hui (2¢”) + His(zq’)

+ Hus(wg®), (6.3.62)
272 Hyy(x) = Hy(2¢®) + Ha(xq®) + Hy(2q®) + Hg(xq®) + Ho(2q®) + Hy1(2¢%)

+ Hu(2q’) + His(ag®), (6.3.63)
x3q " Hys(x) = Hi(2q°) + Ha(2q°) + Ha(xq’) + Hs(xq’) + Ho(xq®) + Hu1(zq”)

+ Hua(wq®) + His(xq°). (6.3.64)

This system may be simplified as
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Hy(z) = (1+2¢* + 22¢® + 2¢° + 2*¢° + 2°¢"*) H, (v¢?)

+ (wg* + 14 2¢* + 22¢° + 2¢° + 2%¢°) Hs(2¢?)

+ Hia(2q’) + (1 + 2¢") Hia(zg%), (6.3.65)
Hg(x) = (z¢® + 2°q" + 2°¢® + 2°¢"*)H, (2¢°)

+ (2%¢" + 2¢® + 2°¢" + 2*¢® + 3¢ Hy(2q?)

+ ¢ Hi3(2¢) + (2¢® + 2°¢") Hiu(2q?), (6.3.66)
Hig(2) = (2%¢7 + 22V Hi (2¢%) + (2*q" + 23¢7 + 2%¢") Hy(wg?)

+ 3¢ Hy3(2q®) + 2°q" Hi4(2q?), (6.3.67)
Hua(z) = (22¢° + 2°¢"° + 23"V Hy (26) + (22¢° + 2°¢" + 2°¢") Hy(2¢)

+ (2%¢° + 22¢"°) H 14 (zq?). (6.3.68)

Let G () = Gy (7,q) (vesp. Gy (7)) denote the generating function of
partitions in .#r,, whose smallest part is at least 1 (resp. 2).
Let G . (x) denote the generating function of partitions in .#7,,, where 1 appears

at most once.
It follows that

G,JTHM (x) = Hi(x) + Hy(x) + Hs(x) + Hy(x) + Hs(z) + Hg(x)
+ Hy(z) + Hg(x) + Ho(x) + Hio(z) + Hix(z)
+ Hu(ﬂ?) + ng(l') + H14($) + H15(ZL')

= H(2q™°), (6.3.69)
Gy, (@) = Hi(2) + Hy(x) + He(z) + Hy(x) + Hir() + His()
+ Hiy(z)
=172 ¢*Hy3(zq ™), (6.3.70)

Gy, (1) = Hi(z) + Hy(z) + Hy(z) + H5(z) + Hr(z) + Hs(z)
+ Hy(z) + Hii(z) + Hio(x) + Hiz(x) + His(2)
+ His(2)
=2 ' Hg(xg™?). (6.3.71)

140



Likewise, we can use the algorithm in §6.2 to deduce the following g-difference

equations for G, (2), Gy (%) and G (2), Tespectively.

Theorem 6.3.10. It holds that

Po(2,9)G oy, (%) + p3(2,0) Gy, (26°) + p6(@,4)G oy, (2°)
+ pg(l‘, q)GjTIII,l (l‘qg) + P12 ($7 q)G‘]TIII,l (wq12) = Oa

where

po(z,q) =1+ 2(¢* +¢° +2¢" + ¢+ ¢"°)
+$2(q9+2q11+q12+q13+2q14+q15+q16+2q17+q19)
+x3(q16+q18+q19+2q21+q23+q24+q26),

ps(zq)=-1-2(¢+ @+ +q¢" +¢"+2¢" +¢° +¢"°)

—2%(¢* + ¢ +2¢" +2¢° + 3¢5 +2¢" +3¢% +3¢° + 3¢"° + 4¢! + 3¢'? + 2¢"3

+2q14+q15+q16+2q17+q19)

(6.3.72)

—2%(g* + ¢ +2¢5 +4¢" +3¢% +5¢° + 5¢1° + 6¢* + 7¢'? + 8¢ + T + 6¢'°

‘|’6q16+4q17+5q18+4q19+3q20+3q21+q22+q23+q24+q26)

_x4(q8+2q9+2q10+5q11+4q12+6q13+10q14+8q15+10q16+11q17+8q18

+10¢" + 9¢%° + 8¢%! + 7¢*% + 6¢% + 4¢** + 3¢®° + 2¢%¢ + 2¢*7 + ¢*®

+¢*)

_x5(q13+3q15_|_3q16+4q17+7q18+6q19+7q20+10q21+7q22+9q23+9q24

+6q25+7q26+5q27+4q28+3q29+3q30+q31+q32)

—x6(q20+2q22+2q23+q24+4q25+2q26+3q27+4q28+2q29+3q30+3q31

+q32 +2q33 + q34 +q36),
pe(x.q) = 2*(q"* + ¢"* +2¢"° + ¢'® + ¢*°)

+£5(q13+2q15+q16+4q17+3q18+4q19+4q20+5q21+5q22+4q23+4q24

+3q25+4q26+q27+2q28+q30)

+ 2%(¢"" +2¢"8 + 3¢™ + 5¢%° + 5¢* + 9¢*% + 9¢% + 10¢** + 12¢% + 12¢*°
+14¢%7 +12¢% + 12¢%° + 10¢°° + 9¢°* + 9¢%? + 5¢3 + 5¢>* + 3¢

4 2q36 + q37)

+l‘7(q22+3q23+4q24+6q25+7q26+12q27+12q28+16q29+18q30+16q31

+19¢%% +19¢% + 16¢> + 18¢°° + 16¢°° + 12¢°" +12¢°° + 7¢* + 6¢°

+4q41 + 3q42 + q43)

+28(¢% 4 2¢%° + 3¢%° + 6¢% + 6¢°2 + 9¢% + 11¢3* + 11¢>° + 13¢%° + 16¢*7
_|_ 12q38 + 16q39 _|_ 13q40 + 11q41 + 11q42 + 9q43 _|_ 6q44 + 6q45 + 3q46

+ 2q47 + q48)
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+l'9(q35+q36+q37+3q38+2q39+3q40+5q41+3q42+5q43+5q44+3q45

_|_5q46_|_3q47_i_2q48_|_3q49_|_qf>0_|_qf>1_‘_(]52)7
p9($7q) — _x6q30 —x7(q31 _|_q32 +2q34 +q36 +q37 +q38 +q39 +q40)

_$8(q33+2q35+q36+q37+2q38+2q39+3q40+4q41 +3q42+3q43+3q44
+2q45+3q46+2q47+2q48+q49+q50)

fxg(q37+q39+q4o+q41+3q42+3q43+4q44+5q45+4q46+6q47+6q48
—|—7q49+8q50+7q51—|—6q52+5q53+5q54+3q55+4q56+2q57+q58
+¢%)

—xlo(q45+q46+2q47+2q48+3q49+4q50+6q51+7q52+8q53+9q54+10q55
+8¢°% + 11¢°7 4 10¢°® 4 8¢°° + 10¢%° + 6¢% + 4¢5% + 5¢% + 2¢5* + 2¢%°
+4%)

—Jcn(q53+q54+3q55+3q56—|—4q57+5q58+7q59—|—6q60+9q61 +9q62+7q63
—|—10q64+7q65+6q66+7q67+4q68+3q69+3q70+q72)

_$12(q60+q62+2q63+q64+3q65+3q66+2q67+4q68+3q69+2q70+4q71
+q72+2q73+2q74+q76),

and

p12($7q) _ 56’12(]90 T xlS(qf)l 4 q92 + 2q94 + q96 + q97)
4 x14(q93 + 2q95 + q96 4 q97 4 2q98 4 q99 4 q100 4 2q101 + q103)
+ 1‘15((]97 + q99 + q100 + 2q102 + q104 + q105 + q107)'

Theorem 6.3.11. It holds that

Po(2,9)Grmy, (%) + p3(2,0) Gy (26°) + p6(2,4) G oy, (2°)
+p9(2,9) Gy, (26°) + oz, )Gy (24'%) =0, (6.3.73)

where

po(z,q) =1+ z(¢” +¢° +2¢° + ¢'° + ¢"")
+x2(q11+2q13+q14+q15+2q16+q17+q18+2q19+q21)
+:L_3(q19 +q21 +q22+2q24+q26+q27+q29)7
p3(z,q) = -1—2(@+ ¢ +¢" +" +° +2¢° +¢"° +¢'")
—2%(q* + ¢ +2¢5 + 20" +3¢% +2¢° + 3¢"° + 3¢ + 3¢'? + 4¢"% + 3¢ + 2¢"°
+2q16+q17+q18+2q19+q21)
—$3(Q7+q8+2q9+4q10+3q11+5q12+5q13+6q14+7q15+8q16+7q17+6q18
+6q19+4q20+5q21+4q22+3q23+3q24+q25+q26+q27+q29)
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—2(q"? + 2¢"3 + 2¢™ 4 5¢"° + 4¢'° + 6¢'7 4 10¢™® + 8¢ + 10¢%° + 11¢*! 4 8¢*2
—|—10q23+9q24—|—8q25—|-7q26+6q27+4q28+3q29+2q30—|—2q31—|—q32—|—q33)

_$5(q18+3q20+3q21 +4q22+7q23+6q24+7q25+10q26+7q27+9q28+9q29
+6q30+7q31+5q32+4q33+3q34+3q35+q36+q37)

_x6(q26+2q28+2q29+q30+4q31+2q32+3q33+4q34+2q35+3q36+3q37
+q38+2q39+q40+q42),

po(z,q) = 2% (q"° + ¢'° +2¢% + ¢* + ¢*)

+x5(q18+2q20+q21+4q22+3q23+4q24+4q25+5q26+5q27+4q28+4q29
+3q30+4q31 +q32+2q33+q35)

+ 2%(¢% + 2¢°* + 3¢% +5¢%° + 5¢%7 + 9¢*® + 9¢*° + 10¢%° + 12¢%" + 12¢%2
+ 14¢% +12¢%* + 12¢%° +10¢% + 9¢°" + 9¢% + 5¢%° + 5¢"° 4 3¢*!
+2q42+q43)

+x7(q29+3q30+4q31+6q32+7q33+12q34+12q35+16q36+18q37+16q38
+19¢% +19¢" + 16¢*" +18¢™ + 16¢™ + 12¢™ +12¢" + 7¢"° + 6¢"
+4q48+3q49 +q50)

+28(¢% 4 2¢°" + 3¢3% + 6¢%° + 6¢%° + 9¢*! + 11¢*% + 11¢*3 + 13¢™ + 164"
+12q46+16q47—|—13q48+11q49+11q50+9q51+6q52+6q53+3q54
+2q55+q56)

+x9(q44+q45+q46+3q47+2q48+3q49+5q50+3q51+5q52+5q53+3q54
_|_5qf>5_|_3qf>6_{_2(’]574_3(]58_|_qE>9_|_qGO_'_qu)7

po(, q) = — 28430 _x7(q38 £+ 2¢M 4 8 4 M 4 P 4 gt +q47)

_xS(q41+2q43+q44+q45+2q46+2q47+3q48+4q49+3q50+3q51+3q52
+2q53+3q54+2q55+2q56+q57+q58)

fxg(q46+q48+q49+q50+3q51+3q52+4q53+5q54+4q55+6q56+6q57
—|—7q58—|—8q59+7q60—|—6q61+5q62+5q63+3q64—|—4q65+2q66+q67
+¢%)

—xlo(q55+q56+2q57+2q58+3q59+4q60+6q61+7q62+8q63+9q64+10q65
+8¢% + 11¢°7 4 10¢%8 4 8¢% + 10¢™ + 6¢™ + 4¢™ + 5¢™ + 2¢™ + 2¢"
+4°)

_lel(q64+q65+3q66+3q67+4q68+5q69+7q70+6q71+9q72+9q73+7q74
+10q75+7q76+6q77+7q78+4q79+3q80+3q81+q83)

_x12(q72+q74+2q75+q76+3q77+3q78+2q79+4q80+3q81+2q82+4q83
+q84+2q85+2q86+q88),
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and

p12(1’,(]) — 1712(]102 =+ 1,13(qu4 4 q105 4 2q107 + q109 4 qllo)
+x14(q107 + 2q109 +q110 _|_q111 + 2q112 T q113 +q114 T 2q115 4 q117)
+x15(q112 +q114 4 q115 + 2q117 +q119 +q120 +q122).

Theorem 6.3.12. It holds that

Po(@,4)G sy, (@) + p3(2, )Gy, (26°) + po(2, @) Gy, (20°)
+ pol(, Q)GﬂTnLa (¢°) + pa(, Q)GJTHW (z¢'?) =0,

where

po(z,q) =1+2(¢* +¢" +¢" + ¢ +¢"° +¢')
+x2(q9+q11 +2q12+q14+2q15+q16+2q18+q19+q21)
+.’L’3(q16 +q19 +q20+q22+q23+q25+q26+q29)’
p3(@,q)=-1-a(q+ @+ P+ ++d + + ¢ +¢'")

(6.3.74)

_$2(q3+2q4+2q5+3q6+2q7+3q8+3q9+2q10+3q11 +4q12+2q13+2q14

+2q15+q16+2q18+q19+q21)

—23(¢° +3¢" + 3¢® + 4¢° + 5¢*° + 5¢" + 5¢1% + 7¢" + T¢" + 7¢™ + 7¢" + 547

+4q18+5q19+4q20+3q21_|_3q22+2q23+q24+q25+q26+q29)

—x4(q10+3q11+3q12+3q13+6q14+7q15+7q16+10q17+10q18+8q19+9q20

+9q21+8q22+8q23+7q24+5q25+5q26+4q27+2q28+2q29+q30

4 q31 4 q32)

—2%(q" + ¢ + ¢ + 4¢"® +5¢"° + 3¢%° + 641 4 8¢%% + 5¢%% + T¢** +10¢%
+6q26 —|—6q27 +9q28 +5q29 _|_4q30 +5q31 +3q32 _|_2q33 +3q34 +q35

+ q37)

—xﬁ(q22+q23+q25+3q26+q27+q28+4q29+2q30+q31 +4q32+3q33+3q35

+3q36 +q38 +2q39 + q42)7
po(z.q) = 2*(q"° + ¢"® + ¢ + ¢*° + ¢*' + ¢*)

+x5(q17+q19+3q20+3q21+3q22+4q23+5q24+4q25+4q26+5q27+4q28

+3q29+3q30+3q31 +q32+q34)

+x6(q21+2q22+2q23+4q24+6q25+8q26+8q27+10q28+10q29+11q30

+13¢* +13¢% + 11¢% +10¢°* + 10¢* + 8¢ + 8¢°" + 64°*
+4C]39 _|_2q40 +2q41 +q42)

+$7(q26+3q27+3q28+4q29+7q30+8q31+11q32+14q33+14q34+15q35
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+17¢%° +17¢°T +17¢% + 17¢* +15¢" + 14¢"" + 14¢** + 11¢%
+8q44+7q45+4q46+3q47+3q48+q49)

—|—x8(q31 +q33+4q34+3q35+4q36+8q37+8q38+7q39+12q40—|—12q41+1Oq42
+14q43+14q44+10q45+12q46+12q47+7q48+8q49+8q50+4q51
+3q52+4q53+q54+q56)

+£Z:9(q38+2q414»2(]424»3(]44+4q45+q464»3(]474»6q48+2q49+2qSO+6qSl
+3q52+q53+4q54+3q55+2q57+2q58+q61),

pg(x,q) _ —$6q36 _ 117((]37 +q38 +q40 +q41 4 q43 4 q44 4 q45 =+ q46 4 q47>

_$8(q39+q41+2q42+q44+2q45+2q46+2q47+4q48+3q49+2q50+3q51
+3q524»2(]53d|>3qs4+2q554»2(]56+qf>7)

—zg(q43+q46+q47+q48+2q49+3q50+3q51+4q52+5q53+4q54+5q55
+7¢% +7¢°T + 7¢°% + 7¢%° 4 5¢° + 5¢°! + 5¢%2 4 4¢53 + 3¢5
+3q65+q66)

—xlo(q52+q53+q54+2q55+2q56+4q57+5q58+5q59+7q60+8q61+8q62
+9¢% 4+ 9¢% + 8¢5% 4+ 10¢5¢ + 1057 + 7¢% 4 7¢%° + 647 + 3¢™
+3q72+3q73+q74)

—xll(q59+q61+3q62+2q63+3q64—|—5q65+4q66+5q67+9q68+6q69+6q70
+10q71—|—7q72+5q73+8q74+6q75+3q76+5q77+4q78+q79+q80
+4¢°")

—z12(q66+2q69+q70+3q72+3q73+3q75+4q76+q77+2q78+4q79+q80
+q81 +3q82—|—q83—|—q85 _’_q86)7

and

p12(1,7q) _ (E12q99 4 xl?}(quO + q101 4 q103 + q104 4 quG + q107)
+ :Z?14(q102 + q104 + 2q105 + q107 + 2q108 + q109 + 2q111 + q112 + q114)
—|—a:15(q106 +q109 _|_q110 +q112 _|_q113 +q115 _|_q116 +q119).

6.3.4 Partition Set of Type IV

Recall that the partition set of type IV is the set of partitions with difference at least
3 at distance 3 such that if parts at distance 2 differ by at most 1, then the sum of the
two parts and their intermediate part is congruent to 2 modulo 3. In other words, if

A=A+ Ao+ -+ A\ is in this partition set, then

(1) Ai = Aigs > 3;
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(11) /\z — )\H_Q S 1 1mphes )\z + )‘i-‘rl + /\z'+2 =2 (mod 3)

Let 7, denote the partition set of type IV.

Claim 6.3.13. /g, is a span one linked partition ideal & ((I1, L), S) where S = 3, and

Il = {m, ma,...,m5} along with the linking sets are given as follows.
II linking set
m =0 {m1, w2, w3, My, W5, W6, W7, T, Mg, Wi, W11, T12, W13, Ti4, T15}
=1 {m1, w2, M3, My, W5, M6, W7, Mg, W9, Wi, W11, T12, W13, T14, T15}
m3=1+1 {m1, ma, W3, W4, W5, W6, W7, W, M9, W10, M1, W12, W13, W14, T15}
Ty =2 {m1, ma, W3, W4, W5, W6, W7, T, M9, W10, M1, W12, M3, Ti4, T15}
s =2+1 {m1, w2, w3, My, W5, M6, W7, W8, W9, Wi, Ti1, W12, W13, T4, T15}
Te =2+ 2 {m1, ma, M4, 5, T, M7, Wg, W9, M1, Ti2, T3, Ti4, W15}
mr=2+2+1 {m1, T2, m4, T, M6, 7, Ty, M9, W11, Ti2, T13, T14, Ti5}
g =3 {m1, 7o, W3, T4, s, W6, g, T, M0, T11, T12, W13, T4, W15}

o =341 {m1, mo, w3, M4, Ts, W6, T8, W, M0, T11, Mi2, W13, T14, 15}
mo=3+1+1 {m1, ma, W3, W4, W5, W6, T, T, M0, Ti1, T2, T13, T4, Ti5}
T =3+2 {71, ma, T4, T5, T, Ts, W9, 11, W12, T13, W14, T15}
T2 =3+2+1 {7r1, T2, M4, Ts5, Te, T8, M9, T11, T12, 713, 14, 715}
T3 =3+ 3 {m1, w4, ws, ™11, T13, T15}
mTa=3+3+1 {m1, 74, 7, ™11, T13, T15}
T =3+3+2 {771, T4, T8, T11, 713, 7T15}

Let us denote by H;(x) = H;(z,q) the generating function of partitions A in p,,
with 3-tail equal to m; for © = 1,2,...,15 where the 7;’s are as defined in Claim 6.3.13.
Following (6.1.7), we have

Hi(z) = Hi(2q°) + Hx(2q®) + H3(2¢”) + Ha(2q”) + Hs(2q”) + He(2q’)
+ H7(2q”) + Hs(2q”) + Ho(xq”) + Hio(xq*) + Hi1(zq%)
+ His(zq®) + Hi3(2¢) + Hia(zq®) + His(2¢?), (6.3.75)
a7 q  Hy(z) = Hi(2q”) + Hy(2¢”) + H3(2q®) + Ha(xq®) + Hs(2q°) + He(xq°)
+ Hy(zq*) + Hg(2q’) + Ho(2q%) + Hio(x¢”) + Hui(2q”)
+ Hip(2¢%) + His(2¢®) + His(xq®) + His(xq?), (6.3.76)
©~2q *Hy(x) = Hi(2q*) + Ha(2¢”) + Hs(2q’) + Ha(zq”) + Hs(2¢”) + He(2q’)
+ Hr(2¢) + Hs(q®) + Ho(xq”) + Hio(q®) + Hi1(zq”)
+ Hiz(2q%) + His(2q®) + Hia(2q®) + His(2¢®), (6.3.77)
27 q P Hy(z) = Hi(2¢%) + Ha(2q”) + H3(2q”) + Ha(2q”) + Hs(2q”) + He(2q”)
+ Hr(2q%) + Hs(2¢”) + Ho(xq®) + Hio(2q®) + Hi1(zq®)
+ His(zq®) + Hiz(2¢) + Hia(zq®) + His(2¢?), (6.3.78)
v72q  Hy(z) = Hi(26%) + Ha(2q”) + H3(2q”) + Ha(wq”) + Hs(2q”) + He(wq”)
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+ Hr(2q”) + Hs(2q%) + Ho(2q”) + Hio(2q®) + Hi1(xq”)
+ His(zq®) + Hisz(2¢°) + Hia(zq®) + His(24?), (6.3.79)
x2q  He(x) = Hy(2q”) + Ha(2q”) + Ha(zq®) + Hs(xq”) + He(2q®) + Hr(2q”)
+ Hs(2q%) + Ho(2q%) + Hi1(2¢”) + Hiz(xq”) + His(zq®)
+ Hiy(2¢*) + His(zq%), (6.3.80)
2 3q  Hy(x) = H(2¢%) + Ha(xq®) + Ha(2q®) + Hs(xq®) + He(wq”) + Hr(xg%)
+ Hg(zq”) + Ho(2q”) + H11(2q”) + Hia(2q”) + Hiz(xq®)
+H14(xq3) +H15(33q3), (6.3.81)
v~ g Hy(x) = Hi(2¢%) + Ha(2¢%) + H3(x¢*) + Ha(xg*) + Hs(2¢*) + He (24"
+ Hg(2q®) + Ho(2q’) + Hio(2q’) + Hi1(2q°) + Hia(2q”)
+ Hys3(xq®) + Hya(zq®) + His(2q?), (6.3.82)
v 2q  Ho(x) = Hy(2q®) + Ho(2q®) + H3(2q*) + Hy(xq®) + Hs(2q®) + He(2q?)
+ Hs(2q%) + Ho(2q%) + Hio(zq”) + Hi1(x¢”) + Hia(zq°)
+ Hy3(xq®) + His(2g) + His(2q?), (6.3.83)
2~3q " Ho(x) = Hi(2¢") + Ha(xq®) + H3(2q”) + Ha(2¢®) + Hs(2q”) + He(zq%)
+ Hs(xq”) + Ho(2q’) + Hio(xq”) + Hu1(2q”) + Hia(2q’)
+H13(xq3) +H14(xq3) —&—H15(33q3)7 (6.3.84)
7 %q °Hy1(2) = Hi(2q®) + Ha(2q”) + Hi(zq®) + Hs(2q%) + He(2q”) + Hs(2¢?)
+ Ho(2q”) + Hi1(2q”) + Hiz(q®) + Hiz(eq®) + Hua(q®)
+ His(zq”), (6.3.85)
a7 3q S Hys(x) = Hi(x¢®) + Ha(2q®) + Hy(2q®) + Hs(2q®) + He(2¢”) + Hs(x¢?)
+ Ho(zq%) + Hi1(2¢*) + Hi2(xq”) + Hi3(2q®) + Hia(zq®)

+ Hys(2q%), (6.3.86)
2 72q  Hys(x) = Hi(2q”) + Ha(zq®) + Hs(xq*) + Hui(2q%) + His(2q”) + His(2q?), (6.3.87)
2 73q THyy(z) = Hi(2¢®) + Hy(zq®) + Hg(xq®) + Hiy(2q®) + His(xq®) + His(zq?), (6.3.88)
r73q 8 Hys(z) = Hi(2q®) + Hy(xq®) + Hg(xq®) + Hyy(2q®) + Hiz(xq®) + His(xg?). (6.3.89)

This system may be simplified as
Hy(z) = (1+ 2q" + 2°¢° + 2¢” + 2*¢°) Hi (2¢°) + (1 + 2q") Ho (")
+(1+a2q" +2%¢°) Hy(xq’) + (1 + 2q") Hu (2¢°)
+ (14 2¢" + 2¢°) His(2q%), (6.3.90)
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Ho(z) = (22" + 2°¢° + 2°¢° + °¢") Hy (2¢P) + (22" + 2°¢%) Ho ()

+ (2%¢" + 2°¢%) Hy () + (2°¢" + 2°¢°) Hu ()

+ (2%¢* + 2°¢® + 3¢ ) Hy3(2g?), (6.3.91)
Hg(z) = (2¢® + 2°¢" + 23¢" + 2°¢® + 2*¢*) Hy (2¢®) + 2¢* Hg(2¢?)

+ (¢ + 2" + 2°¢" ) Hy(2q®) + (v¢” + 2°¢") Huy (2¢?)

+ (2¢* + 2°¢" + 2°¢®) His(2q?), (6.3.92)
Hiy(2) = (22 + 2% + 2340 + 24" Hy (26%) + 22¢° Hy (2¢°)

+ (%" + 2°¢") Hy(2q”) + (27¢° + 2°¢°) Hur(2q”)

+ (2% + 2°¢" + 2°¢"°) His (), (6.3.93)
Hys(x) = (x2q6 + xSqH)Hl (xqg) + 3:2q6H8(xq3) + quGHH(:L'q?’)
+ (2%¢° + 2°¢" ) Hys(2q”). (6.3.94)

Let Gz, (¥) = Gy (2,q) denote the generating function of partitions in S,

whose smallest part is at least 1.
Let G Friy (x) denote the generating function of partitions in %5, where 1 appears

at most once.
Let G, ,(x) denote the generating function of partitions in #7;,, where the smallest

part is at least 2 with 2 appearing at most once.
It follows that

Gy, () = Hi(x) + Hy(x) + Hs(x) + Hy(x) + Hs(x) + He(x)
+ Hz(z) + Hs(x) + Ho(x) + Hio(z) + Hu(z)
+ Hio(x) + His(x) + Hig(x) + Hys(x)
= Hi(zq?), (6.3.95)
Gy, () = Hi(z) + Hy(x) + Hy(z) + Hs(2) + He(z) + Hr ()
+ Hg(z) + Ho(z) + Hi1(x) + Hia(x) + Hiz(2)
+ Hyy(x) + Hi5(x)
= 272" Hy(wq ™), (6.3.96)
Gy, () = Hi(x) + Hy(x) + Hs(x) + Hu(2) + His(z) + His(2)
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=2 2Hy3(xq™?). (6.3.97)

Likewise, we can use the algorithm in §6.2 to deduce the following g-difference

equations for G, (7), G (7) and Gz, (2), respectively.
Theorem 6.3.14. [t holds that

Po(2,9)Gorry, (@) + p3(2,4)G oy, (24°) + po(2, Q) Gy, | (20°)
+ p9(l'7 q)G‘]TIV,l (qu) + p12(x7 Q)GJTIVJ ($q12) = Oa (6398)

where

pole,q) =1+a(d* + " + 4"+ +¢"° + ')
+I2(q9+q11+2q12+q14+2q15+q16+2q18+q19+q21)
+x3(q16+q19 +q20 +q22 +q23 +q25+q26+q29)’
p3(z,q) =-1—-2(q+ @+ P+ + +d" + ¢ + ¢ +¢")
— 22+ ¢® +2¢" +2¢° + 3¢5 +2¢7 +2¢® +3¢° + 2¢"° + 3¢ + 4¢"? + 2¢*3
+2q14+2q15+q16+2q18+q19+q21)
_333(2(]5+2q6+3q7+4q8+4q9+4q10+5q11+6q12+7q13+7q14+6q15
+6q16+5q17+3q18+4q19+4q20+3q21+3q22+2q23+q24+q25
+q26 +q29)
—2(2¢° + 3¢"° + 2¢™ + 49" + 63 + 6¢* + 8¢'° + 10¢'¢ + 8¢'7 + 9¢*® + 9¢*°
+7q20+8q21+8q22+7q23+6q24+5q25+3q26+3q27+2q28+q29
+ q30 + q31 + q32)
_$5(q14+q15+2q16+5q17+3q18+4q19+8q20+6q21+5q22+9q23+8q24
+6q25+9q26+6q27+4q28+6q29+4q30+2q31+3q32+2q33+q34
+¢*)
—m6(q21+q22+2q24+2q25—|—q26—|—3q27+3q28—|—q29—|—3q30—|—4q31 +q32+2q33
_"_3q34_'_q35_’_q36_|_2q37_’_q40)7
po(r.q) = 2" (¢ + ¢ + 4" + 4" + ¢ + ¢*)
+$5(q13+q15+2q16+2q17+3q18+3q19+4q20+4q21 +4q22+4q23+4q24
+4q25+3q26+3q27+2q28+2q29+q30+q32)
+$6(q17+q18+2q19+3q20+4q21+7q22+7q23+8q24+8q25+11q26+11q27
+12q28+12q29+11q30+11q31 +8q32+8q33+7q34+7q35+4q36
+3q37+2q38+q39+q40)
+27(2¢% 4+ 3¢* 4 3¢% + 4¢°° + 7¢°" + 9¢%® +10¢*° + 14¢%° + 144> + 16¢%2
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+17¢% +15¢™ + 15¢% +17¢°° +16¢°7 + 14¢™ + 14¢°° + 10" + 9¢*'
+7¢% +4¢" + 3¢ + 3¢" + 2¢"°)

+$8(q29+q30+3q31+4q32—|—4q33+8q34+8q35—|—7q36+11q37+13q38+10q39
+14q40+14q41+10q42—|—13q43+11q44+7q45+8q46+8q47+4q48
+4q49+3q50+q51 +q52)

Jr1,9((136+q38+2q£’>9+q40+2q41Jr4q42+2q43Jrg’qélz,LJr5q45+3q46+3q47
+5q48+3q49_|_2q50+4q51+2q52+q53+2q54+q55+q57),

pg(l‘,Q) — —x6q30 —x7(q31 +q32 +q34 +q35 +q37+q38 _|_q39 +q40 +q41)

—xS(q33+q35+2q36+q38+2q39+2q40+2q41+4q42+3q43+2q44+3q45
+2q46Jr2q47+3q48+2q49JFQqE)OJrqE)lJrq52)

—a:g(q37+q40+q41 +q42+2q43+3q44+3q45+4q46+4q47+3q48+5q49
+6q50+6q51—|—7q52+7q53+6q54—|—5q55+4q56+4q57—|—4q58+3q59
+2¢% +2¢°1)

—xlo(q46+q47+q48+q49+2q50+3q51+3q52+5q53+6q54+7q55+8q56
+8¢° + 7¢% 4+ 9¢7 + 9¢°° 4+ 8¢°" +10¢°% +8¢%* + 6¢°* + 6¢%° + 44
+2¢°" +3¢% + 2¢4%)

—xll(q55+q56+2q57+3q58+2q59+4q60+6q61 +4q62+6q63+9q64+6q65
+8q66+9q67+5q68+6q69+8q70+4q71+3q72+5q73+2q74+q75+q76)

7x12(q62+2q65+q66+q67+3q68+2q69+q70+4q71+3q72+q73+3q74+3q75
+q76+2q77+2q78+q80+q81)7

and

p12(w,q) _ $12q93 4 x13(q94 4 q95 + q97 + q98 4 qIOO + qlol)
+ {E14(q96 4 q98 4 2q99 4 q101 4 2q102 + q103 4 2q105 4 q106 + q108)
+ zlS(qIOO + q103 + q104 + q106 + q107 + q109 + q110 + q113).

Theorem 6.3.15. It holds that
po(@,9)G sy, () + P3(2,9) Gy, (26°) + po(@,0)C sy, (24°)
+p9(2,0)G sy, (20°) +pra(z, )Gy, (247) =0, (6.3.99)
where

po(z,q) =1+2(¢* + " +¢® + 4" +¢® + )
+x2(q9+q10+q11+2q12+2q13+2q14+q15+q16+q17)
+w3(q16 +q17 +q18 +q19 + q20 + q21 + q22 + q23)7
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p3(@ ) =-1-2(q+ @+ P+ +++d + P+ )
—$2(q3+2q4+2q5+3q6+3q7+4q8—|—4q9+4q10+3q11+3q12+2q13—|—2q14
+ q15 + q16 + q17)
—w3(q5+q6+2q7+4q8+5q9+6q10—|—8q11—|—8q12+8q13+8q14+8q15+7q16
+6q17+4q18+3q19+2q20+q21+q22+q23)
—2%(q® + 2¢"° + 3¢M + 5¢"% 4 7¢"3 + 8¢M + 9¢"° + 11¢*¢ 4 13¢17 + 13¢'8
—|—11q19+10q20—|—8q21+6q22—|—5q23+4q24+3q25—|-q26)
—xs(q14+2q15+2q16+4q17+6q18+8q19+10q20+10q21+10q22+9q23
+8q24+8q25+7q26+5q27+3q28+q29+q30+q31)
7x6(q21+2q22+2q23+3q24+3q25+3q26+4q27+4q28+3q29+2q30+2q31
4 q32 4 q33 4 (134)7
p6(l‘7q) — x4(q16 +q17 +q18 +q19 _|_q20 _|_q21)
+$5(q17+2q18+2q19+3q20+5q21+6q22+5q23+5q24+6q25+5q26+3q27
+2q28+2q29+q30)
+a%(¢* +2¢* +5¢% + 7¢°° + 8¢* +10¢*° + 13¢°° + 14¢°" + 15¢° + 15¢*
+14q30+13q31+10q32+8q33+7q34+5q35+2q36+q37)
+x7(q24+2q25—|—4q26+7q27+10q28+13q29+16q30+19q31+21q32+21q33
+21¢%* + 21¢%° + 19¢%¢ + 166%™ + 13¢°% 4 10¢% + 7¢*° + 4¢*! + 2¢*2
+q*)
+2%(¢* 4+ ¢*° +2¢°" +5¢% + 7¢% + 106> + 12¢% + 14¢* + 16¢°7 + 16¢>®
+16q39+16q40+14q41+12q42+10q43+7q44+5q45+2q46+q47
+C]48)
+x9(q36+q37+2q38+3q39+3q40+4q41+5q42+5q43+5q44+5q45+4q46
+3q47+3q48+2q49+q50+q51)’
pg(x,q) — —x6q36 _ x7(q37 _|_q38 T q39 T q40 + q41 +q42 +q43 +q44 +q45)
_$8(q39+q40+q41+2q42+2q43+3q44+3q45+4q46+4q47+4q48+3q49
+3q50+2q51+2q52+q53)
f:cg(q‘l?’+q44+q45+2q46+3q47+4q48+6q49+7q50+8q51+8q52+8q53
+8q54+8q55+6q56+5q57+4q58+2q59+q60+q61)
_xlo(q50+3q51 +4q52+5q53+6q54+8q55+10q56+11q57+13q58+13q59
+11q60+9q61+8q62+7q63+5q64+3q65+2q66+q67)
—xll(q55+q56+q57+3q58+5q59+7q60+8q61+8q62+9q63+10q64+10q65
+10¢% + 8¢57 + 6¢°% + 4¢5° 4 2¢™° + 2¢™ + ¢™)
—xu(qm+q63+q64+2q65+2q66+3q67+4q68+4q69+3q70+3q71+3q72
+2q73+2q74+q75),
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and

p12($7q) — CE12(]93 4 21313((]94 4 q95 + q96 + q97 4 q98 =+ q99)

T .7314((]96 T q97 + q98 + 2q99 4 2q100 + 2q101 4 q102 4 q103 + q104)
+x15(q100 +q101 + q102 +q103 + q104 +q105 +q106 _’_q107).

Theorem 6.3.16. It holds that

Po(w,9)G sy, (%) + pa(@, )Gy, (26°) + (2, 0) G ooy, (20°)

where

po(z,q) =

p3(r,q) =

pe(z,q) =

+p9(2,9) Gy, (24°) + Pra(2,9) Gy, (2¢'%) =0, (6.3.100)

142(°+ ¢+ "+ + ¢ +¢")

+I2(qu+q12+q13+2q14+2q15+2q16+q17+q18+q19)

+x3(q19 + q20 + q21 + q22 +q23 +q24 +q25 _|_q26)’

12+ 4+ + P+ P+ + B+ + ¢

_xQ(q5+2q6+2q7+3q8+3q9+4q10+4q11+4q12+3q13+3q14+2q15+2q16
+ q17 + q18 + qlg)

—x3(q8—|—q9+2q10—|—4q11—|—5q12+6q13—|—8q14—|—8q15+8q16—|—8q17—|—8q18
+7q19+6q20+4q21+3q22+2q23+q24+q25+q26)

—:E4(q13+2q14+3q15+5q16+7q17+8q18+9q19+11q20+13q21+13q22
+11¢% +10¢°* + 8¢ + 6¢*° + 5¢°7 + 4¢”° + 3¢*° + ¢*°)

—2%(q" +2¢°° + 2¢*" +4¢” + 6¢*° + 8¢*! +10¢*° + 10¢°° + 10¢*" + 9¢*°
+8q29—|—8q30—|—7q31+5q32+3q33+q34+q35+q36)

—xﬁ(q27+2q28+2q29+3q30+3q31 +3q32+4q33+4q34+3q35+2q36+2q37
+ q38 +q39 _~_q40),

£C4(q20 +(]21 +(]22 +(]23 +q24 +q25)

+x5(q22+2q23+2q24+3q25+5q26+6q27+5q28+5q29+6q30+5q31+3q32
+2q33+2q34+q35)

+:136(q26+2q27+5q28+7q29+8q30+10q31+13q32+14q33+15q34+15q35
+14¢° +13¢°7 + 106 + 8¢™ + 7¢"° + 5¢*" + 24" + ¢*%)

+27(¢* 4 2¢% + 4% + 7¢* +10¢% +13¢° +16¢°7 + 19¢°° + 21¢* + 214"
+21q41+21q42+19q43+16q44+13q45—|—10q46+7q47+4q48+2q49
+q50)

+a%(¢°7 + ¢* +2¢% + 5¢" + T¢* +10¢" +12¢" + 14¢** + 16¢"° + 164"
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+16¢"7 + 160" + 14¢" +12¢™ +10¢°" +7¢°% + 5¢> + 2¢°* + ¢*°
+q56)

+x9(q45+q46+2q47+3q48+3q49+4q50+5q51+5q52+5q53+5q54+4q55
+3q56+3q57+2q58+q59+q60),

pg(x,q) _ —.’£6q42 _ (E7(q44 +q45 +q46 +q47 +q48 +q49 +q50 +q51 +q52)

7IS(q47+q48+q49+2q50+2q51+3q52+3q53+4q54+4q55+4q56+3q57
+3q58+2q59+2q60+q61)

—:Ug(q52+q53+q54+2q55+3q56+4q57+6q58+7q59—|—8q60+8q61 +8q62
+8q63+8q64+6q65+5q66+4q67+2q68+q69+q70)

— 21950 + 3¢°" + 4¢%% + 5¢5% + 6¢°* + 8¢%° +10¢%° + 11¢°7 + 13¢%® 4 13¢%°
+11q70+9q71+8q72+7q73—|—5q74—|—3q75+2q76+q77)

—xll(q%+q67+q68+3q69+5q70+7q71+8q72+8q73+9q74+10q75+10q76
+ 10" +8¢™ 4+ 647 + 4¢%° + 2¢®" + 2¢%% + ¢*3)

—:C12(q74+q75+q76+2q77+2q78+3q79+4q80+4q81+3q82+3q83+3q84
+2q85+2q86+q87),

and

p12($,q) — $12q105 4 $13(q107 + q108 4 q109 + q110 4 qlll + q112>
+ I,C14(q110 4 q111 4 q112 =+ 2q113 4 2q114 4 2q115 + q116 4 q117 + q118)
+1,15(q115 +q116 +q117 +q118 +q119 + q120 +q121 + q122).

6.4 “Guessing” the Generating Functions

It is, of course, not easy to discover a closed form for each generating function

directly from g-difference equations obtained in the previous section. However, Andrews’
conjecture presented in the introduction shall give us enough clues.

Recall that Andrews’ conjecture states as follows.

Conjecture 6.4.1. Every linked partition ideal .# has a bivariate generating function

Gy (x,q) of the form

(_1>L1(n1,...,n,-)qQ(nl,...,n,-)—l—Lg(n1,...,nT»)ng(nl,...,nT)

, (6.4.1)
nl,.%;,«zo (qu; qu)nl e (qBT; qAT)nT
where Ly, Ly and Ls are linear forms in ny,...,n, and @) is a quadratic form in nq, ..., n,.

It also appears to be true that some “nice” subsets of a linked partition ideal enjoy
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a generating function of the form (6.4.1). One may investigate the second Rogers—

Ramanujan identity as an example.

Hence, we may search from a number of multi-summations of the form (6.4.1) and

compare the series expansions to find suitable candidates.

Theorem 6.4.1. Let Gy (2,q) (resp. Gy (2,q), Gy (2,q)) denote the generating
function of partitions of type I whose smallest part is at least 1 (resp. 2, 3). We have

qnf—l—?m% +3ning .CEnl +2n9

Gy (,q) = : (6.4.2)
e ni,n2>0 (q’ q)nl (qga q3)n2
qn%+3n% +3nings+ni1+3ng xn1 +2n2
G, (@,q) = , (6.4.3)
2 n1,n2>0 (q’ Q)Tbl (q3; q3)n2
qn% +3n§+3n1 no+2n1+3ns9 Pyl +2n2
G, (2,q) = (6.4.4)

ni,n2>0 (Q7 Q)nl (qgﬂ q3>n2

Remark 6.4.1. Here (6.4.2), (6.4.3) and (6.4.4) are (3.1), (3.10) and (3.14) in [116]. They

correspond to the Kanade—Russell conjectures I, I and I3, respectively.

Theorem 6.4.2. Let Gy (7,q) (resp. Gy (¥,q)) denote the generating function of
partitions of type II whose smallest part is at least 1 (resp. 2) and let GjTHa(.T, q) denote

the generating function of partitions of type II where 1 appears at most once. We have

qn%+3n§+3n1 na—nsg [IZ’nl +2n2o

Gﬂ (ZE, Q) = ) (645)
i ni,n2>0 (Q7 q)nl (q37 q3)n2
qn%+3n%+3n1n2+n1+2ng l’nl +2n2
Gy (T,9) = : (6.4.6)
e w0 (@D (@56,
qn%+3n§+3n1 no+2n9 Pyl +2n2
G, (@,q) = (6.4.7)

ni,n2>0 (q7 q)nl (q37 qg)ng

Remark 6.4.2. Here (6.4.6) is (3.15) in [116]. It corresponds to the Kanade-Russell

conjecture 1.

Theorem 6.4.3. Let Gy (2,q) (resp. Gz (,q)) denote the generating function
of partitions of type III whose smallest part is at least 1 (resp. 2) and let GJTIHa(x, q)
denote the generating function of partitions of type III where 1 appears at most once. We

have

G‘]TIII,l (l’, q)
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2 on 2
ﬂ-i-3n§—|- 3+2n1n2+6n2n3+3n3n1+——nz—f ni1+2n2+3ng

q- 2 T
= X , (6.4.8)
Lm0 (@ Dny (6% @ )ns (63563 ) ns
G‘]THIQ (l’, q)
q 21 +3n2+ 23+2n1n2+6n2n3+3n3n1+ L fny4+323 . xn1+2nz+3n3
= X , (6.4.9)
n1ra >0 (@ Dni (6% 632 (63563 ) s
G‘]TIII,G, (l’, Q)
q 21 +3n 2+§+2n1n2+6n2n3+3n3n1+"71+n2+5"73xn1+2n2+3n3
= Y (6.4.10)

g a0 (@ Dni (6% @)no (@356 s

Remark 6.4.3. Here (6.4.10) is (47) (corrected: in the numerator of which the last term
of the exponent of ¢ should read 4k instead of 3k) in [109]. It corresponds to the

Kanade-Russell conjecture I5.

Theorem 6.4.4. Let GJTIVJ(m,q) denote the generating function of partitions of type
IV whose smallest part is at least 1, let GjTW,a (x,q) denote the generating function
of partitions of type IV where 1 appears at most once and let GjTIV’b(a:,q) denote the
generating function of partitions of type IV where the smallest part is at least 2 with 2

appearing at most once. We have

G‘ﬂTIV,l (I’, Q)
e 1+3n§+ 3+2n1n2+6n2n3+3n5n1+——nz-l-— 1 +2n2+3ns
= X , (6.4.11)
Rt a0 (4 @)ni (4% 6*) s (65 €% )
GjTIV,a (Ia Q)
q 21 +3n 2+ 3+2n1n2+6n2n5+3n3n1+ +no+52 1 t2n2+3ns
= X , (6.4.12)
Rt a0 (4 @i (4% %) s (65 €% )
GjTlv,b (ZE, Q)
q 21 +3n2+ 23 +2n1n2+6n2n3+3n3n1+ 22l 4 3ny+ 23 g t2n2+3n3
= > (6.4.13)

ni,n2,n3>0 (q, Q)nl (q y 4 )TLQ(q 4 )n3

Remark 6.4.4. Here (6.4.13) is (51) in [109]. It corresponds to the Kanade-Russell

conjecture Ig.

In the above theorems, we rediscover six generating function identities proved in [109]

and [116] and obtain six new identities. We will provide an approach to prove these
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identities in the next section with the help of computer algebra.

Remark 6.4.5. 1t is, of course, fine to discover the above sum-like generating functions
by trial and error with this tedious work left to a computer. But sometimes human

observation might reduce the workload. Let us use (6.4.2) as an example. If we write

G‘]TI,l (l’, Q) = Z gﬂTI,l (M)Z'Ma

M>0

then the g-difference equation in Theorem 6.3.2 gives the first several expressions of
ngI,l (M ):

ngTLl (0) = 17
q
9, (D=7
3 4 6
e +q +q
()=
S (s
7
q
991, (3) =

1-¢)(1—=¢>)(1—-¢%)’

q12 _'_ q15 + q17 + q18 _ q19 + q20 _ q21
g]T11(4) = 3 4 6

: (1=qg)(1—¢*)(1—q¢*)(1—q°

Recall that the sum-like generating function is

(_]_)Ll(nl7"'7”7‘)(]@(”17"'7n7‘)+L2(n17"'7nT)xL3(n17"'7"7')

6.4.14
S0 (@B qM )ny - (@875 ¢ ), ( )

We observe that the numerator of gz, (2) has more than one term. Hence, the linear
equation L3(nq,...,n,) = 2 might have multiple nonnegative solutions (ny,...,n,). It is
fair to guess that L3 looks like ny +mng+ -+ or ny +2ny +---. Also, the denominators of

97, (M) indicate that there might be terms like (¢; ¢), and (¢*; ¢),, in the denominator

of the summand in (6.4.14). Hence, one may first try multi-summations like

(_ 1)L1 (n1 ,nz)qQ(m m2)+La(n1,n2) p.nitn2

2.

ni,n2>0 (Q7 Q>n1 (qga qg)ng

or
(_1)L1(n1,ng)qQ(nl,n2)+L2(n1,n2)mn1+2n2

>

a0 (@ Dn (363 )ns

If these expressions fail to be a candidate, then one could continue to modify them and
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carry on the searching procedure. However, it should be emphasized that in this remark
we do not intend to assert that the sum-like generating function must contain some

particular “magical” exponents and bases.

6.5 Computer Algebra Assistance

Proofs of the generating function identities in the previous section can be carried out

by the same procedure. We only demonstrate (6.4.2) as an instance.

6.5.1 The Main ldea

If we write

Gy (2,0) = Y g (M), (6.5.1)

M>0

where g7, (M) € Q(g), then we can translate the g-difference equation in Theorem 6.3.2

to a recurrence of gz, (M).

Definition 6.5.1. Let K = Q(g) with ¢ transcendental. A sequence (a,) in K is called
q-holonomic if there exist p, po, ..., p, € K[z], not all zero, such that

po(q")an + p1(¢")ans + -+ + pr(q") tngr = p(q").

Hence, the sequence g,z (M) is g-holonomic.

On the other hand, if we write

qn%+3n§+3n1 n2 pni +2n2o

= Gy (M), (6.5.2)
s (G D (6560, MX;() RS
we may also find a recurrence relation satisfied by g, (M). Hence, gz, (M) is also

g-holonomic.

A result of Kauers and Koutschan [110] states that if two sequences (a,) and (b,,) are
g-holonomic, so is their linear combination (aa, + 8b,). Hence, we may find a recurrence
relation satisfied by gz, | (M) — ngLl(M). As long as ngI,l(M) — gy, (M) = 0 for
enough initial cases, we are safe to say that this difference is identical to 0 for all M and

hence arrive at the desired generating function identity.
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6.5.2 Two Mathematica Packages

To proceed with our proof, we require two Mathematica packages: qMultiSum [153]
and qGeneratingFunctions [110]. These packages along with their instructions can
be found on the webpage of Research Institute for Symbolic Computation (RISC) of
Johannes Kepler University?.

To begin with, we load the two packages after installing them.

<<RISC ‘qMultiSum ¢
<<RISC ‘qGeneratingFunctions

4

6.5.3 Recurrence for g, (M)
For the polynomials ps;(x,q) (i =0,...,3) defined in Theorem 6.3.2, we write

J3’L
p3z X q Zp&,g

Then with (6.5.1), one may rewrite (6.3.27) as

3
0="> psi(z, DGy | (zq*)
i=0
3 JS'L

=22 > puig(0)9sm,, (m)g" 2™

=0 7=0m=>0

Z Z Z """ Paint—m (T, 4) g, | (M),

0 i=0 m=max(0,M —Js;)

Hence, for all M > 0,
3 M .
Z Z qsszSi,M—m(fE, q)gyTLl (m) =0, (6.5.3)

from which we see that g, (M) (M > 1) is uniquely determined by g, (0). It is also
trivial that g, (0) = 1.

In particular, for M > 0, we have the following recurrence

0= g, (M) ((¢* +¢*)g")

2See https://www3.risc. jku.at/research/combinat/software/ergosum/index.html
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=+ g”“Tm(M +1) (<q19 i qzl)qﬁ(M+1) 4 q27q9(M“))
+ 9o, (M +2) ((q14 L I L q18)q6(M+2))

+ 9 (M +3) (—(d" + " + ¢+ ¢*)@" M + (¢ + ¢*)" M)

+ 9o, (M +4) (—(q3 S T S S e q9)q3(M+4)>

Gy, (M +5) (<q +¢") - g+ P+ P+ + 4% (M+5)>

a7, (M£0) (1= 71). (6.5.4)

6.5.4 Recurrence for g, (M)

Notice that for M >0

q(M72n)2+3n2+3n(M72n)

T (G Du-20(%¢)n
— 2

gﬂTLl (M) =

The recurrence satisfied by g S, (M) can be computed automatically by the qMultiSum
package with the following codes:

ClearAll [M];
summand = q~(3n"2+(M-2n) "2+3n(M-2 n))/(qPochhammer[q,q,
M-2n] qPochhammer[q~3,973,n]);
stru = gqFindStructureSet [summand, {M}, {n}, {1}, {2},
{2}, qProtocol -> True]
rec = gFindRecurrence [summand, {M}, {n}, {1}, {2}, {2},
qProtocol -> True, StructSet -> strul[1]]]

sumrec = gSumRecurrence[rec]

This gives us, for M > 0,

0= G, , (M) (1 +2¢° + ¢* + >

+ Gy (M 4 1)gMFRL(] 4 2g? 4 gt — BMFS _ BMHI0 | BMAIL | BMH13 | M 14
+g%“@4+meH%1+qxl+q+q_Hf+fMH%

— G, (M +3)*M 21+ ¢*) (1 = g+ ¢*) 1+ + ¢ + ¢ + >

— G, (M A9 21 =g+ )1+ g+ )L+ g +¢" +¢° + M)

+§JTI (M + 5)(1 3N1+15)(1 + 2q 4 q + qSJ\/[+11) (655)
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6.5.5 Recurrence for g, (M) — Gy (M)

Finally, we deduce the recurrence for g, (M) — 91, (M) from (6.5.4) and (6.5.5).
This can be accomplished by the QREPlus function of the gGeneratingFunctions pack-
age.

We need the following codes, in which sumrecl records the recurrence relation for

9z, (M) and sumrec2 records the recurrence relation for g, (M).

ClearAll [M];

sumrecl = {SUM[M] ((q~(28)+q~(30))q~(9M))

+ SUM[M+1] ((q~(19)+q~(21))q~(6(M+1))+q~(27)q~(9(M+1)))

SUM[M+2] ((q~(14)+q~(15)+q~(16)+q~(17)+q~(18))q~(6(M

+2)))

SUM[M+3] (-(q~7+q~9+q~(10)+q~(12))q~(3(M+3))+(q~(11)+

q~(13))q~(6(M+3)))

SUM[M+4] (-(q~3+q~4+q~5+2q~6+q~7+q~8+q~9)q~(3(M+4)))

SUM[M+5] ((q~4+q~6) -(q+q~2+q~3+q~4+q~6)q~(3(M+5)))

SUM[M+6] (1-q~(3(M+6)))

== 0};

sumrec2 = {SUM[M] q~(9M+24) (1+2q~2+q~4+q~(3M+14))

+ SUM[M+1] q~(6M+21) (1+2q~2+q~4-q~(3M+8)-q~(3M+10)+q
~(3M+11)+q~(3M+13)+q~(3M+14))

+ SUM[M+2] q~(6M+22) (1+q~2) (1+q~2+q~3+q~4+q~(3M+12))

- SUM[M+3] q~(3M+12) (1+q~2) (1-q+q~2) (1+gq+q~2+q~3+q

+

+

+

+

+

~(3M+12))

- SUM[M+4] q~(3M+12) (1-q+q~2) (1+q+q~2) (1+q+q~2+q~3+q
~(3M+13))

+ SUM[M+5] (1-q~(3M+15)) (1+2q~2+q 4+q~(3M+11))

== 0};

QREPlus [sumrecl, sumrec2, SUM[M]]

The output gives us an order six recurrence. Hence, to show

9oy, (M) = gy (M)

for all M > 0, it suffices to show that the equality holds for M = 0,...,5. This can be
checked easily.
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We therefore arrive at

qn% +3n§ +3nins ™ +2n2o

mmrso (@G D0 (63563,

GfTLl (ZL', Q) =

6.5.6 Other ldentities

Similar to (6.5.1) and (6.5.2), let us write

G (2,9) =Y g (

M>0

and the multiple summations on the right hand sides of (6.4.3)—(6.4.13) as

Z ng* (M)xMa

M>0

where “x” may be “I,2”, “I, 3", etc. We list the orders of recurrences satisfied by g, (M),
G, (M) and g4, (M) — Gz (M) in Table 6.1 for the reader’s convenience.

Table 6.1. Orders of recurrences satisfied by g, (M), gz, (M) and g4, (M) — Gz, (M)

¥ 2 1,3 IL1 1,2 ILa II,1 L2 1La IV,I IV,a 1V,b
9. 6 6 6 6 6 15 15 15 15 15 15
G 5 5 5 5 5 4 4 4 4 4 4

9or. — Gop. 6 6 6 6 6 15 15 15 15 15 15

6.6 Endnotes

In a very recent paper of Bringmann, Jennings-Shaffer and Mahlburg [43], the Kanade—
Russell conjectures Iy and I were proved. Here the analytic forms of I5 and I read

respectively as

2 2
n In

1 2 3
5 +3ns+—

q
e n1,n22ﬂ13>0 (Q; Q)nl (qZ; qz)"Z (qS; qg)”3

1
(4,63, ¢4 ¢% 47, 4", ¢'Y; 1) e

, (6.6.1)

" s 242 3+2n1n2+6n2n3+3n3n1+ 4 3+ 128

q 2
G,7 17q =
v (1 0) nw;@ (45 @y (0% )0 (65 6% )ng
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1
T (AP 0 ) (6.6.2)

The authors of [43] cleverly reformulated G- = (1,¢) and G, (1,¢) and then
added a new parameter so that the new bivariate generating functions satisfy simpler

g-difference equations, from which the authors deduced the above identities.

Following the proofs of (1.15) and (1.16) in [43], one may prove the following identities
with no difficulty.

Theorem 6.6.1. We have

2 2
n In
=+ +3n2+ 52 +2n1n2+6nong+3ngni + 5k —np— 2

q 2
i, nl,n;@o (@ Dny (0% @)z (65 G )

-1
7 'q

= (=4 D)oo (—0" ¢%) o0 201 q° =%, (6.6.3)
q2

ni 2, 973 3ny 5ng
< +3n5+—5=>+2n1n2+6nang+3ngni+—5- +na+-—5=

G]THI,z <1’ q> - Z :

ni,n2,n3>0 (q7 q)"l (q27 q2)n2 (q37 q3)n3
5

= (=0 0)e(=4"14°)oc 201 (Q;Z ;q6,—q3) : (6.6.4)

2 2
n In n n
< +3n3+ 52 +2n1n2+6nans+3ngni + 5 —na+ 53

GﬂTI\m(l’q) - Z q2

1m0 (@ Dni (6%56%)n2 (€% ¢ )y
-1
¢ q
= (4 0)oo(—"1¢°)oc 201 ( / ;qﬁ,—q?’) : (6.6.5)

2 on2
L4302+ -3 42012 +6nans+3nzng + S +ng+ 13

q2
G,y (1a) =
v nl,nzz,ng>0 (q; Q)nl (q2; q2)n2 (qg; qg)ng

5
= (4 @)oo (=% ¢)ex 201 (quq ;q6,—q5> . (6.6.6)

Note that we shall use a refinement of Proposition 2.3 in [43], the proof of which
comes from a slight modification of the original proof of Bringmann, Jennings-Shaffer
and Mahlburg.

Proposition 6.6.2. Suppose that A(z) = Z a,x" has positive radius of convergence
n>0

162



and A(x) satisfies

Alx) = (14 ¢* + 2°¢" + 2¢°) A(z¢?®)
— (1 + 22" 77O (1 4 2%¢?) A(aq®), (6.6.7)

where a € 37 if a < —6. Then

(qb—d—s—G’ qc—d+6; q6)n(_ 1>nq(d—6)n $2n

A(z) = ao(—2%¢"% %)
7; (4% q°*%; %)
B <qb—d+9’ qc—d+9; qﬁ)n(_l)nq(d—(j)n _—
+ (=227 ¢%) o 2 (6.6.8)
%:0 (4%, q°%% ¢5),,

Proof. We divide by (—22¢%; ¢®) on both sides of (6.6.7) and put

A(z)

PO s

)
then

(1+2%¢"°)B(z) = (1 + ¢* + 2°¢" + 2%¢°) B(x¢®)
. qa(l + x2qb+cfa7d+6>B<xq6).

Writing B(z) = Z Bpx", one has, after simplification,

n>0
6 _ _qd—6<1 - q3n+b—d)<1 - q3n+c—d)ﬁ )
n (1 _ q3n>(1 _ q3n+a) n—
Finally, noting that Sy = «ag and 1 = «; yields the desired result. O

Now we prove (6.6.3) as an example.
Proof of (6.6.3). We first rewrite G, (1, ¢) as follows:

2 2
n In n n
—21 +3n§+f23 +2n1n2+6n2n3+3n3n1+—21 —ng——23

q
G‘VTIII,l (1’ Q) - Z

ni,n2,n3>0 (q7 q)nl (q27 q2>n2 (q37 q3)n3

2 2
Ins ne n n
3n2+—3 +6nonz—no— 2 - +2n1n2+3n3ni+ 5+

2T 3 2 q2 2

- q
npms0 (@500 (@356 S0 R
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For the inner summation, we apply the identity

n(n—1)

(@)oo = > (_1)#

n>0 (¢ Qn
It follows that

2
9
3ng+%+6n2n3—n2— 2n2+3n3+1.
)

q 7 (—q Qoo

ng,n3>0 (q27 q2)n2 <q37 q3)n3

= (¢ 0) Y, a

no 50 (=@ Q)2ns 1305 (0% G%)na (@35 ¢ )ng

GjTIIm (1’ q) -

5, 93 n3
3ny+—5=+6nanz—no— 3>

Let us define an auxiliary function

2
9
3n§+ %-‘1-6712713 —no— %’3 x2n2 +2n3

H) = >

no 50 (=@ D 2no 1305 (0% G%)na (0% ¢ )ng

We also assume that H(z) = > h,z*".
n>0
One may use the Mathematica package qZeil [138] to find a recurrence satisfied by

h,, through the following codes.

<< RISC ‘qZeil "

ClearAll [n2, n3, M]

n3 = M - n2;

summand =

q~(3 n272 + (9 n372)/2 + 6 n2*n3 - n2 - n3/

2) /(gqPochhammer [-q, g, 2 n2 + 3 n3] qPochhammer
[q72, q~2,

n2] gqPochhammer[q~3, 973, n3]);

qZeil [summand, {n2, 0, Infinityl}, M, 2]

The resulting recurrence is
(1 — g% — gf 4 g2, — (57t 4 52 — @120 Ty i1y,
This recurrence then leads to

H(z) = (1+q " +2°¢* +2°¢" ) H(2q’) — ¢ " (1 + 2°¢") (1 + 2°¢°) H (2¢°).
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Finally, we use Proposition 6.6.2 with a = —4, b=2, c=4 and d = 9. Then,

-1 .6 3\n

' 4°)n(=)"
Hx:—qu?’;qﬁooE ( x "
() = ( ) (@O

—1
¢ 'q
= (—2%¢% ¢°)o0 201 ( P ;qG,—w2q3) :

It follows that

-1
a'q
Gy, (1:0) = (@ Do H(1) = (=4 @)oo (=% 6%)os 261 ( .2 ;q6,—q3) ,

which is our desired identity. O]
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Chapter 7
Span One Linked Partition ldeals:

Directed Graphs and g-Multi-summations

This chapter comes from

e S. Chern, Linked partition ideals, directed graphs and g-multi-summations, Flectron. J. Combin.
27 (2020), no. 3, Paper No. 3.33, 29 pp. (Ref. [54])

In the previous chapter, we have explained the definition of span one linked partition
ideals. Given a span one linked partition ideal .¢ = . ((II, L), S), one crucial problem

discussed is how to determine its generating function

G(x)=9Y(x,q) = Z 2N g
Aes
It should be admitted that to derive an Andrews—Gordon type generating function
identity, one has to obtain first a conjectural (z,q) sum-side. This then requires an
extensive search using the general shape given by Andrews’ Conjecture 6.1.2.

However, we could also start in the opposite direction. That is, if we are given a
family of nice g-multi-summations, then we may try to use the approach in Section 7.4
to construct identities like (7.4.5) and (7.4.13), from which we may further construct
some combinatorial objects, or even more luckily, a span one linked partition ideal and
its subsets, such that the ¢g-multi-summations correspond to their generating functions.
One such instance is given in Theorem 7.4.4 and Corollary 7.4.5. This is indeed what we

hope the framework in this chapter could provide.
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7.1 Main Result

Assume that in & = Z((I, £), S), I is given by {m, 79, ..., 7k} where m; = (), the
empty partition. We define a (0, 1)-matrix o7 = o/ ((II, L)) by

1 ifm;, e L(m),
o, = it m; € £(m) (7.1.1)
0 if Uy Q ,C(Wi%
and a diagonal matrix # (x) = # ((II, L) | x,q) by
xﬁ(ﬂ-l)qlﬂ-ﬂ
Q;ﬁ(ﬂ—Q)q‘TrQI
W (r) = . . (7.1.2)

(L’ﬁ(wK)qlﬂ—K|

Theorem 7.1.1. For each 1 < k < K, we denote by .% the subset of partitions \ in
F((I1, L), S) whose S-tail is m, € II. We further write

G(v) = G(v,q) = Y ¥ Vgl

AEI

Let o/ and W (x) be defined as in (7.1.1) and (7.1.2), respectively. Then, for |q| <1 and
x| < gl

gl(ﬂf)
gz X M

,( ) =W (x). (]\/llgnoo Hl(ssz(xqu))> : O : (7.1.3)
G () 0

Remark 7.1.1. Recall that m = 0 (so that m € L(n) for all 7 € II) and L£(0) = II. It
follows that all entries in the first row and column of &7 are 1. Further, the first entry in

W (x) is also 2°¢° = 1. When |¢| < 1 and |z] < |¢|7!, we have

100 --- 0
0 --- 0
: MSy _
A/lflinoo&%.W(xq )= 5
100 0
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Throughout, [TM_, («7.# (z¢™)) means
AW (xq).d W (xq*). - . W (xg™). (7.1.4)

Remark 7.1.2. We have .
G(x) =Y G(x),
k=1

but since L(()) =TI, it is not hard to see that

g1<l’) = ]; E?k(xqs).
Hence,
4G (z) = 4 (xq~%). (7.1.5)

In the next section, we will consider our main result in a more general setting of

graph-theoretic flavor.

7.2 Directed Graphs

Let G = (V, E) be a directed graph where V' is the set of vertices and E is the set of
directed edges. Throughout, we allow loops (that is, directed edges connecting vertices
with themselves) in G but for any two vertices u and v, not necessarily distinct, we allow
at most one directed edge connecting u with v. Let V' = {vy, vg, ..., vk }. Let & = o7 (QG)
be the adjacency matrix of GG, that is,

1 if there is a directed edge from v; with v;,
o ;= (7.2.1)
0 if there are no directed edges from v; with v;.

We say that w is a walk of step M in G if w is a chain of M + 1 vertices
Wy —> W1 —> - —> WM

such that for each 1 < m < M, there is an edge from w,,_1 to @,,. Let W), be the set
of walks of step M in G.
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7.2.1 Generating Function for Walks in a Directed Graph

To define the generating function for step M walks in a directed graph G = (V, E),
we assign two weights to each vertex v: one is called length, denoted by f(v) € N, and
the other is called size, denoted by |v| € N.

Let the shift S be a non-negative integer.

For any walk w € W),,
w=wy—>w — - — Wy, (7.2.2)
we define its generating function by
G (w|x,q) = zH@)gl=ol s (2= g™l oo (ggMS )M glmnl (7.2.3)

Now we are able to define the generating function for step M walks from v; to v; for any
1<4,j <K:

GiWar|2) =9,;War|2,9) = Y Y(w|z,q). (7.2.4)

weWnNr
wo=7;
WM =Vj

Let us define a diagonal matrix # (z) = # (x,q) by

xﬁ(vl)qwll

xﬁ(l&)q‘v?I
W (z) = . . (7.2.5)

Iﬁ(vK)qlvM

Theorem 7.2.1. Let o/ be the adjacency matriz of G and let # (x) be as in (7.2.5).
Then 9; ;W | ) is the (4, j)-th entry of

W (x).d W (xq®).d W (2g*®). - I W (xg™?). (7.2.6)

Remark 7.2.1. Let us set © = g = 1. Then #/(1,1) is a K x K identity matrix and hence
(7.2.6) becomes &/M. Since ¥, ;(Wis|1,1) equals the number of walks of step M from
vertex v; to vertex v;, Theorem 7.2.1 immediately leads to a well-known result in graph

theory:

Corollary 7.2.2. The number of walks of step M from vertex v; to vertex v; is the
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(i,7)-th entry of &/™.
Proof of Theorem 7.2.1. We induct on M. When M = 0, that is, the chain w of vertices

in (7.2.2) contains only one vertex wy, it follows that

af@glvil if § = 4,
GiWolz) =
0 if © # 7,

which is identical to the (i, j)-th entry of # (x).
Now let us assume that the theorem is true for some M > 0. We also write for

convenience
MM =W (2).d W (xq®).od W (xq*). - W (g™,

Then 4, ;(Ww | x) = M (M), ;. Further,

K

(M +1)i5 = 3l (M) (gD
K
= Z < (Wi | x)%’j(xq(MH)S)ﬁ(vj)qlvjl_

On the other hand,

G iWuslz)= > Y(wl|z,q)

K
= Z < (W | x);z{,w(xq(M“)S)ﬁ(”f)q‘”j'.

Hence, 9%, i W41 |x) = A (M + 1), ;, which is our desired result. O

7.2.2 Assigning an Empty Vertex

Let us assume that v; € V' is an empty vertex, that is, its length and size are both 0:

f(v1) =0 and |vy] =0. (7.2.7)
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We also assume that, for 2 < k < K, #(v;) and |vg| are both positive integers.
We require that, for each 1 < k < K, there is an edge from vertex vy to the empty
vertex v;. Hence, the entries in the first column of the adjacency matrix 7 are all 1.
We call such a modified directed graph G' = (V') E").

For any finite walk in G*,
W =wy— W — - — Wi,
with wys # v, we may extend it to an infinite walk
W =1y =Wy > Wy >V >V >

Conversely, for any infinite walk w* in G* ending with v; — v; — - - -, a series of empty
vertex, we may find the last vertex, say wj,;, which is not empty, and reduce w* to a
finite walk w = wg — w; — -+ — wys. If there is no such w,,, that is, if the infinite
walk is v; — v1 — - - -, we reduce it to v;.

It follows from the assumptions #(v;) = 0 and |v1| = 0 that
G(w* |z, q) =9 (w|x,q). (7.2.8)
Also, for the infinite walk v; — v; — - -+, we have
G, = v, — - |2,9) =9 (v1|z,9) = 2°¢° = 1.

Let W* denote the set of infinite walks in G* ending with v; — v; — - -, a series of
empty vertex.

We are now in the position to define the generating function of G*, by

GG |,q) = Y YW |zq) (7.2.9)
w*eW*
=> Y Y(wlz,q). (7.2.10)
M>0 weWy,
- wz%ﬁévl

Theorem 7.2.3. For each 1 < k < K, let %,(G"| v) = %,(G" |z, q) denote the generating
function for infinite walks in W* starting at vy. Let the shift S be a positive integer. Let
o/ and W (x) be defined as in (7.2.1) and (7.2.5), respectively. Then, for |q| < 1 and
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2] <|q| 7",

% (G | x)
% (G M

@' ) :7/(3:)(&@001‘[(%.7/(@%))). ? : (7.2.11)
G (G| x) 0

Proof. We simply observe that, for each 1 < k < K,

G(C x)= lim Y G(w|x.q)
wEW N

o=k
wM=V1

By Theorem 7.2.1, this is the (k, 1)-th entry of

M—o0

W (x).d W (xq®).d W (xq®). - =W (z). ( lim ﬁl(%W(xqu))> .

The desired result therefore follows. O

Remark 7.2.2. Results of the same flavor as Theorem 7.2.3 are available in literature for
some other concrete identities; see [124, Section 3] for Gordon’s identities, [74, Section
5] for the Andrews—Gollnitz—Gordon identities, and [107, Section 6] for the Andrews—

Bressoud identities.

7.2.3 Proof of Theorem 7.1.1

To prove Theorem 7.1.1, let us define the associated directed graph of a span one
linked partition ideal .# = #((II, L), S).

We first define the set of vertices. Since Il = {m,m9,..., 7k} is a finite set of
partitions, we may treat each m; as a vertex. We also define the length of 7, as the
number of parts in m;, and the size of 7, as the sum of all parts in 7. In particular, since
71 is an empty partition so that #(m) = 0 and |m| = 0, we may treat m; as an empty
vertex.

We next define the directed edges in a natural way. For 1 <1,j < K, if m; € L(m;),
then we say that there is an edge from vertex m; to vertex ;. Recall that for any 7 € II,
its linking set £(7) is defined to contain the empty partition m; = (). Hence, for each

1 < k < K, there is an edge from vertex m, to vertex .
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We call this graph the associated directed graph of .#, denoted by G'(.¥) =
(VH(HF), E'(F)). In fact, G'(F) is a modified directed graph described in §7.2.2.

Recall from (6.1.3) that each partition A in .# can be uniquely decomposed as
A=20@ 0% (M) @ P (M) @ - @ 9" (A) @ ¢FHIN0) @ 0HT D) @ -

so that A\ # 0 as long as A # (). Hence, we have a natural bijection to infinite walks in

G'(.#) ending with 7, — 7 — -+ -:
w*()‘):)\O—>)\1—>/\2—)---—>)\K—>7T1—)7r1—>...‘

Further, if X is an empty partition, then the resulted infinite walk is simply 71 — m — - - -.
Now let us define S to be the shift. Then

NG =G (w*(\) |z, q). (7.2.12)
Hence,

G(x)= > "V = Y G(w*|x,q).

eSS w*eW*

The rest follows directly from Theorem 7.2.3.

Example 7.2.1. It is shown in Example 6.1.1 that partitions with difference at least 2
at distance 1 form a span one linked partition ideal .# ((II, £), S) where II = {0, 1,2},

the linking sets are
L) =A{0,1,2}, £(1)={0,1,2}, L(2)=1{0,2},

and S = 2. We represent its associated directed graph in Figure 7.1.
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Figure 7.1. The associated directed graph in Example 7.2.1

7.3 g-Multi-summations

7.3.1 A g-Difference System and the Uniqueness of Solutions

Recall that in Theorem 7.1.1 we have shown that

gl(iﬂ)
20\ (A}gnoo [L (o (aa" ))) 0 . (7.3.1)
G () 0
Let us focus on
Fi(z)
FQ(x) <A}1£noo H AW (xq™ ))> O . (7.3.2)
F¥(x) 0
Notice that
Fy ()
Fr(x) 0
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= o W (xq”). (]\/lllinoo 1:[ (d.%(zqsqms))> : 0

0

Fi(2q%)

If we further write Fy(x) := Ff(xq™") for each k, then the column vector

Fi(x
B = | )
FKI(ZL")
satisfies the g-difference system
F(z) = o . W (2).F(2q°). (7.3.3)
Remark 7.3.1. It follows from (7.3.3) that
Fi(x “ (x)
Fo) =) ||~ %@ . (7.3.4)
Fﬁ‘(x) %’(iﬁ)

Recall that, we have defined in Theorem 7.1.1 that, for each 1 < k < K, %, denotes the
subset of partitions in & ((II, £),S) whose S-tail is m;. Further, 4 (z) is the generating
function of .#;. Since 7 is a (0, 1)-matrix, it follows that Fy(z) € Z[[¢]][[x]] for each
1 < k < K. More importantly, since the empty partition () is contained in .#; but not in
Iy for 2 < k < K, we have 4 (0) = 1 and 9%,(0) = 0 for 2 < k < K. Since the entries in
the first column of & are all 1, it follows that

Fi(0) = F3(0) = - - = Fre(0) = 1. (7.3.5)
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We next show the uniqueness of solutions of (7.3.3).

Proposition 7.3.1. In the g-difference system (7.3.3), we assume that, for each 1 <
k< K, Fy(x) € C[[q]][[x]]. If F1(0) = F5(0) = --- = Fk(0), then there ezists a solution
0 (7.3.3). Further, the solution is uniquely determined by F(0).

Proof. For each 1 < k < K, let us write

x) = Z fr(n)z",

n>0

where fi(n) € C[[q]] for n > 0. We also write for notational convenience that fi(n) =0
for n < 0. Then,

K

Z fk(n>x” — Z% #(m;) q |75 Zf ”S xr"
n>0 n>0
=2 Z%,qulﬂn_u(”"))sfj(” — H(m;)) | ="
n>0 \j=1
Recall that (m) = |m| = 0 and <7, ; = 1 for all k. We have that, for n > 0,
fe(n) = ¢"° fi(n +Z~0fk T TETS £ (0 — (). (7.3.6)
7j=2

Setting n = 0 gives the requirement F(0) = F5(0) = --- = Fx(0). Also, F(0) =
(£1(0), f2(0), ..., fx(0))T uniquely determines fix(n) for all 1 < k < K and n > 1 by
(7.3.6). O

7.3.2 Two Examples

Recall that, for each 1 < k < K, .#; denotes the subset of partitions in & ((II, L), S)

whose S-tail is m;. Further,

= Y g,

AEI

7.3.2.1 Example 1

In the first example, we consider

“partitions with difference at least 2 at distance 1.”
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This partition set obviously corresponds to the Rogers-Ramanujan identities. In Example
6.1.1, we have shown that it is a span one linked partition ideal .#({II, L), S) where

IT = {m,mg, w3} with m = 0, 7o = 1 and 73 = 2, the linking sets are

L(m) = {m, mo, 73}, L(m2) = {m,me,m}, L(m3)={m, 73},

and S = 2.
Notice that the generating function for partitions with difference at least 2 at distance
1is ,
qn x?’L
G () + Do(z) + G(x) = D — (7.3.7)
n>0 (¢ Dn

and that the generating function for partitions with difference at least 2 at distance 1

with the smallest part > 2 is

qn +nxn
G (x)+Gs(x) =D —— (7.3.8)
=0 (G@)n
We know from (7.3.4) that
Hence, by (7.3.7) and (7.3.8), if we put
anxn
Fi(z) = Fy(x) = (7.3.9)
w) = Fala) n;](q;q)n
and
R =y L (73,10
)
then we have the following relation from (7.3.3):
Fi(x) 1 11 1 Fi(x¢?
F)|=]|11 1]. xq | Fo(zg?) | - (7.3.11)
F) \1 o1 vi?) \ Py
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Conversely, if we are able to prove (7.3.11) directly (notice that F3(0)

F3(0) =

gl (.1')
Yo ()
gg (.T})

(x
(x
(

X

=

~— ~—

zq
rq

~—

(x
(x
(

X

g
2

xq

BRI s B BN e

?)
)
!)

Q»Q»Q

Also, (7.3.7) and (7.3.8) can be deduced with no difficulty.

7.3.2.2 Example 2

In the second example, we consider

= F5(0) =

1), then by Remark 7.3.1 and Proposition 7.3.1, we can compute that

“partitions with difference at least 3 at distance 2 such that if two consecutive

parts differ by at most 1, then their sum is divisible by 3.”

This partition set corresponds to the Kanade—Russell conjectures I;—I5. It is shown in
§6.3.1 that this partition set is a span one linked partition ideal .#((II, £),S) where

S =3,and I = {m, m, ...

IT
7T1:®
7T2:]_
7T3:2—|—1
7T4:3+1
7T5:2
71'6:3
7T7:3+3

linking set
{7T1, T, T3, T4, Ts5, Tg,
{7T1, T, T3, T4, T5, Te,
{7T1, T2, T3, T4, T5, T,
{7T1, 5, T, 7T7}
{7T1, T2, T3, T4, N5, Te,
{7T1, 5, T6, 7T7}

{ﬂ-la 6, 7T7}

, 7} along with the linking sets given as follows.

71'7}
7T7}

7T7}

7T7}

It is also shown in §6.3.1 that the generating function for such partitions is

+g5(37)

gg (fﬂ

~—

—+ gG(Cﬁ) —+

qn% +3n% +3nins ™ +2n9o

n1,n2>0
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that the generating function for such partitions with the smallest part > 2 is

Z qn§+3n§+3n1n2+n1+3n2xn1+2n2
G (1) + B (x) + Go(x) + Gr(a) =
ni,n2>0 (q? q)nl (qS) qg)nz

: (7.3.13)

and that the generating function for such partitions with the smallest part > 3 is

qn%—H’mg +3ni1n2+2n1+3ng xnl +2n2o

G(x) + %(x) + G () = T (7.3.14)
m%;o (@ D (65 6o
We know from (7.3.4) that
Fi(x) 1111111 4 (x)
Fy(x) 111111 1] |%@
Fy(x) 111111 1] |%@
Fyz)l=(11 0001 11 G, (x)
Fy(x) 111111 1] |%@
Fy(x) 100011 1| |%@
Fr(x) 1000011 “:(x)
Hence, by (7.3.12), (7.3.13) and (7.3.14), if we put
Rie) = Bfe) = Ffe) = Rx) = ¥, T (13,15
1) = L2\X) = I3\ ) = I'5(T) = s 7.3.15
im0 (@G Dn (036 )ns
qn%+3n§+3n1n2+n1 +3ns9 l’nl +2n9
Filx) = Fg(x) = 7.3.16
o) = Fola) m,%;o (@ Dni (2% 6% ( )
and
qn%+3n§+3n1n2+2n1 +3n2 ™ +2n2o
Fr(z) = , (7.3.17)

ni,n2>0 (q? Q)nl <q37 qg)ng
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then we have the following relation from (7.3.3):

Fi() 1111111\ (1 Fi(zg?)
Fy(z) 1111111 xq Fy(zq?)
Fs(x) 1111111 22¢3 F3(zq?)
Fy(z)|=11 000 1 11 ¢t | Fu(zg?)
F5(x) 1111111 zq* Fs(xq®)
Fy(x) 1000111 rq® Fs(xq?®)
Fr(z) 1000011 220 Fr(zq®)

Conversely, we are also able to recover

(%1(2), %(2), %3(x), (), %5 (x), Go(x), i (x)) "

(7.3.18)

as well as (7.3.12), (7.3.13) and (7.3.14) provided that we have proved (7.3.18) directly

since F1(0) = F»(0) = --- = F%(0) = 1.

7.3.3 A Matrix Factorization Problem

Motivated by (7.3.11) and (7.3.18), we turn our interest to a matrix factorization

problem as follows.

Let R be a positive integer. Let a = (a; ;) € Matg«r(N) be a fixed symmetric matrix.

Let A = (A,) € N% and v = (v,) € N&| be fixed.
Let § be a set of ¢g-multi-summations defined by

5= {H(é) : B € Z" and condition (7.3.21) is Satisﬁed},
where H(B) = H(f1,...,Br) is of the form

R R R
qz'rzl OCT',rn’r'(nT'_1)/2q21§i<j§}?, Qg 5T 5 qZTZI ﬁT'n"’er:l YrTr

S0 (g;¢M ), - (qA%; ARy,

and the additional condition reads: for all (ny,...,ng) € N¥\{(0,0,...,0)},

i roliy 7'_]- 3
Za,ngﬂu ) ai’jnmﬁzlﬁrn»&

r=1 1<i<j<R
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Now we consider a column functional vector

Fi(z) H(B,)
Fy(z) = FQ@ = H(:ﬂQ) : (7.3.22)
F () H(B,)

where H(gk) cgforalll <k <K.
We expect Fg(z) to satisfy the following factorization property.

Factorization Property. Let % be a (0, 1)-matrix such that all entries in the first
row and column are 1. Let ¥ be a diagonal matrix such that all (diagonal) entries are
monic monomials in z and ¢ with #7; = 1. We say that Fg4(z) satisfies the Factorization
Property if

Fs(z) = %.V.Eg(xqs) (7.3.23)

for some positive integer S.

Also, S = 2.

2 3
Example 7.3.2. In the example in §7.3.2.2, we have a = (3 6)’ v=(1,2), A=(1,3)

and

Also, S = 3.
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7.4 Non-computer-assisted Proofs

The aim of this section is to prove Andrews—Gordon type generating function identities
such as (7.3.12), (7.3.13) and (7.3.14) without computer assistance.

As we have seen in §7.3.2.2; to prove (7.3.12), (7.3.13) and (7.3.14), it suffices to show
(7.3.18).

Our starting point is a recurrence relation enjoyed by H (1, ..., Sr) defined in (7.3.20).

7.4.1 A Recurrence Relation

Recall that

H(ﬂla s 7BR)
L g e S S ey S o
ni,...,np>0 (qA1 ; qu)nl T (qAR; qAR)TLR

Lemma 7.4.1. For 1 <r < R, we have

H(Bl?"‘?ﬁT?"'J/BR) :H(ﬁla"'vﬁr_}_ATv”'uﬁR)
+ 2" H(BL+ s B+ Qs Br A+ Qi R)- (7.4.1)

Proof. We have (recall that o is a symmetric matrix so that o, ; = a;; for 1 <4, j < R)

H(Blv"'uﬁh"'aﬁR) _H(/617"'7/8T+AT7"‘7/6R>
_ Z qzz m‘,mi(ni—l)/QqZKj Qg i qu 52”1(1 _ qn’“AT>xZi Yini
nly...7nRZO (qu7 qu)nl P (qAr7 qAT)nT e (qAR’ qAR)nR
_ Z qzi ai,mi(mfl)/2qzi<j Qg jnin;j qu ﬂmlle wini

50 (@5 ¢4 )0y o (@5 g )1 (@47 ¢ AR ),
ne>1

qu Qi (ni_l)/2q2i<]‘ Qi MM qzi(ﬂi+ar,i)nimzi Yini

— l.’Yr' qﬂr Z

nh..‘,nRZO (qu , qu)nl . (qAr’ qAr)nT P (qAR’ qAR)nR

= x’YTqﬁrH<ﬂl + Qp1, ... aﬂr + Qppy .. 7ﬁR + ar,R)-

The desired identity therefore follows. O]

Remark 7.4.1. It is worth pointing out that the recurrence (7.4.1) and its relations

to sum-like generating functions have connections with the theory of vertex operator
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algebras, especially in the context of principal subspaces of modules. For one recent
example, see (4.71)—(4.81) in [139].

Remark 7.4.2. A recent paper of Ablinger and Uncu [1] also seems to outline some

functionality regarding recurrences for g-multi-summations.

Recall that the Factorization Property says that

Fs(z) = %.“I/.Eé(xqs).

Further, if F(x) = H(f,...,0r), then

F(xqs) :H(B1+’}/1S,...,BR+’YRS). (742)

Probably, if we expect to apply Lemma 7.4.1 to deduce Andrews—Gordon type
generating function identities, we need to attach some additional conditions to the

Factorization Property.

Additional Conditions. Forall 1 < s < R:
(1). 7sS8 € AZ;

(ii). forall 1 <r <R, o, € A/Z.

7.4.2 Proof of (7.3.11)

We first prove (7.3.11), which is relatively easy.

Theorem 7.4.2. Let

qn2xn
Fi(z) = Fy(x) = 7.4.3
(=) = Bl %(q;qn (7:4:3)
and
=y (4.4)
w0 (@ Dn
Then,
Fi(x) 111 1 Fi(zq?
FE) =111 1]. xq | Fo(zq?) (7.4.5)
F(x) 101 x¢?) \F3(2q)
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We have shown in Example 7.3.1 that in this case S =2, a = (2), ¥y=(1),A=(1)
and

Fy(x) H(1)
Fy(x) | = | H(1)
F(z) H(2)

Further, it follows from (7.4.2) that
Fi(zq*) = Fy(2¢®) = H(3) (7.4.6)
and

Fy(xq®) = H(4). (7.4.7)

To prove (7.4.5), it suffices to show that
Fi(z) = Fi(2¢®) + 2qFy(2¢*) + 2¢* F3(2q?) (7.4.8)
and
Fy(x) = Fi(2vq®) + 2¢° F3(2q®). (7.4.9)

It follows from Lemma 7.4.1 that

I
pe

Fi(z) = H(1)

H(1+1)+2qH(1+2)
H(2) + zqH(3)

(H(2+1)+xq H(2+2)) + xqH(3)
H(3) +2¢*H(4) + xqH(3)

Fi(zq®) + 2¢° F3(2q*) + zqFs(2q?).

Also,

(2+1)+2¢°H(2+2)

H
H(3)+ x2¢°H(4)
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= Fi(2q") + 2¢° F3(zq”).
Identities (7.4.8) and (7.4.9) are therefore proved.
7.4.3 Proof of (7.3.18)

We next prove (7.3.18).

Theorem 7.4.3. Let

qn§+3n%+3n1n2 Inl +2n9

m%:zo (@ D (@35 G )y
Z qn%+3n§+3n1n2+n1 +3n2 ™ +2n2
Fu(z) = Fo(z) = (7.4.11)
ny 0 (@ D (%5 6%
and
qn%+3n§+3n1n2+2n1 +3n2 ™ +2n2o
Fr(x) = (7.4.12)
N (¢ D (6356 )ny
Then,
Fi(x) 1111111\ (1 Fi(2q?)
Fy(x) 1111111 xq Fy(zq?)
Fy(z) 1111111 Nl Fy(zq®)
Fyz){=]1 000 111 r%q* N Fi(zg®) | (7.4.13)
F;5(x) 1111111 zq* Fs(xq®)
Fs(z) 1000111 zq® Fs(zq®)
Fr(x) 1000011 22q° Fr(zq®)

2 3
We have shown in Example 7.3.2 that in this case S = 3, a = ( ), v =(1,2),

3 6) —
A = (1,3) and
Fi(x) H(1,3)
Fy(x) H(1,3)
F3(x) H(1,3)
Fy(z) | = | H(2,6)
F5(x) H(1,3)
Fg(x) H(2,6)
Fr(x) H(3,6)
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Again, it follows from (7.4.2) that

Fi(zq®) = Fy(zq”)
F4(37613>

F3(zq ) F5(3:q) H(4,9),
Fs(xq®) = H(5,12)

and

Fy(zq®) = H(6,12).

To prove (7.4.5), it suffices to show that

A { Fi(2¢°) + 2qF3(2q°) + 2°¢* F3(2¢®) + 2°¢* Fiy(z¢?)
1\T) =
+ 2> F5(2¢%) + 2¢* Fs(v¢*) + 2°¢° Fy (2q?)
Fy(z) = Fi(2q°) + 2¢*F5(2¢%) + 2¢° Fs(2¢°) + 2°¢° Fr (vq”)

and

Fr(z) = Fi(2¢*) + 26’ Fs(2¢°) + 2°¢° Fr (2¢*).

!

(7.4.14)
(7.4.15)

(7.4.16)

(7.4.17)

(7.4.18)

(7.4.19)

We will adopt the following notation to make our argument more transparent. First,

a term in gray indicates that we will apply Lemma 7.4.1 to this term. Also, if Lemma

7.4.1 is applied to one coordinate, then that coordinate will be shown in boldface. Finally,

the two underlined terms in the next line are deduced from the previous gray term by

Lemma 7.4.1.
It follows from Lemma 7.4.1 that

— H(1L6) + AP
= /1(2.0) +2qH(3,9) + 2*¢’ H(4,9)

— H(3,6) + 2g H(4,9) + 141(3.9) + ¢ H(4,9)

+ x2q3H(4, 9)
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H(3.6) +2q*H(4,9) + 2qH(4,9) + 2°¢"H(5,12) + 2°¢° H(4,9)

H(3.9) +2°¢°H(6,12) + x¢*H(4,9) + wqH (4,9) + 2°¢*H (5, 12)



= H(4,9) +2¢’H(5,12) + 2*¢°H(6,12) + x¢° H (4,9) + xqH (4,9)
+ 2°¢*H(5,12) + 2*¢°H (4,9)

= Fl(xq?’) + a:q3F6(xq )+ q6F7(xq3) + xq2F5(xq3) + qug(xq?’)
+ 22 Fi(2¢®) + 2 Fy(aq?),

Also,
= H(3.6) + 2’ H(4,9)
= H(3.9)+ 2" H(6,12) + x¢"H(4,9)
= H(4,9) +2¢’H(5,12) + 2°¢°H(6,12) + x¢° H(4,9)
= Fi(2¢®) + 2’ Fy(2q’) + 2°¢° Fr(2¢°) + 2¢* F5(aq?).
Finally,

H(3.9) + 2 H .12
= H(4,9) +2¢’H(5,12) + 2%¢°H(6,12)
= Fi(2¢®) + 2¢’ Fy(2¢°) + 2°¢° Fr(2¢%).
Identities (7.4.17), (7.4.18) and (7.4.19) are therefore proved.

Figure 7.2. Node H(f1,...,0r,...,0r) and its children

H(B1,...,Bry---,0r)

/]/ \I@ﬁr

H(Bl?"'aﬁr—{'Ara"‘aﬁR) H(ﬁl+ar,17"'7ﬁr+ar,ra'“aBR—i_Oér,R)

7.4.4 Binary Trees

Interestingly, the previous two proofs can be represented nicely by binary trees. More
precisely, all nodes are of the form H(f,...,5;,...,0r). Then Lemma 7.4.1 gives two
children of H(f3y,..., 0, ...,Bgr): the left child is H(p,..., 5. + A,, ..., Br), weighted

189



by 1, and the right child is H(8y + a1, .., B + Qpry - . ., Br + air.r), Weighted by z77¢%.
See Figure 7.2.
Now the proofs of (7.3.11) and (7.3.18) can be illustrated by Figures 7.3 and 7.4,

respectively.

Figure 7.3. The binary tree for (7.3.11)
H(1)
1/ \wg
H(2) H(3)
1/ \xq2
H(3)

H(4)

Figure 7.4. The binary tree for (7.3.18)

%// \\g4

H(1, ,9)
/1/ \q
H(3,9)
1/ \xq / \xq
H(3,6) H(4,9) H(4,9) H(512)
1/ \w
H(3,9) H(6,12)
Y/ \wq
H(4,9) H(5,12)

In fact, it is relatively easy to deduce other much more complicated identities of the
same flavor as (7.3.11) and (7.3.18). For example, the next result follows from the binary

tree in Figure 7.5.

Theorem 7.4.4. Let
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(7.4.20)

n1+2n2+3ng

n,
"2_731‘

2

n_

+2n1ng+6n2n3+3nzni+

2
2, 9n3
p)

2
q%l+3n2+

>

ni,n2,n3>0

Fr(z) =

(¢ @) (6% 6%)ns (63563 ) g

Flg(l')

(7.4.21)

™ +2n2+3n3
)

5n
+no+53

+2n1n2+6n2n3+3nzni+ 3”71

2
2, 913
p)

2
q%l+3n2+

>

ni,n2,n3>0

F14(I) = ...

(¢ @) (6% 6%)ns (63563 ) g

Fgl (ZE)

(7.4.22)

™M +2n2+3n3

1lng
2

+3n2+

+2n1n2+6n2n3+3nzni+ 3"71

2
9n3
2

3 2
+3n3

™M
q=2

>

ni,n2,n3>0

(@5 @i (6% 612 (635 6% ) g

and

FQg(ZE)

>

ni,n2,n3>0

F22 (ZE)

(7.4.23)

xﬂ1+2n2+3n3

llng
2

+3n2+

+2n1n2+6n2n3+3n3n1+§%i

2
9In
L+3n+—2

(Z 2

n2

(@5 Dni (025 6®)ns (035 )y

Let

11111111111111111111111

111111111111 11111111111
111111111111 111111111171

11111111111111111111111

111111111111 11111111111
t111r11111111111111111111

11000011110001111000010O0
110000111 10001111000010

110000111 1000111100001F0
110000111 10001111000010

11000011110001111000010

110000111 10001111000010

110000111 100011110000O010O0
1100001100000111000O0O010O0

1100001100000111000O0010

11000011 00000111O000O0O010O0

110000110000011100O0O0010

1100001100000111O000O0010

11000011000001110000010

1100001100000111O000O0O010O0

1100001100000111O000O0010

100000100O0O0OO0CCO0O11O0O0OO0OO0OO0OO0OT1OQO0

1000001000O0O0OO01100O0O0O0O0O0T1OQO0

pa
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and

W (z) = diag(1, 2¢°, vq, 2%, 2°¢%, 2°¢*,

3,25 .24 .37 .24 .36 335
g, rq,r4q¢,rq,rq¢,rq,rq,

27 220 PP PP, P B O, P,
0, 2.
Then,
F1($ Fl(qu
Fs(x Fy(xzg?
S e (7.4.24)
Fys(x) Fos(xq®)

Remark 7.4.3. It is worth pointing out that the g-multi-summations in this theorem are
similar to those appear in [109, (47) and (51)].

1 2 3
Proof. Let = |2 6 6|,v=1(1,2,3), A=(1,2,3) and S = 3. We have
3 6 9

Fi(z)=-- = Fy(z) = H(1,2,4) 2" [(4,8,13),
Fo(z) == Fiy(e) = H2,4,7) 22" H(5,10,16),
Fu(e) == Fu(x) = H(2,6,10) %% [(5,12,19)
and
Fao(2) = Fog(wr) = H(3,6,10) =775 H(6,12,19).
The rest follows from the binary tree in Figure 7.5. O]

It looks like one cannot deduce a span one linked partition ideal .# ((II, £), S) from
Theorem 7.4.4. This is because by (7.4.24), we need S = 3. But in the diagonal matrix
# (x), there is a term 22¢”, which induces a partition of size 7 that has two parts. This
means that one of the parts is larger than 3. However, for a span one linked partition
ideal, we require that all parts in partitions among Il must not exceed S.

On the other hand, we will show in the next corollary that Theorem 7.4.4 still

corresponds to a partition set.

192



(61T ‘9)H

(9T ‘0T ‘9)H

N

(ot‘o1‘v)H (e1'8'V)H

(61‘2T1‘9)H  (91°0T‘9)H

Ny

(9r‘otw)H  (e1'8V)H

N A

(s1‘s‘e)H

N

(e1‘8‘e)H

TP

(eT'8V)H

#‘c'1H

(61‘2T1‘9)H  (91°0T‘S9)H

Ny

(ot‘o1‘P)H  (€1‘8P)H

Ny

(61‘cT1‘9)H  (91°0T‘9)H (61°21‘69)H (e1'8°€)H

N N

(ot‘o1‘w)H (e1'8'v)H (61°C1'9)H (€1‘9‘€)H

END N

(61‘21‘9)H  (9T°0T‘9)H

N A

(ot‘ot‘#)H  (e1°8‘V)H

N

(Lz21)H

Ny

(61‘c1‘9)H (e1'8‘¢)H (61‘21‘9)H (9T‘01‘9)H (€1‘8‘€)H (ot‘9‘e)H
PN A N A / e
(6121‘9)H (e1'9‘€)H (9101 ‘D) H (ot‘9‘e)H
o1 mW/ \ 7 \—\
(ot‘9‘e)H (9t‘01‘9)H  (OT‘% ‘@) H
< N4
\\ (L7‘e)H
\.\ (L9 1H
(Pg ¥ L) 10§ 0013 Areurq oy, *g*L 9In31g
6 9 ¢
e=g0PpPuwe (e =VI(TT =9 9 ¢|="m2 1 [r0Y
¢ ¢ 1

193



Corollary 7.4.5. Let 11 = {my, ma, ..., a3} be a set of integer partitions where

m =9 7T2:2 7T3:1 7T4:2+].
7T5:1+1 7T6:2+1+1

7T7:3 7T8:3+2 7T9:2+2 7T10:3+2+2
7T11:3+1 7T12:2—|—2—|—2 7T13:3—|—1—|—1

7T14:4+3 7T15:3—|—3 7T16:3+3+3 7T17:3+3+2

Mg =4+2+2 meg=3+2+2 Ty =3+3+24+2 m1=34+2+2+4+2
_7T22:4+3+3 7T23:3+3+3+2 ]

Let L : 11 — P(II) where P(II) is the power set of II be defined by

{my, 7o, ..., ma3} for1<i<6,
Limi) = {m1, ma, 7, T8, Mo, 10, T14, T15, T16, T17, T22}  for 7 <1i < 13,
) =
{7'('1,7T2,7T7,7T8,7T14,7T15,7Tl6,71'22} fO’/’ 14 S 7 S 217
{71, m7, T14, 15, T2} for 22 <i < 23.

Let
Cx: o= M= = = A>T =T — -

be a chain such that for alli > 0, \; € Il and \iy1 € L(N;). Let ®y be an integer partition
induced from Cy defined as in (6.1.3) with S = 3:

Oy =X @ ¢° (M) ¢°(\2) & - & 6" (Ax) ® 0" (@) @ () @ -
Let .7 be the set of such partitions ®y. Then,

2 9n2 .
n71+3n§+ % +2n1n2+6nanz+3nzni+ 5t —ng— "2 1 tH2ne+3ng

gt = % q

(7.4.25)
vEY ni,n2,n3>0 (q; Q)n1 (q2; q2)n2 (qg; q3)n3

Proof. First, it is easy to see that given a chain C,, the induced @, is indeed an integer
partition. Now we claim that for any two chains C, and C,, we have ®, = ®,, if and only
if C, = C,. Notice that the “if” part is trivial.

We show the “only if” part by contradiction. Namely, we assume that there are two

194



chains C,, # C, such that ®, = ®,. Let ¢ be the index such that p, # v, and p; = v; for
0 <i < {—1. If neither p, nor v, contains a part of size 4, then the parts in ®, of size
up to 3(¢+ 1) are given by @‘_¢* (;) and similarly the parts in @, of size up to 3(£+ 1)
are given by @ ¢*(v;). Since &, = &, and y; = v; for 0 < i < £ — 1 as assumed, it
follows that ¢*(u,) = ¢3* (1) so that p, = v,. This contradicts the assumption that
te # vp. If 4 is a part in one of pu, and vy, then without loss of generality, we assume
that 4 is a part in . Then pu, € {m4, s, T22}. Apparently, if 4 is also a part in v,, we
must have v, = u,, which violates the assumption. Now let us assume that 4 is not a
part in v,. Since ®,, = ®,, we know that 1 must be a part in v,;; otherwise, ®, contains
no parts of size 3¢ + 4. Thus, vy, € {73, Ty, 75, 76, T11, T13}. Since vpyq € L(1y), we find
that vy € {my, ma, 3, T4, 75, M6 } and also the parts in @, of size up to 3(¢ + 1) are given
by (DZ5¢% (%)) ® ¢* (). On the other hand, since py € {14, T1g, T2}, the parts in @,
of size up to 3(£ + 1) are ®i-3¢* (1;) plus one of ¢*(3), ¢*(2 + 2) or ¢*(3 + 3) none of
which could be ¢*(1y). This implies that ®, # @, which leads to a contradiction.
Once we have shown that the induced partitions ®, are pairwise distinct, the rest
is a simple application of the framework developed in this paper by first constructing
the associated directed graph as in Section 7.2.3. We leave this as an exercise to the

interested reader. O

7.5 Open Problems

Our main concern is about the Factorization Property. Recall that % is a (0,1)-
matrix such that all entries in the first row and column are 1, and 7 is a diagonal matrix
such that all (diagonal) entries are monic monomials in z and ¢ with #7; = 1. The

Factorization Property says that

Fs(z) = ?/.”//.Eg(xqs), (7.5.1)

where S is a positive integer and

Fy(x) H(B,)
2l H
Eg(x): F< ) = (.é2> )
Fie(x) H(By)
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in which H(

=

)= H(p,...,Br) is of the form

R R R
qu:1 ar,rnr(nr_l)/2q21§i<j§R Qi jNiTj qzrzl ’BTnTer:1 rTr

ni,...,mp>0 (qu ) qu)nl T (qAR; qAR)nR

Probably we also require the Additional Conditions: for all 1 < s < R:
(i). 7S € ASZ;

(ii). forall 1 <r <R, o, € A/Z.

Problem 7.5.1. For given % and 7, is it possible to determine if there exist Fg(x) and
S such that (7.5.1) is true?

We have another problem from a different direction.

Problem 7.5.2. Are there any criteria of Fg(x) that we are always able to find %, ¥
and S such that (7.5.1) is true?

The last problem is probably simpler.

Problem 7.5.3. Can we construct a family of %, 7, Fg(x) and S such that (7.5.1)
holds?

If we are able to find such construction, then we may derive a family of span one
linked partition ideals (or at least a family of modified directed graphs) with nice analytic

generation functions.
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Chapter 8
Span One Linked Partition ldeals:
GleiBberg’s Identity

This chapter comes from

e S. Chern, On a Rogers—Ramanujan type identity of Gleifiberg, preprint. (Ref. [63])

In the previous two chapters, a general theory on span one linked partition ideals is
introduced. Now it is time to return to where the race starts. That is, we will truely
prove a Rogers—Ramanujan type identity, instead of just some Andrews—Gordon type

generating function identities.

8.1 Main Result

Recall that in 1926, Schur [160] proved the following Rogers—Ramanujan type identity.

Theorem 8.1.1 (Schur). Let A(n) denote the number of partitions of n into distinct
parts congruent to =1 modulo 3.
Let C(n) denote the number of partitions of n such that the difference between two
consecutive parts is at least 3 and greater than 3 if the smaller part is a multiple of 3.
Then,
A(n) = C(n). (8.1.1)

Two years later, in 1928, GleiBberg [84] further provided an extension of Schur’s
identity.

Theorem 8.1.2 (Gleiberg). Let m and r be positive integers with r < m/2. Let A, ,(n)

denote the number of partitions of n into distinct parts congruent to ££r modulo m, and

let A, »(k,n) denote the number of partitions of n counted by A, ,(n) with k parts.
Let C,,,(n) denote the number of partitions of n into parts congruent to 0 or +r

modulo m such that the difference between two consecutive parts is at least m and greater
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than m if the smaller part is a multiple of m. Further , let C,, . (k,n) denote the number
of partitions of n counted by C,,,(n) such that the number of parts plus the number of
multiples of m among the parts equals k.
Then,
Apr(k,n) = Chr(k,n). (8.1.2)

The object of this chapter is to not only reprove Gleilberg’s identity but also show

the following analog.

Theorem 8.1.3. Let m be a positive even integer and let r be a positive integer with
r<m/2.

Let By, ,(n) denote the number of partitions of n into parts congruent to +r modulo
m appearing exactly once and parts congruent to % or 0 modulo m appearing exactly
twice such that the difference between two consecutive parts that are distinct is at least
m if the smaller part is congruent to £r modulo m, at least 5 + r if the smaller part
is congruent to 3 modulo m, and at least m — r if the smaller part is congruent to 0
modulo m, and let By, ,.(k,n) denote the number of partitions of n counted by By, .(n)
with k parts.

Then,

Apr(k,n) = By (kyn). (8.1.3)

Remark. For partitions counted by B,,,, we allow those like (r), (m —r), (%,%) or
(m, m). But partitions (r,r) and (m —r,m —r) are not allowed since r and m — r appear

twice. Partitions (%), (m) and (%, m) are not allowed since % and m do not appear

exactly twice, and in the last case the difference conditions are also not satisfied.

Examples. (i). Let m =4 and r = 1. Partitions of 16 counted by A,;(16) are 15+ 1,
1343, 1145, 9+ 7 and 7+ 5+ 3 + 1. Partitions of 16 counted by B,;(16) are
15+1,13+3,11+5, 8+ 8 and 6 + 6+ 2+ 2. Hence, A41(2,16) = B41(2,16) = 4,
Ay1(4,16) = By1(4,16) = 1 and Ayq(k, 16) = By1(k,16) = 0 otherwise.

(ii). Let m = 6 and r = 2. Partitions of 22 counted by Ag2(22) are 22, 20 + 2, 14 + 8,
16 +4 4 2 and 10 + 8 4 4. Partitions of 22 counted by Bg2(22) are 22, 20 + 2, 14 4 8,
16+3+3 and 10+6+6. Hence, Aga(1,22) = By(1,22) = 1, Aga(2,22) = Bga(2,22) = 2,
Ap2(3,22) = Bg2(3,22) = 2 and Aga(k,22) = Bga(k,22) = 0 otherwise.

199



8.2 In the Setting of Span One Linked Partition Ideals

Let %,,(n) denote the set of partitions counted by B,,, ,(n) and let %, , = Uy>0%Bm.r(n).

We will interpret 4,,, in terms of span one linked partition ideals.

Claim 8.2.1. %,,, is a span one linked partition ideal . ((Ilg, Lp),S) where S = m,

and g ={mp 1,72, T3, T4, TEs} along with the linking sets given as follows.

IIp linking set
T™B1 = 0 {7TB,1,7TB,2,7TB,3,7TB,4,7TB,5}
T2 = (7) {7B.1,TB2, ™R3, TB4, B 5}
B3 — (%, %) {7TB,1>7TB,277TB,377TB,4:7TB,5}
TB4 = (m - 7“) {7TB,1, TB,4, 7TB,5}
TB5 = (m,m) {7TB,1,7TB,4,7TB,5}

Proof. A straightforward verification tells us that any partition in .#((Ilg, Lg),S) is in
By

On the other hand, given a partition A € 4,,,, we decompose it as
Ao ® 0" (M) ® 0" (A2) B - B " (k).

Note that for 0 < k < K, ¢™F()\) is simply the collection of parts in A of size between
mk + 1 and mk 4+ m. First, to ensure the difference conditions, we must have A\, € II for
all k. Now fix some k > 0. If A, = mp 1 = (), then there are no parts in A of size between
mk + 1 and mk + m. Hence, ;41 can be any partition in I1g so that A,y € Lp(7p1).
If \y = 7p2 = (r), then X has one part of size mk + . Now to satisfy the difference
conditions, we have five choices for A\z,; (here we only enumerate parts of size between
m(k+ 1)+ 1 and m(k + 1) + m):

(i). A has no parts of size between m(k + 1) + 1 and m(k + 1) + m and hence Ay =

@ZWB,l;

(ii). A has only one part of size m(k + 1) + r and hence A\y1 = (1) = g 2;
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Hence, A\py1 € Lp(mp2). For other cases, one has similar arguments. Hence, A is in
S ((llg, Lg),S).
Consequently, %,,,, = 7 ((llg, Lp), S). O]

Let €, (n) denote the set of partitions counted by Cy, »(n) and let 6, = Up>0Gm.(n).

Claim 8.2.2. 6, is a span one linked partition ideal Z ((Ilc, Lc), S) where S = m,

and Il = {mc1, mo2, Tos, Toa} along with the linking sets given as follows.

Il linking set
TCc1 = 0 {7TC,177TC,2,7TC,377TC,4}
To2 = (r) {mca, Mo, mos, moat
TC,3 = (m—r) {ﬂ-C,la 7TC,377TC,4}
Toa = (m) {mca}
Proof. The proof is analogous to that of Claim 8.2.1 and is therefore omitted. m

8.3 A Refinement of Lemma 7.4.1

Let us turn to a refinement of Lemma 7.4.1.

As in Lemma 7.4.1, let R be a fixed positive integer. Let the symmetric matrix
a = (a; ;) € Matgxr(N) and the vector A = (A,) € N& be fixed. This time we will fix
J vectors vj = (v;,) € Ngo for j =1,2,...,J. Let 1,29, ...,2; and ¢ be intermediates

such that the following ¢g-multi-summation H(B) = H(f4, ..., Sr) converges.

R R
quzl a’“aT”T(”T_l)/2qzlgi<j§R o jnin; qzrzl Brny

ni,...,ng>0 (qu; qu)nl e (qAR; qAR)nR
R R
X = T g (8.3.1)

Lemma 8.3.1. For 1 <r < R, we have

H(/Bla'-wﬁra--'?ﬁR) :H(ﬁla"'aﬁr_l'Ara--'?BR)
+ 'TFIYLT o 'm’}J,TqBTH(ﬂl + Ar1y - 767“ + . 75R + ar,R)- (832)

Proof. We have (recall that o is symmetric so that o; ; = a;; for 1 <1i,j < R)

HpBi,....Bry---sBr) — H(B1y. -, Br + Ary .., BR)
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_ Z qu aiyini(nz‘*l)/2q2i<]’ aivjninjqzi 61”1(1 _ qn'rAr)
noinzo (@@ )0y (@ g )n, - (@45 ¢4 g

% .%1221 RETIL .%;l YJ,im

Z qzi ai,mi(m—l)ﬂqziq Qi j MM qzi Bin;
o (@M M)y (@ g n e (AR AR ) g

nyp>1

% xlzl RESIL IJZ’ V7,8

— 'I'Yl,r . x’YJ,rqﬁ,,«
1 J mw%ﬁo (@0 )ny - (@503 ), - (GA7; AR,

% xlzjl QAN [E;Z V7,8

qu Qi (ni—l)/Qquq Qg TN qzi(ﬂﬁ-ar,i)m

_ ZEYLT Cen :L‘}J’TC]/BTH(Bl + Qpr1, ... 757‘ + Ay 7BR + ar,R)-

The desired identity therefore follows. n

Like Figure 7.2, the recurrence relation (8.3.2) can be illustrated by a binary tree

shown in Figure 8.1.
Figure 8.1. Node H(f1,...,0r,...,Pr) and its children (refined)

H(B1y--Bry -, BR)

/]/ \Z\’]Y:‘ e x}J’Tq/BT

H(ﬁl?"';ﬁ?"—’—ATa"';ﬁR) H(/Bl+aT,1a"'75T+aT,T7°"a6R+aT,R)

8.4 Generating Functions

8.4.1 Partition Set %, .

Let B(x) denote the bivariate generating function

B(z):= > g# N g = SN B (k,n)atq". (8.4.1)

AE%T)’L,’I‘ n>0 k:ZO

Further, for i = 1,2,...,5, we write B;(z) := 3 2*M ¢ where the sum runs through all

partitions A € %4,,, whose m-tail is mp ;. Noting that mp; itself is also such a partition,
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hence for each 7, we are able to write
Bz(x) = xﬁ(ﬂ-B,l)q‘ﬂBﬂ‘E*(x)

for some F(z) € Z[[q]][[z]] such that F}(0) = 1. Therefore,

By () 1 Fy(x)
B, () zq" F ()
Bs(z) | = r2qm Fi(z) |- (8.4.2)
By(z) xq™ Fi(x)
Bs () w2 |\ Fi(x)

Further, since Z%,,, is a span one linked partition ideal as claimed in Claim 8.2.1, we

have
By (z) 1 11111\ (Bi(zq™
By () xq" 11111 Ba(zq™)
Bs(x) | = g™ 1111 1|.]|Bs(zg™)|. (84.3)
By(z) xq™ " 10011 By(zq™)
Bs(x) r2g*m 100 11 Bs(xq™)

Substituting (8.4.2) into (8.4.3), replacing « by z¢~™ and putting Fj(z) = F(zq™™)

for each i, we have a matrix equation as follows.

Fi(x) 11111 1 Fi(xq™)
Fy(x) 11111 xq" Fy(xq™)
Fiz)[=f1 1111 g™ Fy(zq™) |. (8.4.4)
Fy(z) 10011 xq™ " Fy(xq™)
F5(z) 10011 r2g*m F5(zq™)
Further, we have F;(0) = F(0) = 1 for all i.
Theorem 8.4.1. We have
Fi(z) = Fy(x) = F3(x)
Z xn1+n2+2n3
it o0 (@ ) (@5 ) (47
% q%nl(n1—1)+%nz(nz—1)+mn3(ng—1)+mn1n2+mn2n3+mn3n1+rn1+(m—r)n2+mn3 (845)
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and
F4($) = F5(.’13)

- ¥

om0 (@750 )y (@5 0™ )y (075 4™ g

e +2n3

% q%nl(n1—1)—1—%712(ng—1)+mn3(n3—1)+mn1n2+mn2n3+mn3n1+(m+r)n1+(m—r)n2+2mn3' (846)
Proof. We know from Proposition 7.3.1 that it suffices to verify that these triple sum-
mations satisfy (8.4.4) since the right-hand sides of (8.4.5) and (8.4.6) decay to 1 as x

decays to 0.
m m m

We choose a=|m m m [,y =(1,1,2) and A = (m,m,m) in (8.3.1). We also

m m 2m
write ;1 = z. Then

H(r,m —r,m)

- ¥

rnramas0 (@™ @™ )ny (@750 )ny (@75 4™ )y

™M +no+2n3

m

X q? ni (n1—1)+%ng(n2—1)+mn3(ng—1)+mn1n2+mn2n3+mn3n1+rn1+(m—7‘)n2+mn3

and

H(m+r,m—r,2m)

Z xn1+n2+2n3
B n1,n2,n3>0 (qm7 qm)nl (qm7 qm)nz (qm7 qm)n3

m

Uk ni (n1—1)+%n2(n2—1)+mn3(n3—1)+mn1n2+mn2n3+mn3n1+(m+r)n1+(m—r)n2+2mn3.
Further, taking  — 2¢™ in the above two summations respectively gives H(m + r,2m —
r,3m) and H(2m + r,2m — r,4m).

Now it suffices to show that

H(r,m —r,m) 11111 1 H(m+r,2m —r,3m)

H(r,m —r,m) 11111 xq" H(m+r,2m —r,3m)

H(r,m —r,m) =1 111 1]. 2gm H(m+r,2m —r,3m)

H(m+r,m—r,2m) 10011 g™ " H(2m +r,2m —r,4m)

H(m+r,m—r,2m) 10011 z2¢*m H2m +r,2m —r,4m)
(8.4.7)
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But this can be illustrated by the binary tree displayed in Figure 8.2. [
Finally, B(x) can be represented as follows.

Theorem 8.4.2. We have

Blx)= >

ni,n2,n3>0 (qm qm)nl (qm qm)nz (qm qm)

pritne +2n3

m

% q2n1(n1 1)+mn2(n2 1)+mng(nz—1)+mnina+mnang+mnsni+rni+(m— r)n2+mn3 (848)

Proof. We have

= Ff(x) + aq F (x) + 2°¢" F5 (z) + 2¢" " Ff (z) + 2°¢*" F} (2)
= Fi(zq™) + 2q" Fo(2q™) + *q" F3(xq™) + 2¢™ " Fy(zq™) + 2°¢*" F5(xq™).

It follows from (8.4.4) that the right-hand side is Fj(x). Therefore, B(z) = Fi(x) and
the theorem follows from (8.4.5). O

Figure 8.2. The binary tree for (8.4.7)

H(r,m—r,m)

/

2 q"
H(r,m—r2m) H(m+r,2m —r,3m)
Hm+r,m—r,2m) H(m+r,2m—r,3m)

N

Hm+r,m —r,3m) H@2m+r2m —r,4m)

» N

H(m+r2m—r,3m) H2m+r,2m—r,4m)
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8.4.2 Partition Set 4, ,

Let C(z,y) denote the trivariate generating function

C(x,y) = Z xﬁ(A)yﬁm(A)q|)\|, (849)
AECm,r

where £,,(\) counts the number of parts in A that is a multiple of m. Note that the
definition of C,, (k,n) indicates that

Clz,z) =YY Cpn.(k, n)zFq". (8.4.10)

n>0 k>0

For i = 1,2,3,4, we write C;(z) = Ci(z,y) := 3 2! MVy»NgAl where the sum runs
through all partitions A € €, , whose m-tail is m¢ ;. Similarly, for each i, we are able to

write
Ci(x) = xﬁ(ﬂc,i)yﬁm(ﬂc,i)q\ﬂc,i\G;ﬁ (2)

for some G} (z) € Z[[q]][[z, y]] such that G}(0) = 1. Therefore,

Ci(x) 1 Gi(z)
Clo| _| o Gi() (8.4.11)
Cs(x) zq" " G3()
Ca() zyq" ) \Gi(z)

Also, if we write G;(z) = GF(xq™™) for each i, then Claim 8.2.2 yields the following

matrix equation.

G1(x) 1111 1 G1(zq™)

Go(x) _r 1t xq" Go(zq™) (8.4.12)
Gs(x) 1011 xq™ " | Gs(zg™) o
Gy(x) 100 0 zyq™ ) \Galzq™)

Again, we have that for all i, G;(z) decays to 1 as x decays to 0.

Theorem 8.4.3. We have

G1 (I) = Gg(x)

- ¥

im0 (@750 )0y (@5 4™ )0y (@5 4™ g

xr™ +nz+n3 yns
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m

_ m _ _ _
% q2n1(n1 1)+2n2(n2 1)+mnz(nz—1)+mnina+mnanz+mnsni+rni+(m r)n2+mn3’ (8413)

Gg(.CC)

B m,n;@ (@5 ™) (@ @™o (@75 4™V

m

x ¢ n1(n1—1)+%na(na—1)+mn3(n3—1)+mnina+mnanz+mnzni+(m+r)ni+(m—r)ng+mn3 (8 4 14)

1 +na2+ns yns

and
G4(l’)
Z $n1+n2+n3yn3
B ni,n2,n3>0 (qm’ qm)nl (qm, qm)nQ (qm, qm)ng
% q%ru(n1—1)+%n2(nz—l)+mn3(n3—1)+mn1n2+mn2n3+mn3n1+(m+r)n1+(2m—r)n2+2mn3‘ (8415)
m m m
Proof. We choosea=|m m m |,v1=(1,1,1), 72 =(0,0,1) and A = (m,m,m)
m m 2m

in (8.3.1). We also write 1 = x and xs = y. To prove the desired result, it suffices to
show that

H(r,m —r,m) 1111 1 H(m+r,2m —r,2m)
H(r,m —r,m) 1111 zq" H(m+r,2m — r,2m)
H(m+r,m—r,m) 1t 011 xgm" | H@m + 7, 2m —r,2m)
H(m+r,2m —r,2m) 1000 xyq™ H(2m+r,3m —r,3m)
(8.4.16)
Finally, these identities can be verified with the help of the binary tree displayed in
Figure 8.3. [

Analogously, it can be seen that C(z,y) = G1(z). Hence, the following result holds.

Theorem 8.4.4. We have

C(z,y)
B nm;ﬁo (@™ @) (@75 TV a (@75 ™)

m

X ¢ n1(n1—1)+Fn2(ne—1)+mnz(n3—1)+mninz+mnang+mngni +rn1+(m—r)ne+mns (8 4 17)

i +na2+n3 yn3
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Figure 8.3. The binary tree for (8.4.16)

H(r,m —r,m)

A

Hm+r,m —r,m) Hm+r2m—r,2m)

2

Hm+r2m—r,m) HQ2m+r2m—r,2m)

8.5 Proof of Theorems 8.1.2 and 8.1.3

Let <7, , denote the set of partitions into distinct parts congruent to +r modulo m.
We have

A(z) = Z TNl = Z Z Amjr(k:,n)xkq" =(—2q", —2q"7";¢")o- (8.5.1)

)\edm,r nzo k‘ZO

Theorem 8.5.1. We have

(—zq", —2¢™ " ¢™) oo

S X @ @

m

N n1(n1—1)+Fn2(n2—1)+mns(n3—1)+mnina+mnang+mngni+rni+(m—r)na+mng (8 5 2)

pral +n2+2n3

Proof. We know from (8.4.4) that
Fi(x) = (1 +zq" + a:zqm) Fi(xzq™) + (:Eqm_r + :Equm) Fy(xzq™) (8.5.3)
and
Fy(z) = Fi(xq™) + (wqm_r + x2q2m) Fy(zq™). (8.5.4)
It turns out by subtracting (8.5.4) from (8.5.3) that

Fy(x) = Fi(x) — (a:qT + x2qm)F1(xqm). (8.5.5)
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Substituting (8.5.5) into (8.5.3) yields a recurrence relation satisfied by Fi(x).

Fy(z) = (14 2¢" +2%¢"™ + 2¢™ " + 2°¢*" ) Fy(vq™)
. (xqm_T + x2q2m> (xqm—H" + £E2q3m)F1 (qum) (856)

In the recurrence relation (8.5.6), expanding Fj(z) as a series in z indicates that
Fi(x) is uniquely determined by F;(0). Note also that

[(—qu, —xq""; qm)oo} =1= F(0).

Hence, to show
(—2q", —2¢" "1 ¢ )0 = Fi(2), (8.5.7)
it suffices to show
(—2q", —2¢™ "¢ )0
= (14 2¢" +2%¢" + 2¢™ " + 2% ) (—2q™", —2¢"™ " ")
— (wq™ 7+ 2%¢*™) (wq™ T + 2267 ) (2™ =2 o,

or

(1 + xq’“) (1 + xqm"") (1 - xqm”) (1 - xq2m—’“)
= <1 +xq" + 27¢" + g™ + x2q2m) (1 + xqm”) (1 + a:qu*T)
_ (xqm—r i x2q2m> (xqmﬂ i x2q3m)’

which is valid.
The desired identity then follows from (8.4.5). O

It follows from Theorems 8.4.2; 8.4.4 and 8.5.1 that A(x) = B(x) = C(x, x). Therefore,
we deduce from (8.5.1), (8.4.1) and (8.4.10) that A,,,.(k,n) = B,,,(k,n) = Cy,(k,n)

for any nonnegative integers n and k.

8.6 Endnotes

We are also able to demonstrate identities concerning certain g-multi-summations.

Here we give one example.
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Theorem 8.6.1. We have

and

Qn% +4n§ +4ning—nq ™ +2n9

q
ni,n2>0 <q2? q2)n1 (q47 q4)n2

Z q2n§ +2n§ +4n§ +4n1no+4nong+4ngni —ni+ne fEnl +no+2n3

ni,n2,n3>0 (q47 q4)n1 (q4) q4)n2 (q47 q4)n3

q2n% +4n§ +4nino+ni+4ns T +2n2

2. /2 4. 4
ni,n2>0 (q 14 )n1 (q 1 q )ng
q2n%+2n§+4n§+4n1 na+4ngonz+4nzni+3ni+no+4ns anl +no+2n3

om0 (@ ) ny (€% @*)na (0% ¢4 ) s

Proof. We know from Theorem 8.4.1 with m =4 and r = 1 that

RHS(8.6.1)(x) 11111 1 RHS(8.6.1)(xq")
HS(8.6.1)(z) 11111 xq RHS(8.6.1)(zq*)
RHS8.6.1)(z) [ =1 1 1 1 1 22q! RHS(8.6.1)(zq?) | -
HS(8.6.2)(z) 10011 o RHS(8.6.2)(zq?)
RHS(8.6.2)(x) 10011 2¢® RHS(8.6.2)(xq")
(8.6.3)
Further, LHS(8.6.1)(0) = RHS(8.6.1)(0) = 1 and LHS(8.6.2)(0) = RHS(8.6.2)(0) = 1.
Hence, to show (8.6.1) and (8.6.2), it suffices to prove
LHS(8.6.1)(x) 11111 1 LHS(8.6.1)(xq")
HS(8.6.1)(x) 11111 xq LHS(8.6.1)(xq")
HS(86.1)(x) =1 1 1 1 1 2?qt LHS(8.6.1)(xq")
LHS(8.6.2)(x) 10011 ¢ LHS(8.6.2)(xzq")
LHS(8.6.2)(z) 10011 2?¢®) \LHS(8.6.2)(zq¢*)
(8.6.4)

(8.6.1)

(8.6.2)

4 4
Let us choose a = (4 ), 1 =(1,2) and A = (2,4), and write ; = z in (8.3.1).

8
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Then (8.6.4) is equivalent to

H(1,4) 1
H(1,4) 1
H(1,4)| = |1
H(3,8) 1
H(3,8) 1

O O ==

S O ===
—_ = = =

—_ = e
8
)
L)

(8.6.5)

Finally, this matrix equation could be verified by the binary tree displayed in Figure

8.4.

]

In light of Theorem 8.5.1 with m = 4 and r = 1, we have the following corollary.

Corollary 8.6.2. We have

(—2¢;¢%) o0 =

>

q2n%+4n§ +4ning—n1 Pl +2n2

n1,n2>0 (q27 q2>n1 (q47 q4)n2

q2n%+2n% +4n§ +4nino+4nons+4nsng —ni+ne M +no+2n3

10 (q% M) ny (€% @*)na (0% ¢* ) s

8.7 References

[63] S. Chern, On a Rogers-Ramanujan type identity of Gleiberg, preprint.

Figure 8.4. The binary tree for (8.6.5)

H(1,4)
1/ \x2q4
H(1,8) H(5,12)
VRN
H(3,8) H(5,12)
1/ \m2q8
H(3,12) H(7,16)

VAN

H(5,12) H(7,16)

211

(8.6.6)



[84] W. Gleiiberg, Uber einen Satz von Herrn I. Schur, Math. Z. 28 (1928), no. 1,
372-382.

[160] I. J. Schur, Zur additiven Zahlentheorie, S.-B. Preuss. Akad. Wiss. Phys.-Math.
KI. (1926), 488-495.

212



Chapter 9
Rogers—Ramanujan Type ldentities:

An Analytic Perspective

This chapter comes from

¢ C. Wang and S. Chern, Some basic hypergeometric transformations and Rogers—Ramanujan type
identities, Integral Transforms Spec. Funct. 31 (2020), no. 11, 873-890. (Ref. [169])

9.1 Introduction

In the previous three chapters, we have mentioned identities of Rogers—Ramanujan
type in a combinatorial perspective. Now we will turn our attention to analytic Rogers—
Ramanujan type identities, which are generally of the form that a g-series infinite product
equals a g-summation or ¢g-multi-summation.

Our starting point is the following transformation formula.

Theorem 9.1.1. Let A, be a complex sequence. Then, under suitable convergence

conditions, we have

o a/xy/:z:qm T4q -, a/xyq)nn
mz::() (¢,09/Y; Q)m ( Y ) ' (y/x Q)n A
_ (a2q,2¢; ¢)o i — ag”™) (@, Y Q) (a/T; @) 2m (:c%)mi "

 (ag, 2%, 9)0 2o (1 — a)(q, aq/y; Q)m(azq; q)om \ Y

,0q"™; q)nq" An.

n=0

(9.1.1)

The derivation of this relation in [169] relies on a g-series expansion formula due to
Liu [129, Theorem 9.1]. However, we will present a different proof at this place. Let us
recall [83, (3.4.7)]:

(a,b qa:) (2q/b, aqz®/b%; )
201 4 | =

CLQ/b @ b2 (qu/ba qx2/b27Q)oo
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1

¢( a;c/b,qwx/g)%,—q(gx/b)%,<aq>} —(aq)?,az —aél,x qx).
(az/b)}, —(az/b)}, w(ag)} /b, —w(ag)} /b, xqa} /b, —xqa® /b,ag/b
(9.1.2)

Proof of Theorem 9.1.1. We simply compare the coefficients of Ay for each N > 0 on
both sides. First,

Coefficient of Ay on the LHS
-y (@/z,y/;¢)m <x2‘1>m (q_mﬂma/w,y;q)zvqw
m>N (4,09/Y; Q)m Yy (y/z;q)n
-y (a/2; Qma v (W™ /%5 Q- (Y5 @) <rﬂ2q>qu_mN+(g)
SN (& Dm-n(aq/Yy; Q)m y
_ (a/z:9)an(y:9)n (:v%)N ) (aq”/x,qu/x 2P )
= q \2) o

)Q7
(aq/y; @)n y agNt! Jy ygN 1
N
_ (@/7;9)an(y: )y <x2q> () (ag*™ ™z, 25 9)o

(aq/y; q)n Y (ag®N*1, 22¢; ) oo

- (1= ag®™®™)(ag®™, yq"'; Q)m(aq* /z; q)2m <x2q1 N)
(1 —ag®™)(q,aqgV ™ /y; @)m(azg®N+; q)om y

m>0

(by (9.1.2) with a — a¢* /z, b+ y¢" /z and x — yq")
Also,

Coefficient of Ay on the RHS

(024,24 )oe ~— (1= ag”™)(a,y; O (a/2; @)am (ﬁ)m(qm ag™s g ™
aq, T2q; @)oo s (1 )(q,GQ/y Om(axq; Q)am \ Y T

- )

(020,24 e ~ (1= 0" ) (05 Qman (U Do (0/ 75 @2 (20| N n (3)
" (g, 72¢; @)oo m%( —a)(GQ/y, @)m (awq;q)zm(q;Q)mN( ) !

_ )
- )

y
arq, 1¢; @)oo (@3 @)on (Y3 v (a/7; q)on <x2q>N ()
aq,qu D (a/y;)n(azgi oy \y ) *
x Z — aq®™ ) (ag®™, yq™; @) m(aq®™ /25 q)om <x2q1 N)
(1 = a)(q,ag™"*/y; Q)m(azg®N+L; q)om y

m>0

It is easy to see that the two expressions are the same and therefore the desired result
follows. O]
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9.2 Some g-Transformations and Their Applications

In this section, we apply Theorem 9.1.1 to deduce several new g¢-transformations and
exhibit their applications to identities of Rogers—Ramanujan type.
9.2.1 g-Transformations
9.2.1.1 Transformation |

Taking (a,z,y,q) = (GQ,xQ,y27C]2> and

(_)‘7 _)‘q7 q2)n
(qQa —a, —aq, )\2612; q2)n

A, =

in Theorem 9.1.1, we have

= (a2 /%) m \ P —a, —aq, \*¢*, y* | z*
_ (a*2’¢? 2%¢% q o o~ _(L=a’q"™)(a® g% ) (0® /2% P)om (@Mg?\"
(¢, 2%¢% ¢*) e 2 (1 —a?)(q?, a?q%/y?; @) m(a?22¢%; ) am

—2m 2m 2
q ", q"at, =, =\
X 403 ( o —ag 22 ;q2,q2) .

i (a2/22,12 /2% ¢*)m <x4q2>m5¢4 ( a2 a2 32, 2, — N, — g ., 2)

Combining the above identity with a formula due to Verma and Jain [168, (5.3)]:

-2 2.2
¢ ", a"q", A, —gA —¢, 0/ A q)n(=A)"
4¢3( ;QQ,QQ)J /3 @)u(=)

—a,—qa, ¢*\? (—a, g q)n
we arrive at our first transformation formula after simplification.

Transformation 9.2.1.

i (@®/2% y* /7% ¢*)m ( 4q2>m5¢4 ( g™, P a2y, — N, — )\ P q2)

m=o (€% 62 /y%¢%)m \ v —a, —agq, Nq*, y? /2
_ (@*2%¢%, 7°¢% ¥

(a%¢?, 21¢% ¢®)

001_24m X Do (02 ) (a2 )22 PV [ —22 A\

o3 Sl One s (28 e
=0 (1= a?)(q, g\ O)m(@2@? /925 ¢2)m(@2222; ¢%) o, y
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9.2.1.2 Transformation Il

Taking

in Theorem 9.1.1, we have

= (/e y/rQn (Pq\" (g q" )z y VA=V
mz::o (q,aq/ym ( y ) 5¢4( Jad, —Jag, \yjz )
_ (azq, 2q; ) Z (1 —ag*)(a,y; )m(a/T; q)om (x%z)m

 (aq, 7%¢; ) 2=y (1 — a)(q, aq/y; @)m(axq; q)om \ ¥

m(
X 403 ( a el VA =V ) :
(4

Jag a0
Applying the following identity due to Andrews [13, (4.6)]:
0 if n is odd
q_nva’qna\/x7_\/X 7
103 ( A\ 4,4 = (¢, aq/X; ¢2) /2()\)71/2
Vaq, —/aq, ’ AL if n is even,

(aq, AG; ¢*)nj2
the second transformation formula follows.

Transformation 9.2.2.

5 (a/@,y/T;q)m (fUZCI)mE)@ ( ¢ " a )Ty, VA =V ;q,q)

=0 (@,09/y;:0)m \ ¥y Vaq, —/aq, N\, y/x
 (axq, 2¢; @)oo S M) (4, aq/ Ny 4)m (Y5 @) 2m(a)T; @) am <x4q2k>m 9.22)
" (ag, 7245 9) o 2, 1 —a) @2, qN; *)m(aq/y; @)om(arq; @)am \ Y?

9.2.1.3 Transformation Ill

Taking

(a1/37 al/3e2mi/3ql/3eimi/s. Dn

A” N (Q7 \/57_\/57 \/a_7_\/@;Q)n

in Theorem 9.1.1 gives

i (a)2. 3/ ) <x2q>m6¢5 ¢ gz, y, a3, al/3eRif3 /3 etils v
= (4,00/y; )m \ Y Va, —\/a,\/aq, —/aq,y/x o
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_ (awq, 7¢;9)o 1 —aq ™)@ Y5 @m(a/T; q)om <x"’q>m
(aq, 2°q; @)ooz (1 — a)(q, aq/y; @)m(azq; @)2m

Y
- 1/3 ,1/3,2xi/3 .1/3 4mi/3
g " aq™ a0 e ,alte
X 504 ( 145 Q) .

\/67 _\/a’ \/a_7 _\/a_q

Our third transformation formula comes from the following identity of Andrews [13, (4.7)]:

g aqh, all®, qM/3e2mil3 | /3 ghils
54 14,4 | =
Va, —\/5, Jaq, —/aq

0 if 31 n,

(@3 ¢°)as3(a @)na™?

if 3| n.
(@ O (@ P |

Transformation 9.2.3.

i (a/z,y/%;q)m <x2q>m ; g q"a)z,y, VP, al/3e2mil3 g1 B et/
(gaq/y;m \y ) 5 10, q
m=0 Q7CLQ/ya )m Yy \/aa—\/a,\/a_,—\/a_q,y/x

~ (arq, 745 @)oo o= (1 — ag®™) (@ 4o (: Qs (@) QJom a2\ ™
- (ag,2%;9) i (1= a)(¢% ¢%)m(aq/y; @)sm(azg; q)6m< 3 ) : (9.2.3)

9.2.1.4 Other Known Transformations

One could also apply our approach to deduce a handful of known transformation
formulas. Let us present two instances that were first shown in [128].

We first take (a,x,y,q) = (az,xQ,yQ,QQ) and

A, =
(q27 —aqg, —CLq2, )‘27 qz)n

in Theorem 9.1.1. With the help of an identity due to Verma and Jain [168, (5.4)]:

I

4 (—a, % @)u(L + ag®)

( RN Ve YR 2) ~ (=q,qa/X; @)n(1 +a)(=A)"
4¢3 2 2 -
—aq, —aq J)\

we obtain a transformation formula that is equivalent to [128, (2.1)].

Transformation 9.2.4.

i (a®/2*, 4?2 ¢ )m ( 4q2>m5¢4 ( g™ ¢?ma? /2yt =\, —)\q P q2>
2 ) )

m=0 q a? 2/y Q> Yy —ag, _aq27)‘27y2/x2

_ (@2, %% ¢*)
(a®¢%, 74¢% ¢%) oo
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- )(a aq/)\; Q)m(y2§q2)m<a2/$2;q2)2m —$4q2)\ "
) 1—@)(q,A Dm (a2q2/y2;qz)m(a%zqz;qz)zm( y? ) ' (9.24)

m=0

On the other hand, we take (a,,y,q) = (a3, 23,9, ¢*) and

A - (agq, ag®, aq’; ¢°)n
n (3, a32q3, — a3, a2, — 32312 ),

in Theorem 9.1.1. Then by an identity due to Andrews [13, (4.5)]:

313 q1/3q213 q1/34 )

q"aq"a ,
54 all?q —a?q, aV2q\ 2, —al/2g\/? 4,9

(1 =a)(1 = a2 (q; )n(a"?; ¢"3)(agq)"?
(1 —a?)(1 = ag®)(a; q)n(q"3: ¢*3)n

Y

we obtain a transformation formula that is equivalent to [128, (2.5)]

Transformation 9.2.5.

= (@22 2 ) <x6q3>m

mz_o (3, /y%¢%)m \ ¥°
% obs q ™, *"a? /20, yP, aq, aq?, ag® A
@323, —a 23, a2 —aP 22,y 14

(@2, 2% )
T (aP¢3, 7563 %)

y i (1 —ag®)(a; Om(Y*; @)m(a® /27 ¢ )om (ax(”q“)m' 9.2.5)
=0 (1= a) (@ )m(@®P /93 ) m(a3236% 6% )am \ 2

9.2.2 Rogers—Ramanujan Type ldentities

We are ready to present a number of Rogers—Ramanujan type identities based on

Transformations 9.2.1, 9.2.2 and 9.2.3.

Theorem 9.2.6. We have
2) q832+4t2+83t B (q7, q13, qzo; q20)oo (q9, qll, qzo; q20)Oo (9 ) 6)

25%0 )(q ¢)2s(=Lig%)2s  (4%0Y) (50
( ) s( )s 352 +2t2+4st-+35+2t B 1
s,;zzo( ) ()= Da2s () st (04 6%)oe (9.2.7)
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and

) Z . ;qz) (_1)sq652+4t2+85t _ (q7, q9, q16; q16>oo N (q5, qll, q16; qlﬁ)oo
St a ) (g% 0")s(=15¢%)25(q% ") s (a% "o (a%4")os
(9.2.8)
Proof. We first set © — 0, y — 0o and A = —a'/?¢~"/? in (9.2.1) to obtain
(a1/2q—1/2; q)2sa4s+2tq4s2+2t2+4st
50 (@02)(a% )5 (ag; %) s(—a; )2
1 s 1 2g4m ] m m m
— 5 5 Z ( a q )(a’7Q) (_1)ma97q5m2_37' (929)

(@*¢%¢%)o im0 (1 = @) (@G D

Replacing ¢ by ¢* and taking a = 1 in (9.2.9), we then arrive at (9.2.6) by utilizing the
Jacobi triple product identity

> (-1 f‘j[ PN = ) (1= ). (9.2.10)

n=—0oo

On the other hand, we choose x — 0, y = (ag)"/? and A\ = a/2¢™"/? in (9.2.1). Then

( I/Qq_l/Q,q) ( 1)sa3s+2tq352+2t2+4st

$,t>0 (q y 4 )t(q 1 q )S(_a' Q)zs(GQS q2>s+t

_ 1 < (1 — a2¢*™)(a; @)m g tme
—(a2q2;q2)mn§0 (1—a2)(q;¢)m (=1)"a=q : (9.2.11)

Taking a = ¢ in (9.2.11), we obtain (9.2.7) with the help of (9.2.10). We further replace
q by ¢* and take a = 1 in (9.2.11). Then (9.2.8) follows. O

Remark 9.2.1. It is notable that by taking a = ¢, applying the Jacobi triple product
identity (9.2.10) and replacing ¢* by ¢, one may recover the second Rogers-Ramanujan
identity [83, (2.7.4)]:

> Vi = ! (9.2.12)
S0 Dn (636 ¢°)
Theorem 9.2.7. We have
v L™ ™ (¢%,4", ¢ 0% 92.13)
50 (40:(650)s(4:6%)s(—15.9)s R ’
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252 +t24+2st+45+2¢ 2 18 ,.20. .20
(@*,0°, 047 )

3 (—4:4°)sq _ | 02.14)

20 (¢ 0)e(q; @)2511 (4 0)oo
(—1; q?),(—1)3g3s* 42t _ (@7, % 4" ') oo 0215
S50 (6 D)@ 0)s(056%)s (=15 0)s (61245 q): (45 9)oo
and
és S S
Z (—q¢; q2)5(—1)8q2 2442425t +3s+2t _ (q2, g4, ¢'S; q16)oo (9.2.16)
o (@GOG Dasta (@5 9)s (4590
Proof. In (9.2.2), setting + — 0, y — 0o and A = —a'/2, we have
(—al/Q; q2)sa2s+tq252+t2+25t
50 (@ 0)i(a39)s(ag; ¢%)s(—a' /%5 q)s
1 (1 _— 4m .42 m 9
Z ( aq )(CL, q ) (_1)ma‘)7q10m27m. (9217)

T () = (11— a)(@% P)m

Taking a = 1 and a = ¢* in (9.2.17), respectively, we arrive at (9.2.13) and (9.2.14) with
the help of (9.2.10).
Also, one may take x — 0, y = (aq)"/? and A = —a'/? in (9.2.2). Then

(_al/Q. qz)s(_1>sags+tqgs2+t2+2$t
s%o (: 9)e(a: @)s(ag; ¢*)s(—a'/?; q)s(a2q /2 q),

_ 1 > (1 —aq*™)(a;¢*)m pymg e
 (04; @)se mzzo (1—a)(¢* ¢®)m (=1) q . (9.2.18)

We have (9.2.15) and (9.2.16) by taking a = 1 and a = ¢* respectively in (9.2.18) and
then using (9.2.10). O

Theorem 9.2.8. We have

(q3.q3)s_1q282+t2+2st (q21 q24 q45‘ 45)

5 (@06 9)s(g q)as1 (¢; @)oo
t>0

1+ q

> (9.2.19)

3. .3\ 252+t2+4+25t+65+3t 3 42 45, 45
3 (4% q°)sq _ (670507 ) (9.2.20)

20 (@GOG D)s(q @)2s+2 (% Qoo
52 2 s .
] N Z <q6; q6)s_1q3 +2t“+4st _ ((]33, q39’ q72, q72)oo (9 5 21)
=1 (@%02)i(a% 65 (0% 0%)2s-1 (=T 6% (4% ¢*)o
t>0
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and

(q3; q3)sq§s2+t2+zst+gs+3t _ (q3, q33, q36; q36)oo. (9.2.22>
50 (40:(050) (0 Da2s2(—=° T 9)s (45 @)oo
Proof. In (9.2.3), we first set + — 0 and y — oo to obtain
(a; q3)sa28+tq252+t2+25t
2, @ adde s
L o Ul 04" )& @ P gy B (9.2.23)

T (049w = (- )@ )m

Taking a = 1 and a = ¢? in (9.2.23) respectively and using (9.2.10), we have (9.2.19) and
(9.2.20).
Further, we take # — 0 and y = —(aq)"/? in (9.2.3). Then

R 3 3.2, 42
(a;q5)sa2s+tq25 +t°42st

1

5150 (@ e (q; 9)s(a; q)2s(—a2¢°T 25 q),
1 - (1 B aq6m)(a; qg)m 11, 18m2—_3m
_ —1)mg s mgl8mI =" 9.2.24
(aq; @)oo n;o (1—=a)(@¢*)m (=1)"a="q ’ ( )

Letting a = 1 (with ¢ replaced by ¢?) and a = ¢* in (9.2.24) respectively and using
(9.2.10), we have (9.2.21) and (9.2.22). O

9.3 Generalized Transformations and Their Applications

In this section, we establish several generalized transformations based on Theorem

9.1.1 and some formulas due to Verma and Jain [168]. For convenience, we define

0 if1=0or —1,
Miiz
T1+T2+"'+T’i leZ:l

We also introduce the following compact notation [69]:

{%yi}] . ﬁ (@i, Yis O < ¢ )k

A
[Ua U] i=u (C/Iia C/yz'; Ok \ Ty
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9.3.1 Multiple Rogers—Ramanujan Type ldentities

Before introducing our generalized transformations, we first present some multiple

Rogers-Ramanujan type identities to illustrate their power.

Theorem 9.3.1. Fort > 1, we have

Z Z (=¢*"; q°)s

~ila o) (g a2 (—2Me. o).
4,5>071,r2,...,7¢ >0 (Q7 Q)Z(Q> Q)] (Q7 q )2Mt+z( qrt Q)z
q2i2+j2+2ij+(8i+4j)Mt+2(M12+---+M§71)+9Mt2

X
(0% 6)r (6% G2)ry - (@2 @),
249 2t+11 ,4t+20. ,4t+20
— (q 7q 7q 7q )007 (931)
(4:9)

(- 2M;+1. qz)i

Z Z 4q ;

. A e A 2 . — 2Mi+1. .
i,j>071,7r2,....,7¢ >0 <Q7 Q>z(Q7 Q)j (Q7 q )2Mt+z+1< q e+ 3 Q)z
q2z'2+j2+2z‘j+4i+2j+(8z‘+4j+9)Mt+2(M12+~~-+M3_1+M1+~-+Mt71)+9M2

X

(q2; q2)7’1 (qg; q2)7"2 e <q2; qg)”
2 4t+18 4t+20. 4t+20
_ (q 7q 7q 7q )OO’ (932)

(¢:9)

Y Oy (=" ¢%)i(=1)°

S0 m 0 (@ Q)i(d 0)i (a5 4 ang4i(— a5 q)i(g 212 q) 5
q%i2+j2+2ij+(6i+4j)Mt+2(M12+~~~+M,5271)+7Mt2

X

(@%4*)r (0% 4%)r, - (0% 4%)r,
q2t+9 q4t+l6 . 4t+16)oo

2t+7 : q
(¢:9)

_ (g

(9.3.3)

and

Z Z (-qQMtJrl;qQ)i(—l)i
S0 mre 0 (@ Qi@ 0)5 (65 4P ang,vipa (=@M q)i(gHH2MS2, q)
30245242054 3i42j+(6i+4j+7) Me+2(M7 - MP | +Mi+-+My—1)+7M?

w4

(q2; q2)1”1 (q2; qz)rz o (q2; q2)7“t
2 _4t+14 At+16. 4t+16>oo

_ (5" " g _ (9.3.4)

(¢ @)oo

Proof. Letting x — 0, y — 0o, A = —a'/? and ¢,,dy, ..., c;, d; — 00 in (9.3.14), we have

1/2,2My. 2V o 2i45+Mi+-F+Mp_1+2 M,
(_a/q t’q)ia J 1 t—1T 5Vt

PINEDY

4,j>071,72,...,r¢ >0 (Q; Q)z(Q7 Q)j (aq; q2)2Mt+i(_a1/2q2Mt; Q)z
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q2¢2+j2+2ij+(8i+4j)Mt+2(Mf+---+Mt{1)+9M§

X
(@%a®)r (@%@ - (4% 62,
1 > (1_aq4m)(a7q2)m m (2 m m2—m
e Ao, T 089)
y 4 )00 m=0 ) m

Taking a = 1 and a = ¢* in (9.3.5) respectively and using the Jacobi triple product
identity (9.2.10), we have (9.3.1) and (9.3.2).

On the other hand, we set z — 0, y = (aq)"/?, A = —a'/? and ¢,,ds, ..., c;, dy — 0
in (9.3.14). Then

(—al/2g?Me, q2)i(_1)ia%z’+j+M1+~~+Mt71+th

2 2

om0 (@ Qi@ 0)5(ag; ¢2)an1i(—a' 22 q)i(al2q M2 g)

qgi2+j2+2ij+(6i+4j)Mt+2(M12+-.-+Mt{1)+7Mt2
X

(@% ) (€% 4%)r, - - - (25 ¢%)r,
1 & (1—ag"™)(a;¢%)m

>

T (4g;9)o0 = (1= ) (g% P)m

(_1)ma(%+t)mq2(t+4)m2—m. (936)

Taking a = 1 and a = ¢* in (9.3.6), and then using (9.2.10), one has (9.3.3) and
(9.3.4). O

Theorem 9.3.2. Fort > 1, we have

3. 43

(q yq >2Mt+ifl
1+
JZZ:O Tl,rzgrtzo (¢ 0)i(q; 05 (a5 @)ers+2i-1

(4,71 50005 r¢)#0
q2z‘2+j2+2ij+(12i+6j)Mt+3(M12+--.+M3_1)+21Mt2

- (@ @3)m (@) - (63565,
3t+21 3t+24  6t+45.  6t+45
— (q 7q 7q 7q )OO’ (937)
R

Z Z (@ @) 2nti4i

i,5>071,r9,...,r:>0 (QQ Q)z‘(CI; Q)j(éﬁ Q)GMH—QH-Q
qzi%er+2ij+6i+3j+(12i+6j+21)M,5+3(M12+~-~+Mt{1+M1+--~+Mt_1)+211\4t2

(q33 ) (C]3; qg)rz T (C]?’; qg)n
3 6t+42 6t+45.

6t+45
— (q 7q 7q aq )oo7 (938)

(4 9) oo

X

Sitj+Mit+Me_1+45 M,

D (0% ¢%)ans, vi1a2

. . . 3M;+it1/2.
om0 (@ Qi@ 0)5(¢ Qortyr2i-1 (g3 q)
qu'?+j2+2¢j+(9¢+6j)Mt+3(M12+-~.+M3_1)+%M§

(0% @)r (0% )y - - (0% 6°)r,
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B ((]615-1—337 q6t—|—397 q12t+72; q12t+72)oo 9 3 9
(4% %) (9.3.9)
and
Z Z (qg; q3)2Mt+i
iS00 (@ @)i(@ 0@ Dontr2i02(—*M 2 q);
30245242+ Jit 3j+(9i465+ 32 ) My+3(MP 4+ M2_ + M+ My 1)+ 32 M?
X
(2% @) (%56 )y - (@35 0%,
B (q3, q6t+337 q6t+36; q6t+36)oo (9 3 10)
(6% ¢®)o o

Proof. We set ©+ — 0, y — oo and ¢,dy, ..., ¢, dy — 00 in (9.3.15). Then

2i+j+Mi+-+My_1+7My

Z Z (CL; q3)2Mt+z’a
4,j>0 r1,72,...,7¢ >0 (:9)i(q; Q)j<a3 Q)61 +2i
q2z‘2+j2+2¢j+(12z‘+6j)Mt+3(M12+-~-+Mt{1)4-21Mt2

(@ @) (6% @), - (2% 6%)r,
o) a3 6
_ 1 Z (aag );l(l —aq m) (_1)ma(t+7)mq(%+3t)m2—%m' (9311)
(aq; Q)oo m=0 (q 4 )m(l - (Z)

X

Taking @ = 1 and a = ¢* in (9.3.11), and using (9.2.10), we have (9.3.7) and (9.3.8).
Further, letting 2 — 0, y = (aq)/? and ¢y, dy, ..., ¢, d; — oo in (9.3.15), we have

.3 St i+ M+ + M1+ M,
(a,q )2Mt+ia22+j+ 1+t M1 +5 My

2. 2 (¢;0)i(¢; 0);(a; @Q)ont, 2i(—a/2g3Miti+1/2: ).

4,720 7r1,72,...,r¢ >0
qgz'2+j2+2z'j+(9i+6j)Mt+3(M12+---+Mt{1)+%M§

(@ @)m (@ 63)r - (3 6%)s,
1 K (@3 qg)n(l_aqﬁm) 1411 184-3t)m2—3
= (—=1)matt2)m (8 +8m —5m (9.3.12)
(aq; @)oo mzzo (% ¢%)m(1 — a)

X

Taking a = 1 (with g replaced by ¢?) and a = ¢* in (9.3.12), and using (9.2.10), one has
(9.3.9) and (9.3.10). O
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9.3.2 Generalized g-Transformations
9.3.2.1 Transformation |

We first take

A, = [HZ:/Z} (9,00/ % )eX"g" 0 (ag?) | {ci>di}
i (ag®, ¢; )2k (ag™ ™, ¢; @)n—2x(aq, gA; ¢°)k 1,4 |,

in Theorem 9.1.1. Then

S (m)’” S ("0, )

moo (Gaa/y;a)m \ ¥ ) 15 (/% )n
”Z (q,aq/X; ¢*)p\rq" Y Al?) {ci, di}
i (ag, ,q)2k(aq4k+1,q;q)n_zk(aq,qA;QQ)k Lt .
(axq,xq Q)oo — ag®™)(a, ¥; ) (a/7; @)2m (xz’q>m
(g, 2%¢; @)oo 224 1—@)(q,aq/y, Q) (aTq; @)om \ Y
x Z ", aq™; q)ng"
y ["f (9. 00/X; )N A | {eirdi}
~ (ag®*, ¢; q)ar(ag* 1, q; @) gk(aq aA; ) L1 ],

Interchanging the last two summations on both sides yields

S (0/2.9/7:0)n (”)mf: (q, ag/X; ¢*)s\rgh D)
= (@aq/yi)m \ Y (ag?*, q; q)ax(aq, gX; ¢k
2 i d; ) n “q"al/T, Y q)nq"

NGRS : "
g [ [1,1] 2 aq‘“”%q @)n—2k(Y/T; O

— (axqaxq C] (o) 1 - aq )(a7ya ) ((Z/[L' Q)Zm <q>
(aq, 72¢; @)oo oz (1 —a)(q, aq/y; Q)m(a2q; q)2m

qzn k

Y

" (g, aq/X; @)D ey | {en di} o ™ aq™; q)nq"
5 Z ( / )k’ A}(i q°) Z )

= (g, ¢; @)2k(aq, gA; )i [1,1] = (g 4 g @)oo

It follows that

5~ (0/2.9/2:0)n ( ) Z (4. GQ/ s ?)AFgPF D A,(f”)[ {ci,di} ]
y 2

m=0 (Q7 GQ/yv Q)m k:O 7 q;9q )Zk(aq> q)‘a q2)k [1, t]
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R e Q)2k3 " ( q " agm R gt ¢ q)
(y/z; Q)% aq* 1t yg* /x 7
(08¢, 2¢; @)oo o~ (1= ag™™) (0, Y5 O (a/ %5 ¢)om (ﬁ)m
(aq, 7%q; @)oo 5=0 (1 — a)(q, aq/y; O)m(arq; @)am \ Y

y i (¢, aq/A; ¢ Ne g ED (g™ ag™; q) o A(aq2)[ {ei,di} ]
2

k

P (ag®, q; @)ar(aq, gX; ¢*)x [1,]
—m-+2k m+2k
q ,aq .
X 2¢1 ( a2q4k+1 34, q) .

Applying the ¢-Pfaff-Saalschiitz identity

" ab ) _ M (9.3.13)

362 ( c,abc gt B (c,c/ab;q)n

we have

(b q—m+2k a m+2k/x yq2k 0
3%2 s Yo
q4k+1’ quk/.fE

(2q™ ™2 @) 2k (aq® ™ /Y5 @) -2k
(aq**%; @) m—ok (2™ Y5 @) m—o2
(125 Q)m—on(ag® !y Qo (yg® )2

B (ag™ %5 q) ok (YG?* /5 @) ok

Notice also that the inner summation on the right-hand side equals 0 when m # 2k.

Hence,

e a/af /O (2" (q0q/ X PN ey | e di}
o () & G,

= (4,09/y; O ag?*, ¢; q)ar(agq, ) ) " [1, 4]

@ ama )y @)k (/25 @)mok (08 /y; @)oo (g )"
(y/x; Q)Qk (aq4’“+ U @) m—ok(Y4?* /25 Q)i -2k
_ (a2¢,7¢; ) )(a,aq/k;cf)m(y; Dm0/ Q)am (at“AqQ)m
(aq, 22¢; @)oo 2 1 — a)(q% g @) m(aq/y; Q)am(aTq; @)am \ Y

« Alag?) {ei, di} .
",
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After simplification, we have

3 (a/,y/T;Q)m ( )m (1/2,aq/y; )my™
y

= (¢,09/v;q0)m (aq,y/T;@)m
y Z (1 — ag™)(a,aq/X; k(g™ a/z,y,q7™; @)\ g (Aw2q2>k
= (L—a)(d® q) @)w(zg ™ aq/y, ag™ ™ q)o y?

A(a&){ {ci, di} ]
Col L q2

(a2q, 2q; @)oo aq™™)(a, aq/A; ¢*)m(Y; @)2m(a/T; @) am <x4Aq2>m
(aq, 22¢; @) S0 1 — a) 2,00 ) m(aq/y; Qam(azq; Q)am \ Y2

{ci, di} ] .

% Alad®)
ol

With the aid of [168, (4.3)], we arrive at the first generalized transformation.

Transformation 9.3.3.

e}

alx,y/x; 22g\™ ¢ (c 7‘1)]( ) al @29 rt—i+1
$ st (20)" g GO )
d;

(¢, aq/y;q) )M]- (cjdj)Mi-

m=0 Yy r1,r2...,r¢ >0 j=1 ( ) (a 9

(ag/A; ®) (g™, aq™ )z, y; q)2m, (—A)Mtht
(aq; ¢*)anr, (Ag; @) ar, (y/ x5 q) 201, 0 M

ooy [ g [y A =AM
al/2gt/2r2Me _q1/2 1/2+2Mt,)\q2Mt,yq2Mt/x &

_ (a2q,2¢; )0 Z ")(@, aa/X; ¢ )m (Y @)2m(a/ 3 @) am
(aq,2%q;q (1= a)(*, A¢; ¢*)m(aq/y; Q)2m(a2¢; @) am
(aq?) | fcirdi} Aztg?\"™
o | 1 L < S ) . (9.3.14)

Remark 9.3.1. Transformation (9.3.14) reduces to (9.2.2) when ¢ = 0.

We prove the next two transformation formulas in a similar way to that of (9.3.14);

the details will be omitted.
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9.3.2.2 Transformation Il

Taking

) :[HZ:/?)] (—1)kgBRBE=1/2(g: ¢3) 0" N {ci,d;}
"5 (@)™, ¢ Onosi(d ) 1t |,

in Theorem 9.1.1, and applying [168, (4.5)], we obtain the second generalized transforma-

tion.

Transformation 9.3.4.

ia/w/ffq)(w?q)m 5 (0 0P (0 di ), (i g3y
m=0 q’aq/y’ ) Yy rl,rg...,rtZszl( ) (a 7di )Mj (dej)Mj71

(a7 q )2Mt( ™ oaq™ |/ x,y; q)thq3Mt(Mt+1)

(a;@)err, (y/ 735 q)3n,

g~ m3Me aqm+3Mt/aC ygdMe, a1/3 2M; a1/3627ri/3q2Mt’ a1/3€4ﬂ'i/3q2Mt
X 605 14,9

\f 3Mt \fq:SMt \/—QSMt MQSMt,yq:SMt/x
(azq, T¢; @)oo Z (a;¢*)m (1 = ag®™) (y; O)3m (a/2; ¢)6m <afv6q3>m

(aq, 22q3 @)oo 5= (0% @%)m(1 — a)(aq/y; @)sm(axq; QJom \  y?
X AS;;‘IS)[ {es di} ] . (9.3.15)
[1,1] P

Remark 9.3.2. When t = 0, (9.3.15) reduces to (9.2.3). It is also necessary to point
out that there are two typos in [168, (4.5)]: (aq®; ¢*)am,_, and (ag; q)en,_, should be
(a; q3)2Mp_4 and (a; Q)GM,,_4a respectively.

9.3.2.3 Transformation Il

Taking (a,z,y,q) = (a27x2,y2,q2) and

= (—q,aq/X; @)x(1 + a)Nrg" =D A(0) { {cidi} ]
a2 2k 2

= (@2, % k(g™ 2, 6% ) n-i(—a, \; k(1 + ag?) " [1,]

in Theorem 9.1.1 and applying [168, (4.1)], we obtain the following generalized transfor-
mation that is equivalent to [128, (2.3)].
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Transformation 9.3.5.

i (@®/2%, y* /2% @m (2¢*\™ 3 : (%;Q)’“J(Cﬂ"dﬁq)M'—l (a?g/t)re-int
=0 @ PP P \ VP )5 s (@ d)ilaa/cj aq/diiq)ar, (cidy) Mo
aq/X; @) ar, (@™ 22, 42, 2™ ) g, (— ) MegMe(Me=1)/2
% t
<_G’Q7 Q)QMt(A7Q)Mt( 2/$27q )MtaMt
q72m+2Mt,q2m+2Mta2/x y2 2Mt )\th7 _)\q1+Mt 9 9
X 5¢4 4,4

1+2My

—aq _aq2+2Mt )\2 2+2Mt,q2Mty2/x2
B (a®22¢%, 22¢%; q ~ (1 — ag®™)(a, aq/; Q)m (% ¢*)m (a2 /22, 6%)om
(a%¢?,2%¢%; ¢?) (1 —=a)(g, A Om(a®a?/y?%; ¢*)m(a?226%; 42 )am
ir di —Aztg?\"
« Aoa) | e0 i} < MQ‘J ) . (9.3.16)
[1,¢] y
q

Remark 9.3.3. Transformation (9.3.16) reduces to (9.2.4) when ¢ = 0.
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Asymptotics
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Outline

e Chapter 10 is devoted to a refined Meinardus-type method with its application to

square-root partitions into distinct parts.

o Chapters 11-13 are devoted to asymptotics for coefficients in modular infinite products
that concern either Dedekind eta function or Jacobi theta function with the assistance

of Rademacher’s circle method.

o Chapter 14 is devoted to nonmodular infinite products that arise from a conjecture of
Seo and Yee.
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Chapter 10

The Square-root Partition into Distinct Parts

This chapter comes from

e S. Chern, Note on the square-root partition into distinct parts, Ramanujan J. 54 (2021), no. 2,
449-461. (Ref. [55])

10.1 Introduction

The square-root partition, which is a partition into parts with the order {|v/1], V2],
V3], ..., [VE], ...}, was introduced by Balasubramanian and Luca [33]. For example,
1 has three square-root partitions: [v/1], [v/2], and |v/3]. Let r(n) be the number of

square-root partitions of n. It is not hard to see that r(n) has generating function:

n 1
Zr(n)q = H (1 — gh)2eit

n>0 k>1

In [131], Luca and Ralaivaosaona studied the asymptotic behavior of r(n). They showed

that, as n — oo,
r(n) = (1 + 0(1)) 25/183_1/27T_1/2C(3)7/1871_8/9

3¢(3)1/3 2 2)?
<exp ( S el — A a0 + <’<0>>,

where as usual ((+) is the Riemann zeta function.

In general, if we are given a prescribed ordered set of parts, then apart from partitions
into parts in this set, we are often interested in partitions into distinct parts as well.
In the square-root partition case, we will assume that, for instance, [v/1], [v/2], and
|V/3] are different parts, although they have the same numerical value. Let rp(n) be

the number of square-root partitions of n into distinct parts. One would see that the
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generating function of rp(n) is

2k)2k+1

F(q) := Z rp(n)q" = H(1 + qk)2k+1 _ H (1—¢

n>0 k>1 k>1 (1—gk)et

(10.1.1)

Similar to the asymptotic formula of r(n), we will prove the following result.

Theorem 10.1.1. As n — oo, we have that

rp(n) = (14 o(1)) 277/037 /37~ 1/2¢(3)!/6p 2/

3Y5¢(3)° ¢(2) ¢(2)”
X exp (2n2/3 + W?’ll/s - 72C(3)) . (1012)

We remark that for a general infinite product

1

H _ k\ap’
o1 (1 —gF)»
where ay, as, ... is a “nice” sequence of non-negative integers, Meinardus’ theorem [134]

is a powerful tool to study the asymptotic behavior of its Taylor coefficients. A delicate
presentation of Meinardus’ approach is given in Chapter 6 of George Andrews’ book
The theory of partitions [12]. However, Meinardus’ original theorem requires that the

associated Dirichlet series of the sequence (ag)g>1,

D(s):=>_ %,

k>1
has only one simple pole. But if D(s) has multiple singularities, Meinardus’ approach is
still admissible, provided that we make suitable adjustments. A general result on such
case was given by Granovsky and Stark [88], but the computation of coefficients is not
explicit there. In this chapter, we are going to give a more transparent account of the

generalization of Meinardus’ approach, using rp(n) as a specific example.
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10.2 Outline of the Proof

10.2.1 Cauchy’s Integral Formula

Recall that Cauchy’s integral formula indicates that

1 F(q)
=_— dg.
ro(n) = 5 /|| ir

Making the change of variables ¢ = ¢™” with 7 = x + 2wy, reversing the integral order

and writing f(7) = F(e™"), we obtain
rp(n) = e"$/| f(T)e*™™ dy. (10.2.1)
Y

Note that here ok 2k+1
1 _ — T
(1—e™) (10.2.2)

fr) =11

k>1

(1 _ efk‘r)2k+1 ’

10.2.2 The Saddle Point Method

Let us begin with an estimate of f(7), the proof of which will be given in §§10.3 and
10.4.

Theorem 10.2.1. Let 7 = x + 2mwiy. For 0 <z < 1/2, we have that
(i) For|Arg(r)| < 7/4,

log f(7) = 3<2(3)7_2 + C(22)7——1 - 2103g2 + 0(2'?). (10.2.3)

(ii) For w/4 <|Arg(7)| < 7/2,

F(T)] < fla)e =, (10.2.4)

Now we apply the saddle point method to study the asymptotics of rp(n). To do so,

we need to roughly minimize €™ f(7). In light of (10.2.3), it is enough to minimize

nx -+ ng(g)x2 + C(;)II.
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Taking derivatives, setting to 0 and multiplying both sides by 23, one has

na® — C(22):c —3¢(3) = 0. (10.2.5)

Let X be the unique positive root. Then

3¢(3)
X = (1+o0(1))y] : 10.2.6
(T4 o)1= (10.2.6)
Also, it can be computed that (see §10.5 for a proof):
_ 1 1 C(2) ¢(2? 1 2
X t1=— —___n3— O : 10.2.7
S R TR ETE ) A 027
Recall that
rp(n) = e”X/ (X + 2miy)e™™ dy
lyl<3
Let us split the integral into two pieces.
rp(n) = e~ (/ —i—/ )f(X + 27iy)e*™ ™ dy
|y|SXu/6 X11/6§\y|§%
=T, + . (10.2.8)

For convenience, we shall still write 7 = X + 2miy.

10.2.3 The Main Term

Let us first compute the main term Z;. Note that when |y| < X'/6 it follows from
Part (i) of Theorem 10.2.1 that, as n — oo,

log f(1) = 3C2<3)72 + <(22)7'1 _ 2log2 l(;g2 +O(X'?).

We have the expansions

2 - _ +0(X?) (10.2.9)

and

L +O(X??). (10.2.10)

236



Hence,

3CB) (1 Amiy  127%y?
Xz X3 x4

+2<X_X2_ X4 )*2”2'”?/)

= (1+0(1)) 27 exp (<32€><<?;) - g2()2()> B <3§<(§> i ggz B n)my

9€B3) @), 29
_<2X4 +2X3)47ry).

It follows from (10.2.5) that

s (1ot 2o ( (30 G2) - (0 50

Hence,

_nX 2miny
I, =c¢ /|y<X11/6 f(r)e dy

2X2 * 2X

9C(3) ((2
% /|y|§X11/6 oXp <_ ( 2)((4) * 2(X‘2’>47T2y2) Y-

It follows from (10.2.5) and (10.2.7) that

= (1 + 0(1)) 9-2/3 exp (nX n 3¢(3) C@))

* X? 2X 2X2 2X

exp (nx+32<)<§> 4222()) e (3c(3> L <@ %) +<<2>)

B33, ¢(2) s C(2)?
= (1+0(1)) exp< 5 +W”/ _72C(3))'

Further, making the change of variables u = Ky with

9(3) , ((2)
2X4 - 2X3

K= 2T
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one has

030\, a2
/WXH/G exp (— ( Svr o AT | dy = /|u|<nxn/e e du. (10.2.11)

Note that kK X™/6 > X~1/6 5 o0 as n — oo (so that X — 0). Hence,

/|u<,.;X11/6 e du = (1 + 0(1)) V. (10.2.12)

Moreover,
k= (14 0(1)) 2712373 71¢ (3)M0n 722,

Hence,

T = (14 0(1)) 277/03713n 12 (3)1/6n 2/

313¢(3)1° ¢(2) ¢(2)?
( 5 n?/3 4 231 (3)1/ nl/3 _ 72((3)) .

X exp

10.2.4 The Error Term

The integral Zy contributes the error term. Note that for sufficiently large n, one has
X1/6 < X/21 < 1/2. Now we separate X'/¢ < |y| < 1/2 into two cases.
Case 1: X'/6 <|y| < 1/2 and | Arg(7)| > m/4. Hence, X/27 < |y| < 1/2. We can

see from the proof above that

_i_i

"X f(X) < exp (nX + 323((32) CQ(;))

3Y5¢(3)'° ¢(2)
/3 1/3
<<exp< 5 n +2'31/3C(3)l/3n .

Further, it follows from Part (ii) of Theorem 10.2.1 that
X [ e dy < e f(X)e
o <lyI<3

(22600"
2

< exp

¢(2) 1/3 1+ o(1) 1/3
+ / )1/3” / )

9. 3UC(3)13" T 22.31/3((3
= O(Il).
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Case 2: XM1/6 < |y| < 1/2 and | Arg(7)| < /4. Hence, X'V/¢ < |y| < X/27. It
follows from the expansions (10.2.9) and (10.2.10) that there exist constants ¢, c2 > 0
such that

RrH <X 2o X3

and

R(TH) < X1 — X3,

It follows from Part (i) of Theorem 10.2.1 that there exists a constant ¢ > 0 such that

|f(7)] < exp (3C(3) + ¢(2) c )

2X2 ' 2X  X1/3
Hence,

6nX/ T eQﬂinyd
X1/6<|y|< fr) Y

< exp (nX+3<(3)+C(2) c )

2X2 ' 2X X3
— O(Il),

where we use a similar argument to that in Case 1.

10.2.5 Remark on the Choice X11/6

Let us briefly comment on why do we split the integral at |y| = X'/6 in (10.2.8). Let
us say the integral is split at |y| = X?.

To obtain the truncated Gaussian integral in (10.2.11), one should expand 772
and 771 in (10.2.9) and (10.2.10) to the third term so that the error terms are o(1).
We can compute that the two errors are, respectively, O(y?/X®) = O(X?3%5) and
O(y?/X*) = O(X?*). Hence, one should have 30 — 5 > 0 so that 6 > 5/3.

On the other hand, to ensure that (10.2.12) is true, one should have kX% — oo as
X — 0. This indicates that § —2 < 0 so that 6 < 2.

Hence, we merely need to choose 6 in (5/3,2).

10.3 Part (i) of Theorem 10.2.1

Recall that | Arg(7)| < 7/4.
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10.3.1 Mellin Transform

It follows from (10.2.2) that

log f(1) =Y _(2k + 1)(log(1 — e %7 —log(1 — e””))

k>1
e*k‘fﬂ' 672ka
=Y (2k+1)> — :
k>1 >1 ¢ ¢

Recall that the Mellin transform maps e* to the Gamma function I'(s), that is, for
c>0,
1 c+i0o
et = —/ L(s)t™% ds.

271 Je—ico

Hence,

log f(7) = 2_(2k+1) 2 2( 1 /jm I(s)((ker)™ — (2ktr) ™) ds>

k>1 0>1 277” —100
1 3+ioco L ., 1 9 +1
- 2772 /377;00 T (1 —2 )F(S) (Qz; €S+1) (l; ks ) ds
1 34100
=5 [T = 2IE s+ (265~ D+ () ds. (10.31)

Here we may interchange the integral and summations as I'(s) decays rapidly to 0 as we
integrate up the line 3 + it and the summation over k and ¢ is absolutely convergent for
s on this line.

Let us write
B(s) == (1= 27)T(s)¢(s + 1)(2¢(s — 1) +¢(s)).

10.3.2 Shifting the Path of Integration

Recall that a standard result on the Gamma function asserts that |I'(s)| dies away to
0 exponentially along any fixed vertical line. More precisely, for s = o 4 ¢t with o fixed,

we have that, as [t| — oo,

I0(s)| = exp (( - g + 0(1)> |t|) . (10.3.2)
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On the other hand, |((s)| has at most polynomial growth on fixed vertical lines.!

Note that ®(s) has three poles s = 0, 1, and 2 in the stripe —1/2 < R(s) < 3. If we

integrate 77°®(s) over the rectangle with corners

1 1
3T, 3+l —g+il, —5 i,

the residue theorem tells us that

3+1T —7+1T —*—’LT 3—1T
/ / / + / T °®(s) ds
omi 3+iT — 24T .

1
2

= Ress—o 7 °P(s) + Resse1 7 °P(s) + Resgo 7 °P(s). (10.3.3)

Further, the two integrals
—d4iT 3—iT
/ and
3+iT —ir
die away to 0 as T' — oo, following from the growth rates of I'(s) and ((s) along vertical
lines.

We now bound the integral

1 7l+ioo
—/ T °®(s) ds.

2my J-1 3 —i0o

Recall that | Arg(7)| < m/4. It follows from the relation 7 = x 4 2miy that
17| < V2z.
Hence, along the line s = —% + 1t, we have

|77°] = | exp(—slog 7|
1
= exp (2]T| + tArg(r))

'In fact, if we define p(o) :=inf {m € R: ((c +it) = O([t|™)}, then

0 ifo>1,
wo)=q3(1-0) f0<o<1,
%—0 if o <0.

When o > 1, it is trivial. When o < 0, the result follows from the functional equation of the Riemann
zeta function. When 0 < o < 1, the result can be deduced from the theorem of Phragmén—Lindelof.
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< frzesp (510

It follows from (10.3.2) that

T (s)] < I exp (( -5 o(l)) m>.

Again, the exp(-) factor above decreases to 0 exponentially as |[t| — oco. It follows from

the polynomial growth of the Riemann zeta function that

1 —1+4ico
/ L d(s) ds < .

277'”' f%fioo
It follows from (10.3.1) and (10.3.3) that

log f(7) = Resy—o 7 *®(s) + Rese—y 7 ®(s) 4+ Res,—o 7 °®(s) + O(z/?).  (10.3.4)

10.3.3 Residues

Let us compute the residues of ®(s) at s =0, 1, and 2. Recall that
B(s) = (1= 27)(s)¢(s + 1)(2¢(s — 1) + ¢(s)).
®(s) has simple poles at s = 1 and 2. Hence,

Res,_y 7 °®(s) = 7711 — 27 I(1)¢(2) Res—; ((s)

and

Res,—o 7°®(s) = 277 2(1 — 273)T'(2)¢(3) Res,—a ((s — 1)

X
8

For the pole at s = 0, we know that 1 —27% = (log2)s + O(s*), ['(s) = s~ + O(1), and
((s+1)=s"1+0(1). Hence,

Fa(s) = (14 0)({log2)s + O (s~ +0(D)
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x (s 4+ 0(0) ((26(=1) +¢(0) + O(s)),

so that
Res,—q 7 °®(s) = <2C(—1) - C(O)) log2 = _21(;g2.
It follows from (10.3.4) that
log f(1) = 3<2(3)7'_2 + C(22)7'_1 — 2103gQ + O(z'?).

10.4 Part (ii) of Theorem 10.2.1

Recall that w/4 < | Arg(7)| < /2. We have also assumed that 0 < z < 1/2 and

ly| < 1/2. For convenience, let us put

2k +1 if k is odd,
Q. —
k if k is even.

Note that a; > 1 for all positive k. It follows from (10.2.2) that

(1 _ e—2kr)2k+1

(1 _ e—k7)2k+1

1
==

k>1

Hence,

f T —kx —kT
log |f§x;| = %(gak<log(1 —e ") —log(l—e )))

—klx

= ar )y, ‘ 7 (Cos(27rk£y) — 1)

E>1 e>1

<Y ake”“‘(cos(Qﬂky) — 1)

k>1

<> e ( cos(2mky) — 1)

k>1

e T et
=R _
(1—6—7) 1—e"

e " e’
“l—e] l1—e=
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Next, we observe that

1—e7| = \/1 — 2e~% cos(2my) + e~22. (10.4.1)

Since w/4 < |Arg(7)| < 7/2 and |y| < 1/2, it follows that < |27my| < 7. Hence for
fixed x, the right-hand side of (10.4.1) is minimized when 27y = +x. That is,

1— e > /1 - 2e cos(w) + e2. (10.4.2)
Now we show that when 0 < z < 1/2,
1 —2e " cos(z) +e 2 > 1.21(1 — e )2 (10.4.3)
This is equivalent to
0.21(e™** + 1) — 2.42¢™" + 2¢~" cos(z) < 0. (10.4.4)

It suffices to show that the left-hand side of (10.4.4) is a decreasing function for x €
(0,1/2). Differentiating the left-hand side of (10.4.4), one has

2¢7"(1.21 — v/2sin(x + 7/4)) — 0.42¢ 7"
To show the above function is < 0, it suffices to check
0.21e™" + v/2sin(z + 7/4) > 1.21. (10.4.5)
Noting that e™ > 1 — x, we have
0.21e™® + v2sin(x + 7/4) > 0.21(1 — x) + V2sin(z + 7/4) > 1.21.

The last inequality is true since 0.21(1 —z)++/2sin(x +7/4) is increasing for z € (0,1/2).
It follows from (10.4.2) and (10.4.3) that, when 0 < x < 1/2,

1—e | > 1.1(1 —e™).

It turns out that B
SO 1 e
f(x) 111 —e=

log
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It is not hard to verify that when 0 < 2 < 1/2,

e ” - 1
1l—e* 2x
Hence,
|f(7)l 1
1 < —
©8 f(z) 221"
so that

10.5 Expansion of X!

In this section, we give the expansion of X !. Recall from (10.2.5) that
aX P+ bX?—n=0, (10.5.1)

where

a=3C¢3) and b= C(22)

Let us write
and X !'= a_%,u_l +¢&.

=

I

3
wl=

Then (10.5.1) becomes
a(a_%,u_l + 5)3 + b(a_%u_l + 5)2 — =0,
so that by multiplying by OL%,u2 on both sides, one has
a& - ((1 + a%uﬁ)z + (1 + a%uf) + 1) + b(l + a%/Lf)Q =0. (10.5.2)

Now we may treat £ := &(u) as an implicit function of p defined by (10.5.2). Note that

b ¢(2)

S0 =-3,= 18¢(3)’

The implicit function theorem ensures that we may write {(11) as a power series in 4 in a
neighborhood of © = 0. We compute that
b? ((2)?

€0) = 5557 = 36(3¢(3))5/3"
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Hence,

_ <@ ((2)? )
§u) = TI8C(3) 3633t T O(u’)
so that as n — oo,
xro Lo @ C@P

(3C(3))87 18((3) T 36(3¢(3))73
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Chapter 11
The Method of Rademacher:

Background and Preliminaries

This chapter comes from

e S. Chern, Asymptotics for the Fourier coefficients of eta-quotients, J. Number Theory 199 (2019),
168-191. (Ref. [53])

e S. Chern, S. Chern, Asymptotics for the Taylor coefficients of certain infinite products, to appear
in Ramanujan J. (Ref. [57])

In this series of three chapters, Rademacher’s method on asymptotics will be investi-
gated. We will utilize this method to deduce two general results, one of which concerns
infinite products involving the Dedekind eta function and the other of which concerns

infinite products involving the Jacobi theta function.

11.1 Introduction

It is, more or less, reasonable to say that the prospering circle method was born when
Hardy and Ramanujan decided to study the asymptotics of the partition function p(n).
By focusing on the asymptotics of the generating function 1/(¢q; ¢) near ¢ = 1 inside
the unit disc D C C, Hardy and Ramanujan [96] showed that

1 2my/n
p(n) ~ —=n"te 5 . (11.1.1)

43

A couple of decades later, Rademacher [143] stepped further and proved an exact series

for p(n):

p(n) = 2\/157 ZAk(n)\/E di (712—214 sinh (Z ?) (n - ;4))) : (11.1.2)

k>1
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where

Ag(n) = Z oils(h,k)—2nh/k)
0<h<k
ged(h,k)=1

with s(h, k) being the Dedekind sum defined by

w-z () e

r—|z|—-1/2 ifzgZ,
0 it v € Z.

where

(@) =

Rademacher’s approach is straightforward in essence, however delicate in detail. The
basic idea is merely Cauchy’s integral formula, but we need various techniques including
Ford circles, Farey sequences, modular symmetry and the Dedekind eta-function.

One natural generalization that would come up to one’s mind is the following general

family of holomorphic functions on the open unit disk D:

J
Glg) = g(n)g" =TT (¢™;q™)2%, (11.1.4)
n>0 j=1
where m = (my,...,my) is a sequence of J distinct positive integers and & = (d1,...,dy)

is a sequence of J non-zero integers. For some specific G(q), the interested readers may
refer to the work of Grosswald [89], Iseki [102,103], Hagis Jr. [92-94], O-Y. Chan [46]
and many others. For general G(q) with 3% | §, < 0, the recent work of Sussman [166]
presented a Rademacher-type formula. Sussman’s result can in some sense be treated
as a special case of the work of Bringmann and Ono [44], in which the coefficients of
harmonic Maass forms are studied. On the other hand, Sills [162] provided an automatic
algorithm when Y% 6, = 0. When 3% | 6, = 1, a subclass of such G(q) was studied by
B. Kim [112)].

Another direction that might be of one’s interest is about infinite products under

symmetric congruence conditions:

J
Glq) =Y g(n)g" =TI ("7, ¢ 75 q™)2, (11.1.5)

n>0 J=1
where m = (my,...,my) and r = (ry,...,r;) are two sequences of J positive integers

satisfying 1 < r; < m; for all j = 1,...,J, and & = (d1,...,0;) is a sequence of J
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nonzero integers. Regarding such infinite products, the most famous examples arise from
the Rogers—Ramanujan identities (Rogers [156], Ramanujan [145]). Recall that the first
Rogers—Ramanujan identity states that (cf. Corollary 7.67 in [12])

n2

1 q

(0,050 S0 (GDn

On the left-hand side, we have the generating function for partitions such that each part
is congruent to £1 modulo 5. Let p511(n) be the number of such partitions of n. Its

asymptotic formula was shown by Lehner [118]:

cse(m/5) 5, n
Ps.+1(n) ~ 1o 3ua gAY exp 27“/5 . (11.1.6)

The interested reader may also refer to Niven [136], Livingood [130], Petersson [140, 141],
Subrahmanyasastri [165] and so forth for the asymptotic behaviors of other partition
functions under symmetric congruence conditions. Next, the infinite product (11.1.5) may
also be of number-theoretic interest. One example is the Rogers—Ramanujan continued

fraction. Recall that the Rogers-Ramanujan continued fraction has an infinite product

¢ ¢ _ q,q‘*,qs
+1+1+ q27q3’ '

Let us focus on the infinite product part and write

form
g/

1 +

—

4

w4
> C(n)q =(2 3;615) :
“q )

n>0 )

It is known from Richmond and Szekeres [152] that

21/2 4 3 an 47 n
C(n) ~ =374 C08 (5<n+20))n /* exp 5\/; . (11.1.7)

Hence for sufficiently large n, C'(5n +0,2) > 0 and C(5n + 1, 3,4) < 0. We also remark
that in [152], Richmond and Szekeres indeed studied the asymptotic behavior of the

Taylor coefficients of the general infinite product
m—1

1 (qj; qm)—Cx(j)
=1
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where m is a positive fundamental discriminant, x(j) = (m|j) is the Kronecker symbol and
( is either 1 or —1. Finally, in recent years, there are a number of papers [4,21,99,133,167]
studying vanishing Taylor coefficients of certain infinite products. For instance, Tang
[167] showed that the Taylor coefficients of

2 8. .10 4. 6. .10\2

i ¢ 0% q")so (" ¢% ¢")%

> B(n)g :(—qz,—q3;q5)§o(q2,q8;qm)oo=( 2) :f 2 :
= (¢ 4% a°)%

satisfy B(5n+1) = 0 for all n > 0. At the end of Tang’s paper, he also provided numerical
evidence of the inequalities B(5n +0,2,3) > 0 and B(5n +4) < 0 for sufficiently large n.
Similar numerical evidences are also provided for inequalities of Taylor coefficients of
other infinite products.

The aim of this series is to study the asymptotics for the Taylor coefficients in
the infinite products (11.1.4) and (11.1.5). In this chapter, we will provide necessary

preliminaries.

11.2 Dedekind Eta Function and Jacobi Theta Function

In this section, we introduce the Dedekind eta function and Jacobi theta function.
All results here are standard, which can be found in, for example, [25] or [176].
Let 7 € H and ¢ € C. The Dedekind eta function is defined by

(1) = 4" (4 @)oo (11.2.1)

with ¢ := ¥, Further, the Jacobi theta function reads

I(gir) = 3 erivlsryimin (11.2.2)
I/EZ"F%

Notice that if we put ¢ := >, then the Jacobi triple product identity indicates that

UG 7) = —ig (¢, M, ¢ ). (11.2.3)

The Dedekind eta function and Jacobi theta function are of broad interest due to

a b
their transformation properties. Let v = J € SLy(Z) where we assume that ¢ > 0.
c
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Recall that the Mobius transformation for 7 € H is defined by

at +b
et +d

v(7) =

Further, for the v given above, we write for convenience

1
et +d

X(7) = exp (m <a1-£cd —s(d,c) - i) )

where, again, s(d, c) is the Dedekind sum, then

(1) =

If

n(v(1)) = x(v)(er + d)n(7) (11.2.4)

and
7ric§2
Iy (1); (7)) = X(7)* (e + d)Per=ad(s; 7). (11.2.5)
Further, let o and 8 be integers. The Jacobi theta function also satisfies

s + ar 4 B;7) = (—1) e T’ Te=2miasy (¢ 7). (11.2.6)

11.3 Cauchy’s Integral Formula and Farey Arcs

To study the asymptotics for the Taylor coefficients of a holomorphic function G(q)
inside the unit disk, we turn to the celebrated circle method due to Rademacher [143,144]
whose idea originates from Hardy and Ramanujan [96]. We directly apply Cauchy’s

integral formula to deduce

9

1 }{ G(q)

n)=—
g( ) 271 C:lq|=r anrl

where the contour integral is taken counter-clockwise. Now one puts r = e~ 2™ with
0 = 1/N? where N is a sufficiently large positive integer.

The next task is to study the asymptotics of G(q) when ¢ is close to a rational point
exp(2mih/k) on the unit circle. To do so, we dissect the circle C by Farey arcs. Let h/k
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with ged(h, k) = 1 be a Farey fraction of order N.! If we denote by &, the interval
[~} 1, 0 ] With 8}, and 8}, being the positive distances from h/k to its neighboring
mediants, then R/Z can be covered by intervals Uy, 4 &p,p where 0 < h < k < N and
ged(h, k) = 1. For each ¢ on the circle C, we may find a Farey fraction h/k such that

arg(q) = 2r(h/k + ¢) with ¢ € &, ;. Thus, we have g = ?™(?/k+ie+4) and hence,

g(n) = Z Z e—%,ﬁbh/g G(627ri(h/k:+ig+¢))e—27rin¢€27rng do.
h,k

1<k<N 0<h<k
ged(h,k)=1

Let z = k(o —i¢). Making the change of variables 7 = (h + i2)/k yields

gln) = >3 e [ Gemm)er e gy, (11.3.1)
Enk

1<k<N 0<h<k
ged(h,k)=1

11.4 Choosing a Suitable Matrix in SLy(7Z)

Another task we should finish is to construct a suitable matrix in SLy(Z) so that the
infinite products (11.1.4) and (11.1.5) can be nicely reformulated around the Farey arc
with respect to h/k through the transformation properties of the Dedekind eta function
and Jacobi theta function.

Below we assume that 0 < h < k are integers such that ged(h, k) = 1. Let m be a
positive integer.

Let d = ged(m, k). For convenience, we write m = dm’ and k = dk’. We put h,,(h, k)
an integer such that

mh k

B (h, k)m = -1 (mod m)

Notice that one may always find such an integer since ged(h,k) = 1. Let us put
by = (A (h, k)m'h 4+ 1) /K. Tt is straightforward to verify that the following matrix is in

SLQ(Z)
Tom (R, k) —bpy
Vim.hk) = ( " _m,h) : (11.4.1)

'The Farey sequence of order N is the increasing sequence of irreducible fractions between 0 and 1
0111121323¢4FG5 .1

whose denominator is at most N. For example, {7,5,%,7,3, 5,35 5 10 5 6 7 is the Farey sequence
of order 6.
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Since 7 = (h +i2)/k = (h + iz)/dk’, one may compute

Ym,h ) (MVT)

_ B (B, K) e — by R (b k) B+ iR (hy k)m'z — (B (b, k)m/h + 1)

K -mbiiz — g m/hk' + ik'm/z — m'hk!
B (h, k) 1
TR mik
Thus,
B (h, k) ged(m, k) ged®(m, k) .
= . 11.4.2
Ym,hoky (MT) I + ke ( )
On the other hand, we have
N (m) 1 ged(m, k)z
mr) = A =—
Tom.dk) k- m% —m'h mz

and hence for r < m,

rged(m,k)  rhged(m, k)

’ = ). 11.4.
TT’V(m,h,k)(mT) ik . 7 ( 3)
Further, if we put
rh
Amr(h k) = | ————
08 = | ]|
and h
,
o (hok) = A k) — ————,
Am,?‘( ? ) ’ ( ) ng(m, k)
then,
TTPYEkm,h,k’) (mT) + )\mﬂ"(h7 k)ﬁ}/(mvh’k) (mT)
rged(m, k) B (hy k) ged(m, k), ged?(m, k)
= —" _—1. 1144
-y + A (B, K) ? + A (R k) R ( )

11.5 Some Auxiliary Results

11.5.1 Necessary Bounds

Now we are going to present some useful bounds.

First, it is well known (cf. Chapter 3 in [97]) that for a Farey fraction h/k of order
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N, one has

<O),,00, < (11.5.1)

2kN ~ kN’
Let |€x| be the length of the interval &, . By noticing that (£, = 6}, + 6}, one has

< &kl < kN (11.5.2)
Next, since z = k(o — i¢), it follows that
k
R(z) =ko= N (11.5.3)
This implies that
k
2l = 33 (11.5.4)
Further, one has
1 k
R () > — 11.5.5
z) 2 ( )
since
—2
z ko*+¢?> ~ kN4 +k2N-2 [2N241"1+1 2

where we use the fact £ < N in the last inequality.

11.5.2 Some Partition-theoretic Results

In this section, 7 is a positive integer and ¢ is a nonzero integer. Let ¢ be such that
lg) < 1.
Let p,(n) denote the number of partition n-tuples of n. Then

St = ()

> dy(n (¢:9)%,

n>0

Further, if we write

an easy partition-theoretic argument indicates that |d,(n)| < p,(n) for all n > 0. Also,
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we have d,(0) = p,(0) = 1. In general, if we write

> as(n)g = (q;9)%,

n>0

then
p|5|(n) if 6 < 0,

d|5|(n) if 0 >0,

as(n) =

and hence |as(n)| < ps(n) for all n > 0. Trivially, we also have

‘(q; )% =13 as(n)q”
n>0
<> ppsi(n)q|™.
n>0
Further, for real 0 < x < 1, we have
1
pi(n)z" =
,%:0 (7; 7)o
=exp | — > log(l—z")
E>1

< exp ((1_:1396)2) (11.5.6)

Likewise, let p;(s,t;n) denote the number of 2-colored (say, red and blue) partition
n-tuples of n with s parts in total colored by red and t parts in total colored by blue.
Here we allow 0 as a part. Let ¢ and £ be such that |(] < 1 and [£| < 1. The following

infinite triple summation

ZZZPZ(s,t;n)gS£tqn:< 1 )n

n>0 s>0 t>0 (Q 3 Q>oo

is absolutely convergent. Further, considering another absolutely convergent infinite

triple summation

DD dr(s, tn)CE" = (¢, 6 q)

n>0 s>0 t>0

we have that (—1)"**d;(s,t;n) denotes the number of 2-colored (again, red and blue)

distinct partition (in which 0 is still allowed as a part) n-tuples of n with s parts in
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total colored by red and ¢ parts in total colored by blue. An easy partition-theoretic
argument indicates that |dy(s,t;n)| < py(s,t;n) for all s,t,n > 0. Also, we have
dy(0,0;0) = p;(0,0;0) = 1. In general, if we write

ST as(s tn) el = (¢ € ),

n>0 s>0 t>0

then
(s, t;m)  if 6 <0,
as(s,t;n) = Pl )
T5|(3,t;n) if 6 >0,

and hence |as(s,t;n)| < p?‘ﬂ(s,t; n) for all s,t,n > 0. We also have

(&l

ZZZ@gstngﬁ

n>0s>0t>0

<> v (s, tn)IClLEl gl

n>0 s>0 t>0

Further, for real 0 < «, 8,2 < 1, we have

SN pils, tin)a’fla” =

n>0 s>0t>0 04757$
= exp ( > log(l — ax®) —> log(1 — 6#))
k>0 £>0
B B
<e (1 1_33) +1_6+(1_$)2). (11.5.7)

11.5.3 Evaluating an Integral

The last task in this chapter is to evaluate a useful integral.

Lemma 11.5.1. Leta € Roo, b€ R and c € %ng Let ged(h, k) = 1. Define
I ::/ eToE (£+62) yoo—2ming 2mng do. (11.5.8)
Eh,k

Then, for those positive integers n with n > —b/24, we have

I =

27 24n+b\
a

k ) S (6?; a(24n+b)>+E(I), (11.5.9)
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where | e
27t tes N~¢
|E(I)] <

2mo(n+ ;) 11.5.10
e . 5.
n + —2111 ( )

Proof. We first put w = z/k = p — i¢ and reverse the integral order to obtain

1 g+i9;z,k Ta b
I = 7/ 2me 12k w e2ﬁw(n+24>(/€w)c dw.
211 Qil@%,k

One may separate the integral into three parts
—i0!! +i0), o
I i / B /Q bk N /9 bk zﬂ_em€2ﬂ'w(n+%)(kw>c dw
2mi \Jr Jco—ity,  J—ootit)
=: Jl — JQ + Jg,
where
[':=(—o00— ZGZk) — (0 — ZeZk) — (0 + Ze%k) — (oo + Z‘%Lk)

is a Hankel contour.

To compute the main term .J;, we make the following change of variables t =

wky/(24n + b) /a to obtain

el
P (24” + b) T meem () e g

k a 2wt JT

Note that the new contour I is still a Hankel contour. Recalling the contour integral

representation of I4(z):
1 —s—1,2(t+1) .
I(x) = — /t e2\""1) dt (I is a Hankel contour),
2mi Jr

we conclude

c+1
2r (24n+b\ 2 T
Jp = - < ” ) I . <6k\/a(24n + b)> :

For the error term E([), which comes from J; and J3, we put w = x + i with
—oo <z < pand 0 € {0,,,—0;,} Weknow that

27rw(n+%) 27rx(n+2—b4>,

e =€
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and

Ta Ta us ma

1 _ma_ __x _ . a 2
= e12k? %(w) = e12p? 22462 < e12k2 07 < e 1282 o(2kN)* _ es,

ma
€ 12k2w

—C
C

[(kw)?] = (Jkw| ™) " <

1 1\ °° .
(mem) =) =

where we use the bound 515 < 0| < . Hence for j = 2 and 3, we have

L e xa
|J;| < %/_OO ome s 2 (i) (2N)~¢ dx

a
2 e lp—leT N—¢ b
62wg(n+ﬂ) .

n+ 2—"4
This implies that
2 cr~le5T N—¢
[E(D)] =] = 2+ Js| < || +]J5] < 2mo(n+3y).
n+ 2
24
which gives (11.5.10). 0

11.6 References

[4]

[21]

[25]

[42]

[44]

K. Alladi and B. Gordon, Vanishing coefficients in the expansion of products
of Rogers-Ramanujan type, in Proc. Rademacher Centenary Conf., eds. G. E.
Andrews and D. Bressoud, Contemporary Mathematics, Vol. 166 (American
Mathematical Society, 1994), pp. 129-139.

G. E. Andrews and D. M. Bressoud, Vanishing coefficients in infinite product
expansions, J. Austral. Math. Soc. Ser. A 27 (1979), no. 2, 199-202.

T. M. Apostol, Modular functions and Dirichlet series in number theory, Graduate
Texts in Mathematics, No. 41, Springer-Verlag, New York-Heidelberg, 1976. x+198
pp-.

K. Bringmann, F. G. Garvan, and K. Mahlburg, Partition statistics and quasihar-
monic Maass forms, Int. Math. Res. Not. IMRN (2009), no. 1, Art. ID rnn124,
63-97.

K. Bringmann and K. Ono, Coefficients of harmonic Maass forms, in: Partitions,

q-series, and modular forms, 23-38, Dev. Math., 23, Springer, New York, 2012.

258



[46] O-Y. Chan, Some asymptotics for cranks, Acta Arith. 120 (2005), no. 2, 107-143.

[53] S. Chern, Asymptotics for the Fourier coefficients of eta-quotients, J. Number
Theory 199 (2019), 168-191.

[57] S. Chern, Asymptotics for the Taylor coefficients of certain infinite products, to

appear in Ramanujan J.

[89] E. Grosswald, Some theorems concerning partitions, Trans. Amer. Math. Soc. 89
(1958), 113-128.

[92] P. Hagis Jr., Partitions into odd summands, Amer. J. Math. 85 (1963), 213-222.

[93] P. Hagis Jr., On the partitions of an integer into distinct odd summands, Amer. J.
Math. 87 (1965), 867-873.

[94] P. Hagis Jr., Some theorems concerning partitions into odd summands, Amer. J.
Math. 88 (1966), 664681

[96] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis,
Proc. London Math. Soc. (2) 17 (1918), 75-115.

[97] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers. Fifth
edition, The Clarendon Press, Oxford University Press, New York, 1979. xvi+426

pbp.

[99] M. D. Hirschhorn, Two remarkable g-series expansions, Ramanujan J. 49 (2019),
no. 2, 451-463.

[102] S. Iseki, On some partition functions, J. Math. Soc. Japan 12 (1960), 81-88.

[103] S. Iseki, Partitions in certain arithmetic progressions, Amer. J. Math. 83 (1961),
243-264.

[112] B. Kim, Periodicity of signs of Fourier coefficients of eta-quotients, J. Math. Anal.
Appl. 385 (2012), no. 2, 998-1004.

[118] J. Lehner, A partition function connected with the modulus five, Duke Math. J. 8
(1941), 631-655.

[130] J. Livingood, A partition function with the prime modulus P > 3, Amer. J. Math.
67 (1945), 194-208.

259



[133] J. Mc Laughlin, Further results on vanishing coefficients in infinite product expan-

sions, J. Aust. Math. Soc. 98 (2015), no. 1, 69-77.
[136] I. Niven, On a certain partition function, Amer. J. Math. 62 (1940), 353-364.

[140] H. Petersson, Uber Modulfunktionen und Partitionenprobleme, Abh. Deutsch. Akad.
VViss. Berlin. KI. Math. Phys. Tech. Heft 2. Akademie-Verlag, Berlin, 1954. 59

pbp.

[141] H. Petersson, Uber die arithmetischen Eigenschaften eines Systems multiplikativer
Modulfunktionen von Primzahlstufe, Acta Math. 95 (1956), 57-110.

[143] H. Rademacher, On the partition function p(n), Proc. London Math. Soc. (2) 43
(1937), no. 4, 241-254.

[144] H. Rademacher, On the expansion of the partition function in a series, Ann. of
Math. (2) 44 (1943), 416-422.

[145] S. Ramanujan, Proof of certain identities in combinatory analysis [Proc. Cambridge
Philos. Soc. 19 (1919), 214-216]. Collected papers of Srinivasa Ramanujan,
214-215, AMS Chelsea Publ., Providence, RI, 2000.

[152] B. Richmond and G. Szekeres, The Taylor coefficients of certain infinite products,
Acta Sci. Math. (Szeged) 40 (1978), no. 3-4, 347-369.

[156] L. J. Rogers, Third memoir on the expansion of certain infinite products, Proc.

Lond. Math. Soc. 26 (1894/95), 15-32.

[162] A. V. Sills, Towards an automation of the circle method, in: Gems in experimental
mathematics, 321-338, Contemp. Math., 517, Amer. Math. Soc., Providence, RI,
2010.

[165] V. V. Subrahmanyasastri, Partitions with congruence conditions, J. Indian Math.
Soc. (N.S.) 36 (1972), 177-194.

[166] E. Sussman, Rademacher series for n-quotients, Preprint (2017). Available at
arXiv:1710.03415.

[167] D. Tang, Vanishing coefficients in some g-series expansions, Int. J. Number Theory
15 (2019), no. 4, 763-773.

[176] S. P. Zwegers, Mock theta functions, PhD thesis, Universiteit Utrecht, 2002.

260



Chapter 12

The Method of Rademacher:
Dedekind Eta Products

This chapter comes from

e S. Chern, Asymptotics for the Fourier coefficients of eta-quotients, J. Number Theory 199 (2019),

168-191. (Ref. [53])

e S. Chern, D. Tang, and L. Wang, Some inequalities for Garvan’s bicrank function of 2-colored
partitions, Acta Arith. 190 (2019), no. 2, 171-191. (Ref. [67])

12.1 Main Result

We will study the asymptotics for

J
G(q) =Y g(n)q" =TT (g™ ¢™)%, (12.1.1)
n>0 j=1
where m = (mq,...,my) is a sequence of J distinct positive integers and & = (d1,...,07)

is a sequence of J non-zero integers.
Let k and h be positive integers such that ged(h, k) = 1. We define

1 J
Z = —= 5j7
2
J
Q = Zéjmj,
7j=1
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Ak) = — 3 diBed ms, B)

j=1 M

J

and

4 h k
Wh,k i= €XP (—m’Zéj -8 ( ; )) : (12.1.2)
j=1

ged(my, k)" ged(my;, k)

where s(d, ¢) is the Dedekind sum.
Let L = lem(my,...,mg). We divide the set {1,2,..., L} into two disjoint subsets:

Log:={1<¢<L : A(() >0},

Our main result states as follows.

Theorem 12.1.1. If ¥ < 0 and the inequality

<g0d2(mj,€)> > A0

min
1<5<J

12.1.

holds for all 1 < ¢ < L, then for positive integers n > —€/24, we have

D41
24n + Q) 2

g(n)=E(n)+2r > Tl (M

Z€£>0

1 2min
X Z %I,E,1 (é;; \/A(ﬁ)(24n + Q)) Z eiThthg,

1<k<N* 0<h<k
k={ mod L ged(h,k)=1
(12.1.4)
where
N* 2 + o (12.1.5)
= T(n 1.
24 )|
I,(x) is the modified Bessel function of the first kind, and
1 if X =0,
1/4
H n+ 3 if Y =—1
E(n) <ms Zx(n) = ( 25)1/2 oy 2 (12.1.6)
(n+ﬂ) log (nJrﬂ) if ¥ =-—1,
—5-1/2
(n + %) / if %< —%.
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Remark 12.1.1. To better understand the asymptotic behavior of g(n), one may apply
the asymptotic expansion of I,(z) (cf. [2, p. 377, (9.7.1)]): for fixed s, when |argz| < §

e” 45 —1 (48> —1)(4s* = 9)
(o) ~ —o— <1 -t aEy ) . (12.1.7)

12.2 A Transformation Formula

Let us define
1 LT 1
== € 12

(¢ @) n(7)

where ¢ := e*™. Let m be a positive integer. Hence,

P(7) = : (12.2.1)

TimT 1

P(mt) =e 12 )’

Recall that d = ged(m, k), m = dm’ and k = dk’. Recall also that 7 = (h 4 iz)/k. One
has, from (11.2.4) with v = Yinak) as in (11.4.1) and the fact s(—m’h, k') = —s(m'h, k'),
that

1
N(V(m b,k (MT))

TZ  —of 1 11 T d? 1
wis(m'h,k") o - P
d° o (12/€ ( " Z)) (W(m’h’k) (m7)) :

Consequently, we deduce the following transformation formula.

mimT

P(m7) = €12 X(Ymh b)) Vm,h oy (MT)) 2

Lemma 12.2.1. We have

27T’L7'

||',:]g

= 2wy, i exp ( (Qz + Ak ) [1p (Vomy iy () ). (12.2.2)

12k

12.3 OQutline of the Proof

We know from (11.3.1) and (13.2.3) that

_ 2minh : _ ;
Z Z e L / G(GQWZT)e 27rmq5e27mg d¢
1<k<N 0<h<k Shk
ged(h,k)=1
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Z Z 67%&1}1’]C Hk

1<k<N 0<h<k

ged(h,k)=1
X /&l’]c 2> exp (12k (Qz+ Ak ) H P~ ( Y(m, ,h,k)(qu—)>e—27rm¢e2nn9 do.
Let us fix a Farey fraction h/k. We first find the integer 1 < ¢ < L such that k = ¢
(mod L). For convenience, we write p(k) := ¢. It is not hard to observe that for all
j=1,2,...,J,

ng(mj7 k) = ng(mjv é)

It turns out that A(k) = A(¢) and II, = II,. We now split g(n) as follows.

Z 11, Z Z 6_%7”%%,1@

1<t<L 1<k<N  0<h<k
k=¢ mod L gcd(h,k)=1
: /sh,k e (12k(QZ +all ) T 2% (Yomy e (my ) J e 6¥2
3 S,

1<¢<L

Define
1 if ¥ =0,
- N1/2 ity =1

=plN) = (12.3.1)

Nlog N if ¥ = —1,
N7 iy < =3,

The minor arcs are those with respect to h/k with p(k) € L<o. We have the following
bound.

Theorem 12.3.1. Let { € L<o. If ¥ <0, then for positive integers n > —§2/24, we have

- 2T Q
St Kmrs E5(N) exp <N2 <n - 24>)

In particular, if we take N = { 2T (n + zﬁ)J, then Sy Kmyrs Zxn(n).

The arcs with respect to h/k with p(k) € L give us the main contribution.
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Theorem 12.3.2. Let { € L-y. If X < 0 and the inequality

min (ng2(mj’€>> > A0 (12.3.2)

1<j<J m; 24

holds, then for positive integers n > —€Q /24, we have

_Z41
2

_ 2minh 2w (24n + Q
Se=EBe+lle > 2 ezkh“hﬁ’“k( A(@>

1<k<N  0<h<k
k= mod L ged(h,k)=1

X Ly (/A0 +9)),

where

N—Z+2€% (nJr%)

Q

Ef s Sp(N)ens 30 4

In particular, if we take N = { 2m (n + ;Z)J, then By Kmyrs Zx(n).

Theorems 12.3.1 and 12.3.2 immediately imply the main result.

12.4 Minor Arcs

Let ¢ € L<g, namely, A(¢) < 0. Notice that

|Se| < T, Z Z /Ehk |2|* exp (1;{(98?(2) + A(f)%(z‘l)))

1<kE<N 0<h<k
k=f mod L gecd(h,k)=1

J
j=1

We now consider the Farey arcs with respect to h/k with £k = ¢ (mod L). Since
A(¢) <0, it follows from (11.5.3) and (11.5.5) that

exp (&(Qéﬁ(z) - A(E)?R(z‘l))) < exp (1;{ <Q vz TAE) ))
_ 7o € TA(L)
)]
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Also, it follows from (11.5.4) with the assumption ¥ < 0 that
|2|® < KEN~2
Now we write for short 7; = Y(m, nk) (m;7). It follows from (11.4.2) that

ged®(my, k)
mjk:

gcd2(mj, 0)
m]’k

S(75) = R(z") = R(=).

Then,
1

(€273 ; ¢2mif; )0051 ’

HP ( mhk(m]T):H

j=1

As we have seen in §11.5.2,

1 ,~
< P 5 27rz7j7- |n
(627rz7'] 627”7—3 T;) | |
— Z s, ‘ —27r\s (Tj)n
n>0
2
ng (mj7 f) -1
— , — 22— R
7%:Opwj(n) exp ( T mk (z7)n
d*(m;, ¢
<> pisyi(n) exp < 545, 0 )n>,
n>0 mj
where we use ®(z7') > k/2. It follows from (11.5.7) that
1
— — | < L
(627”7-j; eZTrsz )oo J
Putting the above arguments together yields
Sg < Z Z kZNfQEe%ekrnQ d(b

1<k<N  0<h<k “&nk
k=€ mod L ged(h,k)=1

Q — _on—

< ¥ S ermelnt g oLy 28
1<k<N  0<h<k
k={ mod L gcd(h,k)=1

< E5(N)e2mentam) = 25 (N)en? (33,

266



12.5 Major Arcs

Let £ € Lo, namely, A({) > 0. For convenience, we write 7;(h, k) = v(m, nr) (m;T).
Recall that

Sg = Hg Z Z G_Twh7k

1<k<N 0<h<k‘
k={ mod L gcd(h,k)=

J
P —2ming 2mno
x/hYkz exp (12k(Qz+A ) 11P ( )e > d .

Jj=1

We split S,. ¢ into two parts £; and 29 where
27minh

Sp=1, ) SoeTE wyy

1<k<N  0<h<k
k=€ mod L ged(h,k)=1

b 0 A —27ing 2mne
x/ﬁhwkz exp (1%( 2+ Al)z" ))e e dg

and

22 = Hg Z Z (& 27r?€nhwhk

1<k<N  0<h<k
k=¢ mod L gcd(h,k)=1

X / 2> exp (12k (Qz+ Al ) (H p~° ( ) — 1) e 2mind 2 o)

We first show that ¥, is negligible. Let us fix h and k and write 7; = 7;(h, k). Then,

Si<m »oox [ zPexp(uk(m()mww 1)))

1<k<N 0<h<k
k=¢ mod L gcd(h,k)=1

(7)1

As we have seen in §11.5.2,

627rng d¢

1

J
=11 S

]71 6271'7,7'] 627rz7']) J

17 () -1
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J
< > I pis, ()€™ ™ — 1

n:=(n,..., nJ)GZéO Jj=1

J
= > I ps(ng))e™ |

neZ>0\( ..... 0)Jj=1

_ Z H Pis;| TL] —27 (T )n;

n€Z>0\ ..... 0)J
J Rz L ged?(m;, £
— Z (Hpan)exp(—Qw ( )Zg <‘J )nj .
neZL\(0,...,0) \J=1 Jj=1 m;
Hence,
TA) 4 —6; ( ~

Sy (.lem(nj)) exp<—27rm'z)< 2Oy eed im0 ]>>
0) \J=1

nEZéO\(O ..... Jj=1 m;

Since at least one coordinate of n = (ny,...,n ) is nonzero, under the condition (12.3.2),

we know that

J 2( 2/
A chd (m;,?) . A(f)+ - <gcd (mJ,€)> >0

- m; M=y TG

for all n € ZZ,\(0,...,0). Recalling that R(z~") > k/2, it follows that
TAl) -6 (=
exp( 2k z )P (Tj)—l
is maximized when R(27!) = k/2. Namely,
TA) —6; (=~
exp( 2k z )P (73)—1

con () T (o) ew [ -r g B0 ) o
0) \Jj=1 J

neZL \(0,..., Jj=1
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We conclude that

_ o Q2
R > PN~ ez 2™ dg
1<k<N  0<h<k “Snk
k=f¢ mod L ged(h,k)=1

< Z Z 627rg(n+2%)k2—1N—22—1

1<k<N  0<h<k
k=0 mod L ged(h,k)=1

< Ep(N)emelrtan) — S5 (N)ent (F31),
Finally, we estimate the main contribution ;. Recall that

¥ =11, Z Z 67%0-%,1@

1<k<N  0<h<k
k=¢ mod L gcd(h,k)=1

X/ ZE exp L(QZ—FA(K)Z_I) 6—27rin¢€27rng d¢
Enp 12k

We simply apply Lemma 11.5.1. The main contribution to ¥ is

X4+1
2winh 27T 24n + Q ER T
IT Tk — | —— I s 1| —vAWl)(24 Q).
Y Y ooe wh’kk< A ) El<6k\/ (0)(24n + ))

1<k<N  0<h<k
k=¢ mod L gcd(h,k)=1

The error term in >; is bounded by

Nl ) s e
1<k<N  0<h<k n+ o4 n+ o

k={ mod L gcd(h,k)=1

12.6 An Application

As an application of Theorem 12.1.1, we show some inequalities for Garvan’s bicrank
function of 2-colored partitions.
A partition is called 2-colored if each part is receiving a color from the set of two

prescribed colors. Let p_s(n) count the number of 2-colored partitions of n. Then,

i@ p_a(n)q" =

(¢:9)%

It is notable that p_5(n) also satisfies nice arithmetic properties. For example, Hammond

269



and Lewis [95] proved that
po2dn+2)=po(dn+3)=po(5n+4) =0 (mod 5). (12.6.1)

To give a unified combinatorial proof of all three congruences in (12.6.1), in 2010, Garvan
[81] introduced a bicrank function for 2-colored partitions (see [81] for the lengthy
definition). Let M*(m,n) count the number of 2-colored partitions of n with bicrank m.
Garvan showed that M*(m,n) has the following generating function (cf. [81, (6.17)]):

- (¢;q)?
M*(m,n)z"q" = = : (12.6.2)
m;oonz::o ( (24, 271¢,2%¢, 2724, @) o

from which he proved that, for any integer n > 0,

o(Bn+2
M*(o,5,5n+2):M*(1,5,5n+2):--.:M*(4,5,5n+2):“<;”),

o(5n+4
M*(O,5,5n—|—4):M*(1,5,5n+4):---:]\/[*(4,5,5n+4):p2<5n+),
M*(0,5,5n+3) = M*(1,5,5n+3) = --- = M*(4,5,5n 4+ 3) (mod 5),

where M*(j,k,n) := X, (

with bicrank congruent to j modulo k.

mod k) M*(m,n) is the number of 2-colored partitions of n

On the other hand, the following inequalities were shown by Andrews and Lewis [24].

Theorem 12.6.1 (Andrews—Lewis). Forn >0,
M(0,2,2n) > M(1,2,2n),  M(0,2,2n+ 1) < M(0,2,2n + 1),

where M (r,m,n) counts the number of partitions of n with crank congruent to r modulo

m.

Along this line, it would be interesting to study sign patterns for the bicrank function.
First, taking z = (3 = ¢*™/? in (12.6.2) yields

N \ n (¢:9)%
M*(0,3,n) — M*(1,3, — — _
;o( (0.3,m) (1.3.m)q (69,6510 (30, G523 @)oo
. 4
_ (ézz Zg;@. (12.6.3)

For the infinite product in (12.6.3), we have, in the setting of (12.1.1), m = {1, 3}
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and & = {4,—2}. Hence, L = 3 and L., = {3}. Applying Theorem 12.1.1 yields an

asymptotic formula as follows.

Theorem 12.6.2. Forn > 1,

M*(0,3,1) — M*(1,3,n) ~ c(n) T (QW Vn_lm) , (12.6.4)

3V/3
where

4 2

?Wcosg7T ifn=0 (mod 3),
47 T

c(n)=9——cos~ ifn=1 (mod 3),

3 9

4 0w .

—sin—  ifn=2 (mod 3).

3 18

Remark 12.6.1. If one treats the error term E(n) more carefully, it can be shown that
E(n) is able to be bounded explicitly:

1 1 1
|E(n)|§173.1\/n—ﬁ (10g,/27r<n—12> )+743Un—12

/ 1 my/n—1/12
+ 2.8 n—ﬁ exp (3\/3) :

See [67] for details. It turns out through a short computation that the sign of M*(0,3,n)—
M*(1,3,n) is determined by the main term (and hence by c¢(n)) when n > 114. We

therefor deduce the following inequalities.

Theorem 12.6.3. Forn > 0,

M*(0,3,n) > M*(1,3,n) ifn=0,2 (mod 3),
M*(0,3,n) < M*(1,3,n) ifn=1 (mod 3),

except for n = 5.

Likewise, taking z =i in (12.6.2) yields

> (M*(0,4,n) — M*(2,4,n)) ¢"

n=0
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(4 9)% _ (4:9)% _ (4 4)a
(g, =1i¢, =0, = Do~ (=05 )= 0)% (6% ¢ (0% %)

(12.6.5)

Analogously, we deduce an asymptotic formula for M*(0,4,n) — M*(2,4,n).

Theorem 12.6.4. Forn > 1,

M*(0,4,n) — M*(2,4,n)

— () Iy (WV”Q\_[;/% +e(n) I (sz;;/m) +EMm),  (126.6)

where
T
ﬂsing ifn=0 (mod 8),
T ifn=2 (modS8
—m ifn=1 (mod4), Teose ifn=2 (modS8),
a(n) =37 ifn=3 (mod4), ca(n) = _rsin~ ifn=4 (mod 8)
8 Y
0 otherwise, -
—meos ¢ ifn=6 (mod 8),
0 otherwise,
and

1 1 1
|E(n)| <224.2 /n — - (log‘/27r <n— 12) +1> +55.6 \/n — D

/ 1 my/n—1/12
+24 n—ﬁ exp (6\/3) :

We also deduce from a short computation that the sign of M*(0,4,n) — M*(2,4,n) is

determined by the main term when n > 2160. The following inequalities therefore hold.

Theorem 12.6.5. Forn > 0,

M*(0,4,n) > M*(2,4,n) ifn=0,2 37 (mod38),
M*(0,4,n) < M*(2,4,n) ifn=1,4,56 (mod 8),

except for n = 4 and 20.
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Chapter 13
The Method of Rademacher:
Jacobi Theta Products

This chapter comes from

e S. Chern, Asymptotics for the Taylor coefficients of certain infinite products, to appear in
Ramanugjan J. (Ref. [57])

13.1 Main Result

We will study the asymptotics for

J
Glq) = > g(m)q" = [1(q".q™ 7 "54™)L, (13.1.1)
n>0 7=1
where m = (my,...,my) and r = (ry,...,r;) are two sequences of J positive integers

satisfying 1 < r; < m; for all j = 1,...,J, and & = (d1,...,0;) is a sequence of J
nonzero integers.
Recall that we have defined in §11.4 that for 0 < h < k with ged(h, k) = 1,

A (B ) 1= {gcd;:mw

and "
”
Ao (hk) == Ay (B k) — ——— .
1) = A () = s
Also, Ay, (h, k) is an integer such that
mh k
(B, k) ————r = —1 d ——).
( )gcd(m, k) (mo ged(m, k))
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Next, we define

1272
Q.= Z5J(2m]—127’]+ mj),

j=1 J

J 2gcd®(m;, k) 12ged?®(m;, k
A(h, k) :=—26j( selm;o k) R2eed misk) o h k) — A, (0 0)
j=1 j j

and

J mih k
Y ) 13.1.2
Wi,k eXP( m; 7 S(ng<mjak)7ng(mj7k)> 7 ( |

where s(d, c) is the Dedekind sum. We also define

. J r:h T"ng TTL',I{I 2T'ng<m'7k)/\er-,r-(h7 k)
B (B, k) ged(m;, k
L Py )ic (m; )()\%”J,j(h, k) = A, s (I, k)))).

One readily verifies that the choice of ,,(h, k) does not affect the value of I ;. At last,

we define
d;
H L o <2m'rj ged(my, k) + 5l (h, k;)mﬂz)
j:)‘:nj,rj (hvk):() m']k
Iy = if there exists j such that A7, (h, k) =0,

otherwise.

Remark 13.3.1 tells us that the choice of A, (h, k) also does not affect the value of I 4.
Also, Proposition 13.3.3 indicates that for any j with )\fn]_’r]_(h, k) = 0, we have

rjged(my, k) + rjh,, (b, k)m]-h)

1 —exp <2m £ 0.

mjk

Hence the value II; j, is well-defined and IIj, ;, # 0.
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Given a real 0 < x < 1, we define

1 if x =0,
Y(z) = {a if 0 <z <1/2,
l—z ifl/2<z<1.

Let L =lem(my,...,mg). We define two disjoint sets:

Log:={(0e,0) : 1<l<L 0<s<l A(0) >0},
Log:={(,0) : 1<U<L, 0<3<l A(s,0) <0},

Our main result states as follows.

Theorem 13.1.1. If the inequality

min (T(/\;;j’,‘j(%, é))ngQ(mj’£)> > Ak 0) (13.1.3)

1<5<J m; 24

holds for all 1 < ¢ < L and 0 < 3 < {, then for positive integers n > —/24, we have

1

24n + Q)

o) = E(n) + 25505 3 0 (Z0ER)

1<U<L 0<x<l
(3.0)€L>0

1 ™
k=¢ mod L
min J 1
x e (—1>Zj:1 5mg (h’k)wi,k Ay il (13.1.4)
0<h<k
ged(h,k)=1
h=3 mod ¢

where
Ne= | Jor (s 2 (13.1.5)
= T\nt g, 1.
I(x) is the modified Bessel function of the first kind, and
E(n) <mrs 1. (13.1.6)

Remark 13.1.1. To better understand the asymptotic behavior of g(n), one may again
apply the asymptotic expansion of I (z) (cf. [2, p. 377, (9.7.1)]): for fixed s, when
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e’ 45 —1 (45> —1)(48* —9)
I ~ 1-— — ] 13.1.7
(%) 2mw < 8x + 2!(8x)? ( )
13.2 A Transformation Formula
Let us define
K1) = (C,¢ g @)oo (13.2.1)
where ¢ := €™ and ( := €?™. It follows from (11.2.3) that
Cmir L 0(5T)
K(g;7) = ie 6 ™ ——=. 13.2.2
(6:7) e (13.2.)
Let » < m be positive integers. Hence,
mTimT . '19 )
K(rrymr) =ie” o em”i(w’mﬂ
n(mt)

Recall that d = ged(m, k), m = dm’ and k = dk’. Recall also that 7 = (h + i2)/k.
One has, from (11.2.4), (11.2.5), (11.2.6) with v = Yk as in (11.4.1) and the fact

s(—m'h, k') = —s(m’h, k'), that

TimT 92 — Wik/T‘2T2

K(rr;mr) =ie” o emrTx(v(m7h7k)) e Kmr—m'h
y ﬁ(TT'YEFm,h,k) (mT); Y,k (M)
1(Yom k) (7))

— YT wirT

— 7/6 6 e X(f}/(m7h7k))_2€_ kmT—mh (—1)

x e™

0.2 2
mwikr<T Am,r(hvk)

N2 (B iy () 27 A (BR)PTY g ()

X VT ) (M) & A (B K)Y(m ) (T )5 Yamo, ) ()

NV, (T))
_ Z(— 1))\mm(h,k)€72ﬂ'i8(m/h,k’)

(rh rd  2rdX;,,.(h k)
X exp | m ?—%—i——mk

hn(h, k)d
Pl )
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T 12r2
X exp ok <2m - )z

- <2d2 12d2(>\*2 (h, k)= X (B, k>)>1>)

m m z

x 7K (TTVZ‘m,h,k) (m7) + A (hs )Y, 0e) (M )3 V(i ) (mT))-

Consequently, we deduce the following transformation formula.

Lemma 13.2.1. We have

J
27”T H i (ryT;myT)
— o 1 (— 1)2 5”'”f’rj(h’k)w13,k hk
m —1
X exp Kk(QZ + A(h, k)Z )

J
x [T K% (T’jT’)/Zﬁmﬁh’k.) (m57) + Aoy (s ) Y(my k) (MG T ) Vmy k) (mﬂ))- (13.2.3)
=1
Remark 13.2.1. It follows from (11.4.4) that for all j =1,2,...,J,
0 S %<rj7—’7(*mj,h,k) (ij) + )‘mj,rj (ha k)’y(mj7h7k) (ij)) < %(7(mj,h,k:)(mj7—>>'

13.3 Outline of the Proof

We know from (11.3.1) and (13.2.3) that

_ 2minh : _ :
Z Z e T / G <€2m7’) e 27rzn¢627rng dgb
1<k<N  0<h<k Sk
ged(h,k)=1

minh J .
> 2 e HHE (1) 2o 2 () Wi Dk

1<k<N 0<h<k
ged(h,k)=1

x /£ ew (1%(92 + A(h k)2 ))

J
x J] K% (TjT’Y(*mj,h,k) (M 7) + A s (s K)oy k) (M T3 Vimg ) (ij))

=1

% 6—27rzn¢627rng d¢
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Let us fix a Farey fraction h/k. We first find integers 1 < ¢ < L and 0 < 3 < ¢ such
that k = ¢ (mod L) and h = s (mod ¢). For convenience, we write p(h, k) := (5, (). It
is not hard to observe that for all j =1,2,...,J,

ng(mj7 k) = ng(mJ7 g) and A;knj,rj (h7 k) = )\;knj,Tj <%7 g)

It turns out that A(h, k) = A(s,£). We now split g(n) as follows.

g(n) :izjzl‘sj Z Z Z Z o 2minn

1<U<L0<x<l 1<k<N 0<h<k
k=f¢ mod L gcd(h,k)=1
h=3 mod ¢

J .
X (_1)Zj:1 8jAm,r; (hak)wik ﬂh,k

Ea .
X /ﬁh,k exp (12k (Qz+ A(s,0)z ))

J
x [ K> (TjWEkmj,h,k) (M5 7) + Aoy (s K)Y0my 1) (5T ) Ymy o) (ij))
j=1
% e—?ﬂinqﬁeQﬂ'ng d¢

J
= izi:l&j Z Z S%g.

1<0<L 0<s<t

The minor arcs are those with respect to h/k with p(h,k) € L<,. We have the

following bound.

Theorem 13.3.1. Let (3,0) € L<o. For positive integers n > —§2/24, we have

2w Q
S%,Z <K m,r,s €XP ﬁ n -+ ﬂ .

In particular, if we take N = { 2 (n + i)J, then S, <mprs 1.
The arcs with respect to h/k with p(h, k) € L give us the main contribution.

Theorem 13.3.2. Let (5,{) € L~y. If the inequality

1<j<J

ngQ(mj,€)> S A0 (13.3.1)

min (T ()\fn]. (52 f)) m; 24
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holds, then for positive integers n > —€ /24, we have

_ 2minh T Sidmar (k) 2
St =FE. i+ Y Y. ek CONNERAE Wn ke Hn ek
1<k<SN  0<h<k
k=( mod L gcd(h,k)=1
h=3 mod ¢

><2—7r 24n + Q\
E \ A5, 0)

N

L (/A6 02t +9)

where

E%,Z <<m,r,5 6%(n+%) + N GNQ(Q 24)

n + 24
In particular, if we take N = L 2 (n + i)J, then B,y <mqys 1.

Theorems 13.3.1 and 13.3.2 immediately imply the main result. Before present-
ing proofs of the two results respectively in §§13.4 and 13.5, we make the following
preparations.

For fixed » and ¢ with 1 < ¢ < L and 0 < s < /, one may split the indices
{1,2,...,J} into two disjoint parts:

=0ty and T =0

so that for j* € J;, we have \;, (3¢,£) = 0 and for j** € J37 we have \;, (5¢,0) #

m].*’r].* m]-**,r]-**

Proposition 13.3.3. Let j* € J,. For any Farey fraction h/k such that k = { (mod L)
and h = s (mod ¢), we have that

Tj*T/yEkmj*,h,k) (mj*T) + Amj*ﬂ‘j* (h7 kj)/}/(m]* Jhok) (mj*T)
rje ged(mye, k) + v (hy k)mg-h

= 13.3.2

is a real noninteger. Further,

2me

1—em*

S 1 . 627”;(7']'*7—7?{”1]_*Yh7k>(mj*7_)+Amj*,T‘j* (hak)’Y(mj*,h,k)(mj*T)> S 2 (1333)

Proof. In this proof, we write for short m = m;« and r = r;«. We also write d = ged(m, k),

m = dm' and k = dk'. Since j* € J;,, we have X}, (h,k) = X}, .(5,{) = 0. Hence d
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divides rh and A, ,(h, k) = rh/d. We know from (11.4.4) that

rT’YEkm,h,k’) (mT) _'_ )\mﬂ" (h7 k)v(mvh’k) (mT)

d B, (b, k)d 42
:T—%Amwﬂuk)(k;)—%kgmﬁuk) '

)
mkz

mk * d k
(14 B (b, k)m/R)
N m'k

bm/T bm/ T

T om om'd
where as in §11.4, we have put b,y = (hp,(h,k)m'h + 1)/k’. Hence it is a real number.
Notice that d = ged(m, k). Since ged(h, k) = 1, d | rh implies that d | r. Further,
by = (B (h, k)m'h + 1)/k" implies that ged(m’, b,,) = 1. Hence, if Z’T;L",’g is an integer,
then m/' | 2 so that m = dm’ | r. This violates the assumption that 1 < r < m —
1. Hence 77(,, 4.1y (MT) + A v (B, )Y,k (MT) is not an integer and (13.3.3) follows
immediately. O]

Remark 13.3.1. Recall that h,,(h, k) is defined to be an integer such that

mh k

Fon (h, k)m =—1 (mod m)

Let n be an integer. It turns out that

rj- ged(mye, k) + 7 (hm (h, k) + ”M)mah
exp | 2wt

mj*k

— ox 271_2 Tj* gcd(mj*7 k‘) + Tj* hmj* (]'L, k‘)m]*h 4 nﬂ-i ’I"]*h
P m]*k’ ng(TI’L]*7 k)

mj*k: ’

( e ged(mye, k) + 1Py, . (R, k’)mj*h)
— eXp 271-2 -

since from the above proof we have ged(m;-, k) | rj-. Hence the choice of Ay, . (h, k) does
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not affect the value of

exp (27m' <Tj*77("mj*yh7k)(mj*7) + Ao (B k)v(m%h,k)(mjm)))

( .Tj* gcd(m]*, k) + rj*h'mj* (h’7 k)mj*h>
= exp 271, k ’
m =

13.4 Minor Arcs

Let (s, () € L<o, namely, A(s, () < 0. We write J* = J;, and J** = J7. Notice
that

1S,.0] < Z Z /{h k exp (&(Q?ﬁ(z) + A(s, E)?R(Z—l)))

1<k<N  0<h<k
k={ mod L gcd(h,k)=1
h=3 mod ¢

X

J
[T 2K% (rofYEkmj,h,k)<ij) A Ao (P B) Yy k) (T )5 V(i) (mﬂ'))‘
j=1

x 2™ g

We now consider the Farey arcs with respect to h/k with k = ¢ (mod L) and h = »
(mod ¢). Since A(s,¢) <0, it follows from (11.5.3) and (11.5.5) that

12k \"" N2 2

o Q TA(¢, ()
IR T Rl WS YRR

For convenience, now we write A\; = A, (h, k) and A; = A7, (h, k). We also write

exp (&(Q%(z) + A, em(z-l))) < exp (“ (sz’“ + A5, 0) ’“))

for short ¢; = T3 TV my o) (m7) 4 Ay (B B) Y my oy (M 7) and 75 = Y noy (7). We
know from (11.4.2) and (11.4.4) that

2 2
g7y = By R) o 1y ged (my 0
() = S R = S SR
and d2( kf) d2( 6)
(e = 8 lmy, k) oy yagedmy O o
S(5) = A ik R(z77) =] ok R(z7).
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Notice that

We write

J
H }I{(Sj (fj’f-]) — H (1 o 627ri5j* >6j*

j=1 ]*EJ*
X H 27 (7, *+§] 6271'2'(7:]'* 76}*); eQﬂifj*)gé*
jreJg*
X H (627”'6]'** ’ 627”'(7:]'**_%**); e27’l’i‘7'j** )gjc';‘* ]
j**ej**
First, it follows from Proposition 13.3.3 that
]*Gj*
Further, as we have seen in §11.5.2, for j* € J* (hence )\;* =0),
(627Ti(7~'j* +§~j*)’ 627ri(7~'j*—§~j*); e?Tri"f-j* )gjo*
<> > Zpr(;j*‘(s, £ m) |25 47 3] 2Ty =G0 ) |8 2T |
n>0s>0t>0
— Z ZZPM | s, t; n —27r\$(7' «+&jx)s —27r\$(7'* Sy )te—Qw%(%j*)n
n>0s>0t>0
2
= XSty ( 222U D,
n>0 5>0 t>0 3] m-k
dQ . E d2 ‘*7€
X exp < - 27Tgc(mj’)§}?(z_1)t> exp ( - 27rgc(m])§)?(z_1)n>
Mg« mj*k
2
ged®(mj«, 0
<ZZZp|5stnexp<—ﬂ- J* ))
n>05>0 t>0 T
d?(m«, 0 A2(me ¢
X exp <—7Tgc(7n]7)t> exp<_ﬂ-gc(7n3’)n>,

where we use R(z7') > k/2. It follows from (11.5.7) that

(Tox +Cx (T —Cs T %
(6271‘2(7'] +<; )’ e27rl(7'] cj*); eQmTJ*)Oé < 1.
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Likewise, for j** € J**,

(627T’L'fj** ’ e?ﬂ'i(fj** 7%**); 627T’L"T'j** )gjo**

2
< ZZZP|5 **‘ S, t: n)exp<_7r)\***gWS>
e

n>0s>0t>0
d*(mys, € d?(myju, £
mj** m]**
< 1.

Hence,

S0 < Z Z / 9627m9 do

1<k<N 0<h<k
k=€ mod L gcd(h,k)=
h=3 mod E

1
< Z Z e%rg(n-‘r%) m

1<k<N O<h<k
k={¢ mod L gcd(h,k)=
h=3 mod Z

Q 2 Q
< erelntap) — onz(ntag),

13.5 Major Arcs

Let (s,€) € Lo, namely, A(s,£) > 0. Again, we write J* = J, and J** = J.
Let us consider the Farey arcs with respect to h/k with k = ¢ (mod L) and h = »
(mod £). For convenience, we write j(h, k) = 7579, 51 (M5 T) Ny s (Bs k) Y(my iy (15 7)
and 7 (h, k) = Y, hk) (7).

Recall that

_ 2minh T8 A s (B
Set= Y, Y. e E (‘DZF” 57 )Wi,kﬂh,k
1<k<N  0<h<k
k=l mod L ged(h,k)=1
h=3 mod ¢

J
X/gh’kexp (1%(92+A%e )r:[ 5 (G (hy ks 75, k)

% 6727Tm¢€27rng d¢
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We split S.. ¢ into two parts X; and ¥y where

Tin J
Xy = Z Z ‘37%(_1)2’:1%A (hk)whk k.

1<k<N O<h<k
k=¢ mod L gcd(h,k)=
h=3 mod E

; /f’”‘ o (1%(QZ AL Dz )) [T, e 2min0e2m™e g
and

3 J .
= ) > 6_%(_1)27':16]Amj’rj(h’k)wfzz,k hk

1<k<N  0<h<k
k=¢ mod L gcd(h,k)=1
h= mod ¢

J
X /ﬁm exp (12k(QZ+A n,0)z ) (1;[ <<] (h,k); 7;(h, k)) —Hhk)

% 6727rin¢>627m,9 d¢
We first show that 3, is negligible. Notice that by (11.5.3)

Dol < Y0 ST T TEIL,

1<kE<N 0<h<k
k=¢ mod L gcd(h,k)=1
h=3c mod ¢

y /hvk exp (WAl(Q?Z E)%(z_l))

Let us fix h and k and write ¢; = G;(h, k) and 7; = 7;(h, k). We also write A7 = A, (h, k).
Recalling the definition of II, ; and Proposition 13.3.3, we have

i, 1 H}K‘S (&(h, k); 75(h k) — 1) dg.

~ (= Eox (7w —C o iz Sox
H >K (gj;rj) — 1= H (627rl(fj*+’§] )7627r2(T] S );627”7'] )o%

hk] 1 j*GJ*
1< (TFowk —Cox 1Tk O
> H (6271%(]**,627”(7']** S *)’ 627”7']* )O]o 1.

Let us write for short
T+¢ ifjeJr
S if j € J*.
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It follows again from (11.4.2) and (11.4.4) that

2
(7)) — ng (mﬁg)% -1
- cged?(my, 0) o
and 2( )
~New * ng m’aé -1
3(E) = 00y 5 TR,
where for real 0 < x < 1,
1 ifx=0,
O(x) :=
x otherwise.
We have
1 J
—_— SiiTi) —1
Hh ];[1 ( ] J)
_ I_][ 27rz< 271'2 (75—85). e27ri%]-)§j -1
< > > >

n:=(ny,....,nJy )GZ‘I S:=(81,..,87 )EZ%O t::(tl,...,tJ)EZ§0

Hp|6 | (sj,tjmy)le 2t

New ’

S5 ‘627”(7-] i) ’t] ’627Ti"~'j ‘nﬂ' —1

= Z Z Z H p\*chl <3j, tj; n])| 27rngeW |s7- |627ri(%j —$5) |tj |€27ri7”—j |n]-

n><s><t€(ZJ )3\(0,...,0)3 j=1

- ZZZ Hp\5| Sjs tjin)e —2m (G )55 o =2 (F =)t =20 (Fy)n,

nxsxte(ZL)?\(0,...,0)3 J=1

- Tey (M)

nxsxte(ZL)*\(0,..., J=1

-1y J
X exp (—27‘('%(7{: )Z

J=1

gcdz(mj, 0)
m;

((I)()\;)S] + (1 — )\;)tj + TL])) .
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Hence,

TA(se, l 1
exp (1(%)%(2 )) Hhk H K (9773) —1

< wey (1 Msj,tg,nn)

nXthG(ZéOP\(O

.....

« exp (_ 2W%(;1)< A( g ged®(my, 0) (@(A;f)sj+<1—A;)tj+nj)>).

m;

Since at least one coordinate of n x s X t is nonzero, under the condition (13.3.1)
know that

A

. gcd2(mj,€)
> — 51 + 1r§njl£] (T()\ )J—————] >0

m;

for all n x s x t € (Z£,)*\(0,...,0)?. Recalling that R(z~") > k/2, it follows that

exp (WAl(QJZ J %(zl))

is maximized when R(z7!) = k/2. Namely,
A, l) ., 4 5 (~ . ~
exp (12]{73?(2 )) Hhk H 2K (g 7') 1

Sexp(ﬂAéZ’@) > )S(H |68wtwna>)

Hhk H>K](gj77—]) !

nXthG(ZéO)S\(O

J d2 .y

X exp ( -7y sed My, o) T(nm]’ ) (@(A;f)sj + (1= X))t + nj)
j=1 J

< 1.

Together with the fact [], , < 1 which follows from (13.3.3), we conclude that

Yo Y STt [ 1 dg

1<k<N  0<h<k &,k
k=¢ mod L ged(h,k)=1
h=3 mod ¢
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< ¥ 3 o2re(n+tsy) ki\f

1<k<N 0<h<k
k=¢ mod L ged(h,k)=1
h=3 mod ¢

21

< 2ot R) _ B n+ )

Finally, we estimate the main contribution ;. Recall that

Tin J .
Si= ) > e FEE (1) 2= A (h’k)wi,k Hip e

1<k<N 0<h<k
k={ mod L gcd(h,k)=1
h=3 mod ¢

X /fh,k exp (&;(QZ + A(%’ g)z_l)) 6—27rin¢>62ﬂ-n9 d¢
We simply apply Lemma 11.5.1. The main contribution to X is

s’ 7 j
SY e T ) D e (R

1<k<N  0<h<k
k={¢ mod L gcd(h,k)=1
h=3 mod ¢

le 24n +Q\
k \ A(s,0)

The error term in >; is bounded by

D=

I, (;{\/A(%, 0)(24n + Q)> .

Q 27 Q
Z Z 627rg(n+ﬂ> NZQW(TH-Q)
Q Q
1<k<N  0<h<k Nt g n+ 3
k=f mod L gcd(h,k)=1
h=3 mod ¢

13.6 An Application

As an application, we confirm Tang’s inequalities in [167] in the asymptotic sense.

Here we will expand the infinite product as Y°,50 g(n)q".

In general, to obtain an explicit asymptotic formula of g(n), we first compute L.
Next, we find the largest number among {\/A(s¢,¢)/k} with (s¢,¢) € Loo and k = ¢
(mod L). Now one needs to check if the corresponding I-Bessel function vanishes for this

choice. If it is nonvanishing, then the asymptotic formula shall be obtained from the I-
Bessel term. Otherwise, we move to find the second largest number among {/A(s, ¢)/k}
and carry out the same program. Notice that if there are multiple choices of s, ¢ and
k giving the same value of /A(s¢, ) /k, one should sum up all such 7-Bessel terms and
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check if the summation vanishes or not.

Let

2 8. 10 4. 6. ,10\2
n q,959 )oo\d 54754 )
>_9(n)g :( 2) 3? 52 :
s (4%, 4% ¢°)%
Then m = {5,10,10}, r = {2,2,4} and & = {—2,1,2}. Hence L = 10 and 2 = —8. We

compute that

£>0: {(07]‘)7<O’3)’(173)7(273) (0’5)7(275) ( )’(077)7< )’( ? ) (377)7
(4,7),(5,7),(6,7),(0,9), (1,9),(2,9),(3,9), (4,9), (5,9), (6,9), (7,9)

9
(8,9), (1,10), (2,10), (3,10), (4, 10), (6, 10), (7, 10), (8, 10), (9, 10)}.

First, the assumption (13.1.3) is satisfied. We next find that the largest number among
{\/A(5,0)/k} with (5¢,¢) € Lo and k = ¢ (mod L) is —=. Here we have four choices:
(s,0,k)=(0,1,1), (0,5,5), (2,5,5), (3,5,5).

When k = 1, the admissible (h, k) is (0,1). We compute that the I-Bessel term is

~1/2
—\/ﬁﬂsin il n—1 /[ Lﬁﬂ n—1
V15 \5 3 V5 3)
When k = 5, the admissible (h, k) are (2,5) and (3,5). We compute that, in total, the

I-Bessel term is

Var (o N\ (ver [
o)) ()

In total, we therefore have

L (2) o (22 0)) (o) (2 0)

Notice that sin ( ) + sin (2“(271 + 1)) vanishes only if n =1 (mod 5). Hence, we have

the following asymptotic formula.
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Theorem 13.6.1. Forn # 1 (mod 5),

g(n) ~ \\/fi—g (sin (g) +sin (25”(271 + 1))) (n - ;) _1/21_1 (\/?_7; n— ?1))
~ 3011/4 (sin (g) +sin (25”(277, + 1)>>n—3/4 exp (\Z_?g\/ﬁ)

It follows that g(5n + 0,2,3) > 0 and g(5n + 4) < 0 for sufficiently large n. If we
further compute a number of lower I-Bessel terms, we still encounter the same vanishment
for n =1 (mod 5). This highly suggests that g(5n + 1) = 0, which is, indeed, proved by

Tang using elementary techniques in [167].

All other inequalities conjectured by Tang can be proved in the same manner. We

omit the details here.
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Chapter 14
Nonmodular Infinite Products and a Conjecture of Seo

and Yee

This chapter comes from

e S. Chern, Nonmodular infinite products and a Conjecture of Seo and Yee, submitted. Available
at arXiv:1912.10341. (Ref. [61])

14.1 Introduction

In the previous three chapters, we have discussed the asymptotics for coefficients in

M7 with 7 in the upper half complex

infinite products G(q) that are modular. Let ¢ = e
plane. If 7 is replaced by T'(7) where T is a transformation belonging to some subgroup
of finite index of the modular group, then the resulting function remains essentially
invariant according to the modularity. This allows us to study the asymptotics of G(q)
when ¢ is close to rational points on the unit circle. However, the story is different if the
infinite product is no longer modular.

The motivation of this chapter is a recent conjecture of Seo and Yee [161] in their
study of seaweed algebras. They proved that an earlier conjecture of Coll, A. Mayers

and N. Mayers [70] is equivalent to the following nonnegativity conjecture.

Conjecture 14.1.1. The series expansion of

1

14.1.1
(¢, 4% ¢ ( )

has nonnegative coefficients.

Notice that the above infinite product is no more modular. Hence, a Rademacher-type

291


http://arxiv.org/abs/1912.10341

proof fails. Also, if we rewrite this product as

then the numerator (¢%; ¢*) causes the expiration of Meinardus’ powerful approach
[134]. One of the few works about asymptotics of nonmodular infinite products is due to
Grosswald [89], who absorbed ideas from Lehner [118] and Livingood [130]. In his paper,
the infinite product

1

T (14.1.2)

with a prime modulus M is considered. However, a closer examination of Grosswald’s
paper reveals several mistakes, among which at least the calculation of the residue R3
on page 119 of [89] is not robust. Also, a natural question is about the case where the
modulus is composite.

Let M be a positive integer and a be any of 1,2,..., M. The first goal of this chapter

is to investigate the asymptotic behavior of

By ri(q) = log <1> (14.1.3)

(4% )0
when the complex variable ¢ with |g| < 1 approaches the unit circle.

Theorem 14.1.1. Let X be a sufficiently large positive number. Let
q= 677'+2m'h/k (1414)

where 1 < h < k < |V2rX| =: N with (h,k) = 1 (throughout, (m,n) denotes the
greatest common divisor of integers m and n) and T = X'+ 2miY with |Y| < 1/(kN).
Let M be a positive integer and a be any of 1,2,..., M. If we denote by b the unique
integer between 1 and (k, M) such that b= —ha (mod (k, M)) and write

(kvM)_b Zfb# (k7M>7
(k, M) if b= (k, M),

b* =
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then
10( 1 )_1(k,M)2 7T2< v b +1)
B\ de) 7 M (b, M)~ (kM) " 6

+ 2mi (—g’ (—1, (k',bM)> +¢ (—1, (kbM)>>) +E  (14.1.5)

IR(E)| <anr X?log X. (14.1.6)

where

Remark 14.1.1. Let Qy/; be the set of ¢ with respect to h/k defined in Theorem 14.1.1.
For any q with |g| = e”'/%, we are always able to find an h/k such that g € Qp/k- This
is a direct consequence of the theory of Farey fractions. In fact, if h/k is a Farey fraction
of order N and &, (resp. £_) denotes the distance from h/k to its right (resp. left)
neighboring mediant, then . .

SEN <& < N

Hence, R/Z can be covered by intervals

U E_L E_f_i
L <hSh<N k. kN 'k  kN|’
(hk)=1

Equipped with Theorem 14.1.1, we almost arrive at a proof of Conjecture 14.1.1.

Theorem 14.1.2. Let

G(q) ==Y _g(n)g" = ! (14.1.7)

n>0 (Q7 _q3’ q4>oo .

We have, as n — oo,

T/AT(1/4) T n L mAT(3/4) T n
o) ~ gremaaret-ws (515) + (D gt (31) 1419
where I,(x) is the modified Bessel function of the first kind. Further, when n > 2.4 x 10,

we have g(n) > 0.

Unfortunately, my personal laptop did not support me to verify the coefficients g(n)
up to n = 2.4 x 10", But I deeply believe the validity of their nonnegativity after
computing the first 10,000 terms.
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Throughout, ((s) and ((s,a) are respectively Riemann zeta function and Hurwitz
zeta function. We denote by (’(s,a) the partial derivative of Hurwitz zeta function with

respect to s, namely,

((5,0) = 9¢(s,a).

Finally, I'(s) is the gamma function and ~ is the Euler-Mascheroni constant.

14.2 Theorem 14.1.1: Preparation

Recall that ,
1 m
Br1(q) = log () - ¥ QT. (14.2.1)

(4% ™M) oo =

m=a mod M

Throughout, let us assume X > 16 and N = {\/ﬂJ As in Theorem 14.1.1, we put
q=e et (14.2.2)
where 1 < h <k < N with (h,k) =1 and
T=X""42mY (14.2.3)

with the restriction |
Y < —. 14.2.4
Y=< kN ( )

Now we are going to collect some bounds that will be frequently used in the sequel.

First, the assumptions of X and N imply that

0.9v2rX < N < V21 X. (14.2.5)
Further, N < /27X implies that
1 27 27
— < —<
X 7 N2~ k
Hence,
2/ 2
< ) 14.2.6
< 2 (14.2.6)
Finally,
1
R <) > 0.07k>. (14.2.7)
T
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This is because

e (1) _ X~
k2r)  K2(X 24 4m2Y?2)

Xfl
>
T kA X2 4 4Am2k2N2)
X—l
T kX2 4+ An2N 2
X—l
>
— N2X2 4 4n2N2
Xfl
>
T (0.9vV21X)2X 2 + 472(0.9v 21 X ) 2
> 0.07.
Given any positive integer k, we write
M
K=k ) 14.2.8
(k. M) (14:28)
Notice that M | K. Write in (14.2.1)
(=bktp (1<p<h)
and
m=cK + \ (1< A< K, A=amod M).
Then
NGRS DD D Dl T
7 1<A<K  1<p<k b,e>0 bk + 1
A=a mod M
Applying the Mellin transform further gives
2mihpu\ 1 F(S) ds
q)a7 q) = e k- 7/
m(a) 1§§K 1;; b%o 2mi J3/2) bk + p (bk + p)*(cK + X)s78
A=a mod M

2mihpr 1 ['(s) ( )\> [

- sl IO (o) as
1<;K 1<Mz<k 2mi J(3/2) TERSHLKS K L
A=a mod M

Here the path of integration («) is from o — ico to a + ioo.
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Recall the functional equation of Hurwitz zeta function:

A 27T)\V v
C(s, k) =2I'(1 — s)(27k)*~ (Sm — Z cos (1 — s, k‘)

1<v<k
2w\
+ cos - sin = VC<1—S, V) : (14.2.9)
2 1<v<k k k
If we further put
Tk
<= o (14.2.10)
then
1 BYe(l—s,2
B ri(g) = — Y Y e 27rth s 2TV ¢ +s,f)c(m 5 %) 5,
dmikK 1<AKK  1<pu<k K (3/2) z%Cos &7
A=a mod M 1<v<K
T D DI L Ny RS SIS 2P
AmikK 1<KA<K  1<u<k K J3)2) 28 sin%s
A=a mod M 1<v<K
N 1 Z Z 0 27Th,u)\ ,n27w)\ <<1+87%)C(1_87%)d8
AmkK 1<A<K  1<p<k K Ja)2) 2% sin 75
A= amodM1<z/<K
1 2rhp 2w 1+s 4 ¢C(1—s,
+ Z Z sin T ,u COS ivZ C( +SS]€)C( S K)ds
ArkK 1<KA<K  1<u<k K (3/2) z cos7
A=a mod M 1<v<K
(14.2.11)

Notice that 1 < A < K. If hA; = hAy (mod k), then by recalling hy = hy = a
(mod M) and the fact that (h, k) = 1, we conclude that A\; = Ay (mod K). Hence, the

h\'s give
K k

M~ (kM)

residue classes modulo k. For each A, we denote by p = p(\) the unique integer between
1 and k such that
p=—h\ (mod k). (14.2.12)

Then the p’s are pairwise distinct. Further, if we put
M* = (k, M),

then for all p,
p=—ha (mod M¥). (14.2.13)
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Let us choose h' so that
hh' = -1 (mod k).

This is always possible since (h, k) = 1. Notice that A = a (mod M). Hence, we have
the system

A=h'p (mod k)

A=a (mod M)

. (14.2.14)

This system is solvable whenever h/p = a (mod M*). But this can be ensured by (14.2.13)
and the fact that hh' = —1 (mod M*). We next find, using Euclid’s algorithm, integers
« and [ such that

ak + BM = M*. (14.2.15)

We therefore have (notice that lem(k, M) = K)

h/}ow—*azﬂh,M

p%—ozai (mod K). (14.2.16)

A= M

In (14.2.11), replacing s by —s, reversing the direction of integration path and shifting
the path back to (3/2), one has, with h\ replaced by —p,

1 2nup 2w C1=—s58)C1+s,%)
Do n1(q) = e > > cos T 08— _"; TS K/ ds
i 1<K 1<p<k (3/2) z 2
A=a mod M 1<v<K
1 2npp . 2TV C(1—-s5)C(1+s,%)
TR 2o 2 cosTsinT 25 sin &2 ds
I<M<K  1<p<k (3/2) 2
A=a mod M 1<v<K
T >, D s 2THP. iy 2T -5 k)0 tsg)
4k K 1K 15hsk k K J3/2) 2= sin T
A=a mod M 1<v<K
1 . 2mpp  2muA C1—-s8)C(1+s, %)
 4nkK Z Z St k €08 K z7Scos &2 ds
1<A<K  1<p<k (3/2) 2
A=a mod M 1<v<K
— 27Ti(R1 + Ry + R3 + R4)
=Ty + Yo+ T3+ Yy —27mi(R1 + Ro + R3 + Ry) (14.2.17)

where R, comes from the sum of residues of the corresponding integrand inside the stripe
—3/2 < R(s) < 3/2.

In the next two sections, we shall evaluate the integrals T, and the residues R,, re-
spectively. One may conclude Theorem 14.1.1 directly from (14.2.17) and the estimations
(14.3.15), (14.4.11), (14.4.13), (14.4.15), (14.4.17), (14.4.22) and (14.4.24).
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14.3 Theorem 14.1.1: The Integrals

14.3.1 An Auxiliary Function

Let us define an auxiliary function

1
U, m(q) :=log : . (14.3.1)
ngl 1— 627Tzaa/qu
m=—ha mod M*

where « is defined in (14.2.15). We further write

m = bk + p (1<p<k, p=—hamod M").

Also, we put
2miph’ 2w
= - — 14.3.2
q" = exp ( . Kz) ( )
where [ is again defined in (14.2.15). Then
2mifh’ 2m 2mica
Vou(@)=— >, > log 1—eXp< p—7—(bk+p)+ )
1Sk b0 k K=z M

p=—ha mod M*

It follows from (14.2.16) that

(27Ti)\> <2mﬂh’M 27rz'ozak> <2m‘5h’ 27riaa>
exp = exp P+ = exp p+ .

KM* KM* k M

Vom(q") = — > > log (1 — exp < [2: (bk +p) + 27;)\>)

1<p<k  b>0 “
p=—ha mod M*

= 2 > )

1<p<k 1<v<K b,c>0
p=—ha mod M*

X exp ((CK + ,,)<_ ?(Z(bk ot 27;?))

2miv 1 _ 2m
_ Z Z 22 Z - o~ (Ok+p) (cK+v) FE
1<p<k  1<0<K boso CIL TV
p=—ha mod M*

1
cK +v
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If we substitute p back to A and apply Mellin transform and the functional equation
of Hurwitz zeta function to ¥, 5/(¢*), then

1

1 —s. & 1 L
Uy n(q) = — > > cos 2mpp cos 2mvA o S’fz) o ﬂj 5 %) ds
4mik K K 15k k K Jsy2) z75cos
A=a mod M 1<v<K
1—s. & 1 v
=+ 1 Z Z sin 2mpp cos 2mA < S’_ks) C( W:— > %) ds
4mik K LSk 1k k K J3)2 z~%sin
A=a mod M 1<v<K
1—s.8)¢(1 v
+ : Z Z sin 2mp sin 2mVA < S’_ks) C( ,r:_ 5 ) ds
drkK LK 15k k K Ja)2 z~%sin 5
A=a mod M 1<v<K
1 —gs. & 1 r
+ = Z Z cos 2mp sin 2mA < S’_]Z) 3 F:_ i K) ds
Ak K 1K 1spsk k K J)2) z7%cos
A=a mod M 1<v<K
= J1+ Jo+ J3+ Jy. (1433)
Notice that
T, =J; and Ty = Js.
Further,
2(J1 + Jg) = \I/(LM((]*) + \IIM—a,M(q*)~ (1434)
14.3.2 Estimations Concerning Hurwitz Zeta Function
Recall (see, for instance, [27, (25.11.9)]) that for R(s) > 1 and 0 < a < 1,
2T =01 1
((1—-s,a) = (275;? nZ::l — cos (Qws — 2n7roz> .
This implies that for 0 < a < 1, we have a uniform bound
21°(3/2)¢(3/2 h(m|t|/2
(=05 + it, 0) | < 2(3/2)(3/2) cosh(x]t}/2) (14.3.5)
(27T)3/2

It also follows from [26, Theorem 12.23] with some simple calculations that, uniformly
for [t| >3 and 0 < v < 1,

C(—0.5+it, o) | < 11[t*2. (14.3.6)
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Finally, we have, for 0 < a <1,
€25+t o) | < a2 +((5/2). (14.3.7)

Lemma 14.3.1. Let z be a complex number with ®(z) > 0. Let 0 < o, < 1. Define

integrals

1 1
Z.(2):= /(3/2) 22C(1+s,a) (1 —s,0) (cos” + z'sin”s)ds (14.3.8)
2 2
and
1 1
T (z):= /(3/2) 2°C(1+s,a)C(1—s,0) (cos T T m) ds. (14.3.9)
2 2

Then if (z) <0, we have

1T, (2)] < 7.2312 (*? + ¢(5/2)), (14.3.10)
while if 3(z) > 0, we have

IZ_(2)] < 7.23]22 (a”? + ((5/2)). (14.3.11)

Proof. Let us write s = 3/2 + it as the path of integration is the vertical line (s) = 3/2.

We have
|Zs| _ |Z|3/2€—Arg(z)t.

Also,

e~ 2!

~ Isin(ms)|’

1 L 1
s N— s
COS o5 7 S1n o5

Hence, for z with J(z) < 0 (recall that R(z) > 0 so that —7/2 < Arg(z) < 0), we have

1 1 eslt

s
2

|2 < 2|22

COSs

isin %2 | sin(ms)|
It follows that

Xl

s

Z. () < 202 ((0%2 +¢5/2)) [ 1(-05 i, B)

< 7.2312% (% + ((5/2)).
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Similar arguments also apply to Z_(z) if &(z) > 0.

14.3.3 Bounding the Integrals

Recall that

For Ty and Y4, we define

(14.3.12)

It follows from Lemma 14.3.1 that

1 kK K 5/2 5
Toadl < oene X TR () +¢(5)
ATk M 1<;K v 2

-7.23 232 - 2¢(5/2)K°/?
- 7.23 ¢(5/2) | Tk

3/2 Mo\
— k
2rM 27 ( (k, M))

- w( )3/2< kaM ) N5/2 (by (14.2.6))

_723(2(:]/;) 23/4< M ) JIrX

_4M

< XW. (14.3.13)
Finally, we bound

IR(T1+ Yo+ T3+ Ty)| <|R(T1 4+ Ts)| 4+ [R(To + Yy)]

<|R(J1 + J3)| + | R(J2 + Jo)| + | Lo £ Jo| + [Ty £ Jy
< [R(Wanr(q7)] + 21R(J1 + J3)| + [ T2 £ Jo| + [Ty £ Jyf
2I?R(\If M (@) + RV ar-a.0(q7))]

+ Ty £ Jo| + | Ty £ Jyf.
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Recall from (14.3.2) that

Hence,

1= (3(-2) = 308 (L)

By (14.2.7), we have
(k, M)
M

l¢*| < exp (—47r2 : 0.07) < 1. (14.3.14)

We further have, by some simple partition-theoretic arguments that, for any a =
1,2,....M

Y

. 1 1
|§R(\I’¢Z,M(q ))‘ < <
e - p—
ngl L—1g*[™ = (l¢*[; ")) o
m=—ha mod M*

:exp( S log(1 — |¢7[f ):exp (ZZ ’q*’zm)

>1 >im>1 M

< exp (T; n|q*|"> = exp <(1_‘q|2*|)2> '

In consequence,

z(kM)
e —0.287

R(War(q?))] < L.
R(Varr(q"))] < (1_)<<

It turns out that

2 (k,M)
670.2871' v

M3/2
IR(T, + Ty + T3+ Ty <3 7 +2-651——2 X2
(1 _ 02872 ““;j}“) (k, M)/

2 (k,M)
0.2872 (A1)

3e~ M3/2
< 13.02——— X1/?
B (1 _ 6_0'28”2”“1’6}“)2 * (k, M)>/2

< X'2. (14.3.15)
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14.4 Theorem 14.1.1: The Residues

14.4.1 Some Lemmas

We first require some finite summation formulas of Hurwitz zeta function, which

follow from the first two aligned formulas on page 587 of [38].

Lemma 14.4.1. For any 60 =1,2,... k,

2wl a 1
12}@ cos — Q(O, k‘) =—3 (14.4.1)
and
2 2
S cos Wko‘eg@, Z‘) = T (60° — 610 + ). (14.4.2)

1<a<k

Forany0=1,2,...,k—1,

/ /
S sin 2”:‘%@, Z) - ;ﬂ (FF (1 - Z) - Fp(i) ) - ;cot ”: (14.4.3)

1<a<k

and

S sin 2”}:‘%(2, z> = ork? (g’ (-1, Z) ¢ (-1, 1- Z) ) . (14.4.4)

1<a<k

We also need three finite summation formulas of the digamma function due to Gaufl

(cf. [164]).

Lemma 14.4.2. Forany 60 =1,2,...,k—1,

2raf TV [« 70
— (=) =kl 2sin — 14 4.
1<Otzqgcos T <k> og< sin k:) ( 5)
and
2raf 1V [« T
i — (=) = =(20 - k). 14.4.6
1§§ksm k F(k) 5 (20=H) (14.4.6)
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Further,

(14.4.7)

|
—
7|
~——
=
5
_I_
3
09
=

> Res, . = Ress—o(*) + Resg—_1(*) + Ress—1 (%)
R [=3/2 275 cos &2
b ﬁ(u)ﬂ(v%%(??%ﬂ(&%)_224(0a‘f:)<(2w"<)
&% I'\k \K T2 T
and
1—s,L 1+s,+
Z Res, << s> C< K> = Ress—o(*)
R [=3/2 z758in I

T (log 2)* B 2long’<,u> N 210ng"<y>
12 T T I['\k m [\K

F2EETE) () (k)
mI'\k/ T \K k T K
where ~; () is the generalized Stieltjes constant.
Finally, recall from (14.2.12) that p is the unique integer between 1 and k such that
p = —hA (mod k). Hence,
A=K < p=k (14.4.8)

Further, (14.2.13) says p = —ha (mod M*). Recall also that b is the unique integer
between 1 and M™ such that

= —ha (mod M™). (14.4.9)

Then the following two summations represent the same thing:

> W= > (¥
1<A<K 1<p<k
A=a mod M p=bmod M*
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14.4.2 Evaluation of R;

We have

1 2T up 2T\
Ry = — coS coS
YT 4mikK ISAZSK 1§gk k K
A=a mod M 1<v<K
(262 )c0k) 2x¢(0.5)<(2 &)
Tz T '
First,

1 1 2mpp < u) 2TvA ( 1/)
= ——— 2,— —
fui=Sommr 2, 2 5y o\2y) 2 om0

1<A<K  1<p<k 1<v<K
A=a mod M
1 1 w2 1
- (6p2—6kp+k2)-<—>
z mkK 1%1« 6 2
p=bmod M*
1 1 w2k 9 1
_ = L o M* M* 2y . (_)
ik 6 A o0 T BMT (M) - (=3
27 1 9 9
TR 2miE AL 00— 60MT A (M)
27 1 9 9
= —— — 6bM™ M*)%). 14.4.1
T oaig 00— 6MT A (M) (14.4.10)
Hence,
: I 2 2
—2miR = ;6I<:2M(6b — 6b(k, M) + (k, M)*). (14.4.11)
Also,

1 2w pp L 2mvA v
Rig = —2—5— cos ((O, ) cos C(Q, )
ik 2=y 2,k 0 2 T
A=a mod M

1 2
3 (—) T (6M2 — 6N + K2)
1<A<K 2 6
A=a mod M

1 1 2 K
=— (== —==(6a® — 6aM + M?
“m kK ( 2> g 700" — 6aM + M)

7k 1
= — 6a®> — 6aM + M?
2 2aiag 00 ~ 6aM + M)

1 2
= — 6aM + M?). 14.4.12
T48i7TM(6a 6aM + ) ( )

1
“2intkK
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Hence, recalling that a = 1,2,..., M, we have

2 2
—omif| = |15 SZ]‘AfM |
< 2\/57‘['. M?

- kKN 24M
W

T k-0.9V2rX 24

In consequence,

M
|—2miRy| < 0.17?)(—1/2 < X712 (14.4.13)

14.4.3 Evaluation of R,
We have
B 1 2rpp . 2nvA 217 I /v
Ro=—1ik 2 2. cos—rsin— wr<k)r<K>'

1<A<K  1<p<k
A=a mod M 1<v<K

Hence, with (14.4.8),

1 27r,up
o= —gimrg 2 2.

1<A<K  1<p<k
A=a mod M
1

1"/
T
Skl (2' ) T(2) - K)
— (0] S1n -
2in?kK (2=, ¢ 2
p=b mod M*

() > ()

1<v<K

1 TP
= — 2\ — K)1 2sin — | . 14.4.14
e PR ) Og( s k:) ( )
<p<k
p=b mod M*

Notice that for 0 < x < 7/2, we have

) 7 log 2
log(2 < )
[log(2sinz)| < o
Hence,
1 mlog2 k
omiRy < 2 Y K. TEEN
2K 1<p<k 2 mp

_log2
2

2: -

1<p<k P
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log 2

IA

k(logk + )

[\

log 2

< N(log N + 1)

log 2
o8 V21X (log V21X + 7).

IA
N

\)

In consequence,
|—27iR,| < 1.3XY2 4+ 0.44X Y% log X < X% 1og X. (14.4.15)

14.4.4 Evaluation of Rj
We have
1 , 27T,up o 2 2F’< ) F’(V)
Ry = —| = .
by SN DR DR M T \k) T K

1<A<KK  1<p<k
A=a mod M 1<v<K

Hence, with (14.4.8),

1

2rup T (1 . 2T
Rs = Z Z sin <> Z sin < >
2wk K 1<A<K  1<p<k ko T'\Fk 1<v<K K T\K
A=a mod M
1 T T
2K gpik 32— H) 5 )
p=b mod M*
1
=—— Y (2p-k)(@2X-K). (14.4.16)
8kK ok
p=bmod M*
In consequence,
1 k wk TN T2t X
—2miRs| <2 kK = < < )
[=2mifs| <2 g A AM* =AM S AMe
Namely,
1.97
—OmiRs| < ——— X% <« X2, 14.4.17
| Uy 3| (k’ M) < ( )
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14.4.5 Evaluation of R,

We have
1 . 2mup 2T\
Ry =— sin cos
A=a mod M 1<v<K
(262 )c0k) 2=¢(0.5)<(2 &)
Tz T '
First,
1 27rup 27ry>\ v
Ry := — sin ( ) COS <0, >
ZQW%K 1<§;K 1<2u:<k 1<;K K K
A=a mod M
1 1 p p 1
S omk? '(_1 ) - L
2 202k K gp;k " (C 'k k 2
p=bmod M*
I p P
1k o(10) ¢ (_1,1_) |
L (CF: k
p=b mod M*

If b = M*, then both p and k — p run through all multiples of M* within the range [1, k),

and hence
R4y = 0. (14.4.18)

We further notice that if d | kK and 1 < ¢ < d, then for any s # 1,

lgik C( > <S>SC<S,2> (14.4.19)

¢/=cmod d

Hence,

s

> ¢ (s ) = (S)c(s;) log(k/d) + (S) ¢ (s.5). (14.4.20)

1<t<k
f=c mod d

Since M* = (k, M) divides k, it follows that if b # M* (and hence p # k), then

o= Lt CE)< (1m0 (255)
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(e e - ) e (55
e () e (2 45)
- i(k’]y)?; (g’ <_1, (k’bM)> — (-1, W) ) (14.4.21)

It turns out that

0 if b= (k, M),
—2miRy = B2 9 ke, M)—b :
— LMY o (_1,(,%%) ¢ (_1, <(’M>4) ) if b#£ (k,M).
(14.4.22)
Also,

o 1 . 2mup ( ,u) 2mv A ( V)
R42‘_2727r2kK Z Z sin 3 CO’I{: Z oS I ¢ Q,K

1<AKK  1<p<k 1<v<K

A=a mod M
1 1 7w 7, N
=z > —cot— - —(6)\ — 6K\ + K?)
2m2k K 1ok 2 k6
A=a mod M
_ 1 2 2 TP
= onr 123 @A—ﬁKA+K)mtk
<p<k
p=bmod M*
I > (6A* —6KX+ K?)cot TP (14.4.23)
481K > k- o
<p<k
p=b mod M*

Notice that for 1 < A\ < K,
|6A? — 6K\ + K?| < K?

and for 0 < z < 7/2,

1

|cotz| < —.

x

Hence,
) 1 2 2 TP
| —2miRys| = |T|m 1; (6A* — 6K\ + K<) cot T
<p<k
p=bmod M*
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In consequence,

|—2miR | < 0.12 log X 4 0.36 < log X. (14.4.24)

(k, M) (k, M)

14.5 Explicit Bounds of G(q)
Recall that
(4% 9%
(45 4*)o0 (9% ¢%)
The goal of this section is the following uniform bound of |G(gq)| when ¢ is away from =+1.

G(q) =

Theorem 14.5.1. Let Qyy, be as in Remark 14.1.1. For any q (with |q| = e~/X) not
in Qi1 and Q1/2, we have, if X > 3.4 X 107, then

|G(q)| < exp ( (Z&; — 1(1)0> X). (14.5.1)

Further, if ¢ = e ™2™k ith 7 = X' 4 2miY s in Qi1 or Qiya, then (14.5.1) still
holds under the assumption X > 3.4 x 107 provided that |Y| > 1/(27X).

Notice that 7 = X! + 2miY". Hence,

-1 Xil . 2rY
T = —1 .
X2 4 472Y2 X2 4 472Y2

(14.5.2)

In the sequel, we write b as b(h, a, k, M) to avoid confusion. We also write for convenience

M2 L b1
Mae += 2 0ang (” M2 (M) 6
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+ 271 <—<’ (—1, (kbM)> + (—1, (kbM)>> ) (14.5.3)

which is the main term in (14.1.5). Further,
Mg = My g — Myg + Mg (14.5.4)
denotes the main term of log G(¢q) whereas
Eq :=logG(q) — Mg (14.5.5)
denotes the error term.

145.1 Casel: ke€2Z+1

Notice that (k,4) = 1. Hence, we always have b(h,1,k,4) = b(h,3,k,4) = 1. Also,
(k,8) = 1. Then b(h,6,k,8) = 1. It is not hard to compute that

1 72
6= (14.5.6)
It follows from (14.5.2) that
2
< . 0.
R(Me) < 48k2X (14.5.7)

We may also compute from the bounds (14.3.15), (14.4.13), (14.4.15), (14.4.17) and
(14.4.24) that

IR(Eq)| < 1.32XY21og X + 512.74XY? +1.92log X + 42.74 + 2.72X /2. (14.5.8)

145.2 Case2: kc 4Z + 2

Notice that (k,4) = 2. Since (h,k) = 1, so h is odd. Hence, we always have
b(h,1,k,4) =b(h,3,k,4) = 1. Also, (k,8) = 1. We have b(h,6,k,8) = 2. It is not hard

to compute that

1 w2
Mo = ~ToRe (14.5.9)
It follows from (14.5.2) that
2
7r
< —X. 14.5.1
R(Me) < Tok2 (14.5.10)
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For the error term E¢, we have
IR(Ee)| < 1.32X2log X +95.77X Y2 4 0.96log X + 11.61 +2.72X Y2 (14.5.11)

14.5.3 Case 3: k€ 8Z + 4

Notice that (k,4) = 4. If h =1 (mod 4), then b(h, 1, k,4) = 3 and b(h, 3, k,4) = 1. If
h =3 (mod 4), then b(h,1,k,4) =1 and b(h, 3, k,4) = 3. Hence,

Mg — Mz = 71_16%]?2((]1) (CI (_1’ i) —¢ <_1’ i))

where

X(h){l ith=1 (mod 4),

—1 ifh=3 (mod 4).

Also, (k,8) = 4. Since (h, k) =1, so h is odd. Hence, we have b(h, 6, k,8) = 2. It follows
that

1 72
Mos == 52
Hence,
1 72 16mwix(h) [, 1 , 3
mG_T(_W+Ic2 (@(23)-<(3) ) (14.5.12)
It follows from (14.5.2) that
2 X!
ROMG) = — oo
B6) = =G X 1 472y
167y (h) < ,( 1) ,< 3>) 2y
—1.2) = 1.2y —=
+ k2 ¢ "4 ¢ "4)) X2 4 472Y?
_1 —EX T 6n (¢ (-1 d) — ¢ (<L) 2mly
= k2 X2 4 4n?[Y ]2
7 —X71 4192 (¢ (-1,1) = ¢ (-1,3)) Y]
"6k X2 +4m?|Y|? ‘
We next show that
2.94
R(Me) < =5 X. (14.5.13)
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It suffices to prove that

7 —X 1 4192(¢ (-1,1) = ¢ (-1.3)) Y] _29
6k X2+ 4m2|Y 2 =g

Namely,

! 17.64
70.56X|V[? — 192 (g’ (-1, 4) _ ¢ (—1, i)) Y]+ ( T64 1) X1>0.
T

2

Notice that on the left-hand side if we replace |Y'| by ¢ and treat it as a quadratic function

of real t, then it reaches the minimum when

,_1o2(¢(-15) = (=19))
N 2 x 70.56 X ‘

Further, the minimum is

2
—70.56X x (192 (€ <;1>< 4117)0;6?);(_1’ Z))) n <11§4 + 1) X~1> 001X > 0.

Hence, (14.5.13) holds.

For the error term E¢, we have
IR(Eq)| < 1.32XY2log X +21.1XY% +0.48log X +3.22 +2.72X 12 (14.5.14)

14.5.4 Case 4: kK € 87

As in Case 3, we still have

- P (1) - (1)

Also, (k,8) = 8. If h = 1 (mod 4), then b(h,6,k,8) = 2. If h = 3 (mod 4), then
b(h,6,k,8) = 6. Hence,

o= (-G TR (D) e ()

In consequence,
1 72
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Further,
R(Ms) < 0. (14.5.16)

For the error term E¢, we have
IR(Eq)| < 1.32XY21log X +13.27XY2 +0.36log X +1.73 +2.72X 2 (14.5.17)
Proof of Theorem 14.5.1. We have
log|G(q)| = R(log G(q)) < R(Me) + [R(Eq)|-

The first part simply follows from some direct computation by taking into account of the
bounds for R(M) and |R(Eq)|. For the second part, we notice by (14.5.2) that, when

Y| >1/(2nX),

R(r ) < X

5
Whenever ¢ is in @y, or Qy/2, we apply (14.5.6) and (14.5.9) to obtain the bound

2 X
< =
R(Mg) < 1590

Hence, (14.5.1) follows by inserting the contribution of the error term and carrying on

the routine computation. O

14.6 Precise Approximations of G(q) Near the Dominant Poles

Recall that

1
Glg) = —7F——. (14.6.1)
(4, =% ¢")o
From the analysis in the previous section, we know that G(¢) indeed has dominant poles at
q = £1. In fact, if ¢ = e 7"2""/* isin Q;/; or Q1 s, then (14.5.6) and (14.5.9) tell us that
log G(q) is dominated by 7%/(487) while the coefficient 72/48 is the largest comparing
with that for other Qj /.. Now we want to give some more precise approximations of

log G(q) near the dominant poles.

Theorem 14.6.1. Let 7 = X! + 2miY with |Y] < 1/(2rX). Then

21 1 3 1 1
logG(e™) = 2—8; — Zlogf — Zlog? — ilogw + logF<4> + FE. (14.6.2)
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where

|E,| <0.66X %4, (14.6.3)
Further,
71 1 1 1 3
1 —e ) =——+-1 ——log2——1 logI’ E_ 14.6.4
ogG(—e™) 487_—|—40g7' 1108 2og7r+ og <4>+ (14.6.4)
where
|E_| <0.82X %4, (14.6.5)

Proof. We deduce from (14.6.1) with the help of Mellin transform that

e—(4m+1)€7' -1 Ee—(4m+3)€7'
logG(e Z Z ( 7 + (=1) 7 )

m>0¢>1
_ 1 78 s— 1 <_1)£
_2771'/(3/2) Lls ngwggﬁ 1( 4m—|—1)5+ (4m+3)3)d8
1 . 1 /3
=5 /(3/2)(47) I'(s)C(s+1) (C <s, 4) —(1-2 )C(s, 4) )ds

1
= 27”/(3/2) @+(S)d8.

Now one may shift the path of integration to (—3/4) by taking into consideration of the
residues of ©, (s) inside the stripe —3/4 < R(s) < 3/2. Hence,

1
logG(e™™) = > Res; ©4(s) + - /(_3/4) O, (s)ds.

—3/4<R(s)<3/2

Notice that O (s) has two singularities respectively at s = 0 and 1 when —3/4 < R(s) <
3/2. We compute that

1
Ress—1 O,(s) = ——
and

9=t +(02)~uak(03)

1 1 1 1
=1 log(47) + logI‘(4) — 5 log(27m) + 1 log 2
1 3 1 1
= —Zlogr — ZlogQ — 210g7r+1ogf<4>.
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Further, recalling that 7 = X ' + 2miY" where Y| < 1/(27X), we have | Arg(7)| < 7/4.
Since for R(s) = —3/4,

3 23
7% = exp <4 log |7| + S(s) Arg(r)) < |r[¥/4elS /4

it follows that

1
— O, (s)d
2me /(3/4) +(s)ds

e (R )L

< |7_’3/4 ) ﬂ/ 43/4ltlm/4 (_4 + zt)‘ ‘C (4 + zt)‘

(o))

Byl =

x (’((—i +it, i)’ + (14294

< 0.507|7[>4,

We also have

17| = VX2 +472Y2 < V2X L.

Hence,
|E,| <0.66X %4,

For log G(—e™7), we simply notice that

1 3 1
_ —T - —S _ _ _ 2—8 _ .
log G(—e7) = 5 /(3/2) (47)*T(s)C(s + 1) (C(s, 4) (1 )g<s, 4) )ds
The rest follows from similar calculations. O]

14.7 Applying the Circle Method
The proof of Theorem 14.1.2 is simply an exercise of the circle method. We first put

48n
—

X = (14.7.1)

™
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Since it is assumed that X > 3.4 x 107 as in Theorem 14.5.1, one has
n > 2.4 x 10" (14.7.2)

Recall that Cauchy’s integral formula indicates that

o) =5 | ¢4y,

- % |=e—1/X q”+1
-5t _ , ,
_ /X / TG e i) 2uint gy (14.7.3)
~3x
Now we separate the interval [—51¢, 1 — ;1] into three (disjoint) subintervals:
1 1
L= |
! [ 2 X’ QWX} ’
. [1 11,1 }
2 arxT 2 2nx
and
1 1
L= |- - LD
’ [ 21X’ 27TX] b

Before evaluating (14.7.3) for each subinterval, we fix the notation that O(z) means an

expression F such that |E| < z. We also write for j = 1,2, 3,

g](n> — en/X/ G<67(X_1+27Tit))€27rint dt.
1

J

First,

_1_
91(71) _ en/X/ZW;X G(e—(X*1+27rit))€27rmt dt

27X
1 [xtix _
= 7./1 _€7G(eTT) dr.
2w JL—ik

Notice that for |z| <1,
e’ =1+ 9O(2|z|).

Applying (14.6.2) yields

(1+90182X¥)T(1/4) 1 ph+it w1
g1(n) = 93/471/2 o /1 , TOREXDP (487- + nr) dr. (14.74)

X 'x
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We then separate the integral as
1 /1H; 1 n21+ y
— T iexp | ——+n7| dr
21 ——z% P A48 T
/ /** i +/}<+i§( 1 7?1 N 4
exp|-—=—+n
27TZ 0o z% fooJri% ’ P 48 T 4
=:Ji1+Ji2+ Ji3
where
[i=(—00—iX 1) = (X' —iX ) 5 (X' 4+iX ) = (oo +iX1)  (14.7.5)

is a Hankel contour. To evaluate J;;, we make the change of variables

Then

2 3/8 mn /1
JH_(ML) 27Tl/w oXPp 48( —i—w) dw

where T is the new contour. Recalling the contour integral representation of I(z):

II)

I( /w 5T 5 wt;) dw,
2m

we conclude
T

3/4 7 ﬂ\/ﬁ
%ﬂywmwg“(2 3)'

To bound Jy9, we put 7 = —iX !, Then

1 px! 1
Ji2 = %/_OO 7'_% exp <Z87‘ +n7’> dx.

Since |7| > X!, we have

Jll =

|7_|—1/4 < X1/4.

Also,

’enT| — en:p
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Further,

V]
»

=

T
e 648 224+ X2 S 6%

&)
&l

Hence,

-1

|J <i X1/4 %X X nz g
12|_27r. e e dx

L s owx
2T n

B 31/8 3T n
= s (53

One may carry out a similar argument to obtain

Tl < 31/8 37 \/ﬁ
sl < Si7a 57 P (s 3>'

In consequence,
1 xtix 1 w21 dr — 73/4 I W\/ﬁ
27?2'/)1(—1‘}( TP sy ) A= 23/233/3p3/8" 3/ (2 3)
o 21/231/8 3 \/ﬁ
O\ T P (8 3) '
Recalling (14.7.4), we have

7 /AT(1/4) ™ [n
gi1(n) = W]_3/4 <2 3> + B, (14.7.6)

where

r(1/4) ( 1.327%2 T [n
|Eg1\ < 93/471/2 (2333/4n3/4 Lsya (2\/;>
PO 2 W 3m \/ﬁ
Tt 23/233/83/8 | 15/4n7/8 P (8 3>
<n M 5, <72T\/§) : (14.7.7)

On the other hand,

1
g2(n) = (_1)”6n/X /2"1X G(_e—(X_1+27rit))e27rint di

2w X
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It follows from (14.6.4) that

i L
*—ix

(1+9164X¥T(3/4) 1 h+ik 21
ga(n) = (—1) ST o / 1 exp (487' + m') dr. (14.7.8)

Similarly, we separate the integral as

1 /)1(“)1( % 7T21 I d
27_” 7ili T4 exp 48 nTt T

X

% X'H w21
i exp | —=—+n7| dr
27T’L )1< oo—i—z T 48
=: Jog + Joo + Jog
where the Hankel contour I is as in (14.7.5). One may compute by the same argument
that »
T T n
I = - (513):
To bound Joe, we still put 7 =  —iX~!. Noticing that

|7_|1/4 — (ZE2 +X_2>1/8 < |I|1/4 +X_1/4,

we have
1 2 X1
[l < e [ e (o X
™ —0o0
1 22 0 1 i -1
=or G%X/ e (=)t dr + o e%X/ e XV
s S .
a 27Tn5/4 xp (8 3) + 21/231/87T3/4n9/8 €Xp (8 3) .
Likewise,

I'(5/4) D 1 3m [n
/23] < 2n/A P (8\/g) + 21/231/873/4n9/8 P (8\/;) '
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In consequence,

L m/AT(3/4) T [n

where

/Aql/2\ 2431p 2V 3
1.6473/4
11+ 93/233/87,3/8
5 '(5/4) W\/ﬁ 1 37r\/ﬁ
x 2mnS/4 exp (8 3) + 21/231/873/4n9/8 <xp (8 3)

S <7T ") 14.7.1
<n 514\ 5\ 3 (14.7.10)

I'(3/4 1.6472 T n
B, < 2 >( Fon (242

Remark 14.7.1. It is necessary to point out that go(n) has an absolute size of

tant *5/8]_ (ﬂ- n)
constant x n 451 3)

_ ™ Im
b < (37)

Since the two I-Bessel functions have the same order, we conclude that E, is negligible

while from (14.7.7),

comparing with gs(n).

Finally,
g3(n) == e"/X/ G(e*(X_1+27rit))€2m'nt dt.
I3

Hence, by Theorem 14.5.1,
2 1
< n/X/ T 2 ) x| at
slm)] < e [ exp ( (5~
n 2 1
< — ——— ] X|.
= &P (X * (48 100) )
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Namely,

T M V3n
|g3(n)| < exp (2 3~ 257?) : (14.7.11)

The asymptotic formula (14.1.8) follows from (14.7.6), (14.7.9) and (14.7.11). Further,

a simple calculation reveals that when n > 2.4 x 10, the sign of g(n) depends only on

/40 (1/4) T n
e (515),

the leading term

which is of course positive.
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Part 1V
The World of patterns
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Outline

o Chapter 15 is devoted to Lin and Ma’s conjecture on 0012-avoiding inversion sequences.

o Chapter 16 is devoted to Lin’s conjecture on the avoidance of triples of binary relations

with the ascent statistic considered.
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Chapter 15
Lin and Ma’s Conjecture on 0012-Avoiding Inversion Se-

quences

This chapter comes from

e S. Chern, On 0012-avoiding inversion sequences and a Conjecture of Lin and Ma, submitted.
Available at arXiv:2006.04318. (Ref. [62])

15.1 Introduction

Our starting point is a recent paper of Yan and Lin [174], in which they proved a

conjecture due to Martinez and Savage [132] that claims

n—1 2
1,(021,120) =1+ 3 < ! ) (15.1.1)
=1

1—1

This sequence is registered as A279561 in OEIS [163]. Lin and Yan also showed that this
sequence as well enumerates |1,,(102,110)| and |I,(102,120)|. This therefore establishes
the Wilf-equivalences

I,(021,120) ~ I,(102,110) ~ L, (102, 120). (15.1.2)

At the end of [174], a conjecture of Zhicong Lin and Jun Ma discovered in 2019 is

recorded.

Conjecture 15.1.1 (Lin and Ma). For n > 1,

I1,(0012)| = 1 + nf (Z 321> (15.1.3)

In other words, one may extend the balanced Wilf-equivalences (15.1.2) as the following
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unbalanced ones:
I,,(0012) ~I,(021,120) ~ I1,(102,110) ~ I,,(102,120).

It is also worth pointing out that the consideration of length-four pattern avoidance in
inversion sequences appears novel in the literature.

The object of this chapter is to confirm the above conjecture of Lin and Ma.
Theorem 15.1.1. Conjecture 15.1.1 is true.

Let us fix some notation. Given e = ejey - - - e, € 1,,(0012), we define
R(e) := {m : 3i # j such that e; = e; = m}.

In other words, R(e) is the set of letters that appear more than once in e. We further
define
srpt(e) ;= min R(e),

that is, the smallest number in R(e) — here srpt stands for “smallest repeated.” Notice
that there is only one sequence 01---(n — 1) in which none of the letters repeat. For

this sequence, we assign that
stpt(01---(n—1)) :=n — 1.
Finally, we define
last(e) := e,,

the last entry of e.

15.2 Combinatorial Observations

We collect some combinatorial observations about inversion sequences in I,,(0012).

Lemma 15.2.1. Forn > 1 and e € 1,(0012), if srpt(e) = k, then for 1 <i < k+ 1, we

have e; =1 — 1.

Proof. 1f srpt(e) = n — 1, then e = 01---(n — 1) and hence the lemma is true. Let
srpt(e) # n — 1. If in this case the lemma is not true, then since 0 < e; < i — 1 for each 1,
there must exist some k; < k = srpt(e) that appears more than once among ey, e, ...,

er+1. This violates the assumption that srpt(e) = k. ]
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Lemma 15.2.2. Forn > 2 and e = ejey--- e, € 1,(0012), let v(e) = e1eq---e,_1. We
further assume that e #01---(n—1). Then

(a). if last(e) > srpt(vy(e)), then
srpt(e) = stpt(7(e));

(b). if last(e) < srpt(vy(e)), then
srpt(e) = last(e).

Proof. A simple observation is that y(e) € I,-1(0012). Below let us assume that
last(e) = ¢, srpt(e) = k and srpt(y(e)) = K.

First, if R(y(e)) = 0, then for each 0 <i<n—1,e; =4 —1. Sincee #01---(n —1),
we have last(e) = ¢ <n — 2 = srpt(y(e)). This fits into Case (b). Further, we find that
R(e) = {¢} and hence srpt(e) = ¢. This implies that srpt(e) = last(e).

Now we assume that R(vy(e)) # 0. Notice that Case (a) is trivial. For Case (b),
we first deduce from R(v(e)) # 0 that & <n — 3. By Lemma 15.2.1, we find that for
1<i<k+4+1,e=1i—1 Iflast(e) = ¢ < k', then we know that e,y ; = ¢ = e,. Also, we
notice that the indices satisfy { +1 < k' + 1 <n — 2 < n. Hence, ¢ € R(e). Therefore,
srpt(e) = min{/, k'} = ¢ = last(e). O

Corollary 15.2.3. For e € 1,(0012),
0 <srpt(e) <last(e) <n —1.

Proof. If e = 01--- (n—1), the above inequalities are trivial since srpt(e) = last(e) = n—1.
If e#01---(n—1), the inequalities are direct consequences of Lemma 15.2.2 and the
fact that srpt(e) > 0 and last(e) <n — 1. O

Lemma 15.2.4. Forn > 2 and e = ejes- - - e, € 1,,(0012), let e be such that srpt(e) =
last(e) = k with 0 < k <n —2. Then

(a). for1 <i<k+1,

(b). if we denote ' = elel---el,_, by the sequence obtained via €, = eyy; — k for each
1 <i<n-—k, then ¢ €1,_4(0012) such that

srpt(e’) = last(e’) = 0.
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Proof. Part (a) simply comes from Lemma 15.2.1. Also, we know from Part (a) that for
k+1 <i <n, it holds that ¢; > k. On the other hand, ¢; < ¢ — 1. Hence, €’ is still
an inversion sequence. Further, it is trivial to see that ¢’ still avoids the pattern 0012.
Finally, we have ¢} = ey —k =k —k =0 and last(e/) =€/, , =e,—k=k—k=0.
Since n — k > 2 > 1, we have 0 € R(¢’) and hence srpt(e’) = 0. O

15.3 Recurrences

Let
the number of sequences e € I,,(0012) With}

fn<k7£) = { srpt(e) =k and 1&8'6(6) =/

We will establish the following recurrences.

Lemma 15.3.1. We have

(a). forn > 1,
faln—=1,n—-1)=1;

(b). forn > 2,
fa(n—2,n—1)=0;

(c). formn>2and 0 <k <n-—3,
fulk,m—1) anl ,n—2);

(d). form>2and 0 <{<n-—2,
n—2

szm’”'

=LK'=

(e). form>2and 0 <k <l<n-—2,

¢ n—2
= fud (K, 0+ fua(k,0).
K=k

=t

Proof. Cases (a) and (b) are trivial. In particular, Case (a) enumerates the only inversion
sequence 01 ---(n — 1) in which none of the letters repeat. Below we always assume that
e=ejes e, €1,(0012). Let v(e) be as in Lemma 15.2.2.
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For Case (c), let e be such that srpt(e) = k < n — 3 and last(e) =n — 1. We first
notice that e,_; = last(y(e)) > srpt(y(e)) by Corollary 15.2.3. Also, it is easy to see
that srpt(y(e)) = srpt(e) = k since last(e) = n — 1 > k. Now we claim that e,_; = k.
Otherwise, namely, if e,y > k, we may find ¢ < j <n — 1 such that e¢; = ¢; = k. Hence,
e;ejen_16e, has the reduction 0012, which contradicts the assumption that e € I,,(0012).

We therefore have a bijection
e=-eey - eno(k)(n—1)—ereq - e, o(n—2)=¢.

Notice that €’ is still an inversion sequence avoiding the pattern 0012. Also, srpt(e’) > k.
Otherwise, there exists some &’ < k that appears more than once among ey, €s, ..., €, o
and therefore srpt(e) < k, which leads to a contradiction. Finally, to prove Case (c), it
suffices to show that ¢’ could be any inversion sequence in I,,_;(0012) with last(¢’) = n—2
(which is of course true) and srpt(e’) > k. Let ¢’ be such a sequence and assume that
srpt(e’) = k' > k. By Lemma 15.2.1, we have e, = k. Pulling back to e, we have
ex+1 = ep—1 = k with the indices k£ +1 <n — 2 <n — 1. Therefore, for this e, we have
k € R(e) and hence srpt(e) = min{k’, k} = k.

For Case (d), let e be such that srpt(e) = last(e) = ¢ with 0 < ¢ < n — 2. We first
find that srpt(y(e)) > srpt(e) = £. On the other hand, let ¢’ = ejefy---¢],_, € 1,,_1(0012)
be such that srpt(e’) > ¢. By Lemma 15.2.1, ej ; = {. Hence, by appending ¢ to the end
of €/, we obtain a sequence with both srpt and last equal to . We therefore arrive at a

bijection between e and ¢/,
e=ejey e, 1(0) < ejen---e,1 =€,

and the desired relation follows.

For Case (e), let e be such that srpt(e) = k and last(e) = ¢ with 0 <k < <n—2.
Notice that e,,_; > k. Otherwise, we assume that e, 1 = k' < k. Then by Lemma 15.2.1,
epy1 = k' = e,—1. However, ¥ +1 < k+1 < n —1 and hence ¥’ € R(e). But this

violates the fact that k = min R(e). Now we have two cases.

» c,_1 <e,. We claim that e,_; = k. Otherwise, we may find ¢ < j < n — 1 such that
e; = e; = k. Hence, e;eje,_1e, has the reduction 0012, which violates the assumption
that e € 1,,(0012). Now we have a bijection between e and e’ € I,,_1(0012) such that
srpt(e’) > k and last(e’) = ¢ by

e=erey- - eny(k) () < eren - ena(l) = ¢
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The argument is similar to that for Case (c). This bijection leads to the first term in

the right-hand side of the recurrence relation in Case (e).

» e,-1 > e,. We have a bijection between e and ¢’ € I,_1(0012) such that srpt(e’) = k
and last(e’) > ¢ by

e=erey- e, 1(£) < erea---€, 1 =€

The argument is similar to that for Case (d). This bijection leads to the second term

in the right-hand side of the recurrence relation in Case (e).
The proof of the lemma is therefore complete. n
We may therefore determine the support of f,(k,¥).
Corollary 15.3.2. Forn > 1, f,(k,{) is supported on
{(k,) eN*:0<k<t<n—1}\{(n—2,n—1)}.
Proof. By Corollary 15.2.3, f.(k,¢) =0 if
(k,0) g {(k,0) eN*: 0 <k<(<n—1}).

Also, fn(n—2,n—1) =0 by Lemma 15.3.1(b). Finally, for the remaining (k, ¢), we have
fn(k,0) # 0 with the help of the recurrences in Lemma 15.3.1. O

Finally, we have another recurrence.

Lemma 15.3.3. We have, forn >2 and 0 < k <n — 2,

fn(k’ k) = fn—k(o’ 0)

Proof. This is an immediate consequence of Lemma 15.2.4. O]

In the sequel, we require three auxiliary functions with ¢ within a sufficiently small
netghborhood of 0:

Lwig) = 3 Lo(e)g" = 3 (z Fulkn — w) .

D(x;q) = Z D, (x)q" : Z (:z: fnll, K)#) q",
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n—1 ¢
Flrg) = Y Faw)d = 3 (z 3 fn<k,f>xsz) .

n>1 n>1 \¢=0 k=0
Notice that Li(z) =1, Dy(z) = 0 and Fi(x,y) = 1. Also, since f,(n —1,n—1) =1, we

have

nz—:l full,0)z" = D, () + 2™
=0

15.4 001-Avoidance and a Result of Corteel et al.

The following result on 001-avoidance was shown by Corteel et al. [73].

Theorem 15.4.1 (Corteel et al.). Forn > 1,
IL,(001)] = 2"1. (15.4.1)

One readily observes that, for n > 2, there is a natural bijection between 001-avoiding
inversion sequences of length n — 1 and 0012-avoiding inversion sequences of length n
in which the last entry equals n — 1. Such a bijection could be simply constructed by
appending n — 1 to the end of the 001-avoiding inversion sequences. Therefore, we have

an enumeration result as follows.

Corollary 15.4.2. Forn > 1,

1 ifn=1,
{e € 1,(0012) : last(e) =n — 1}| = (15.4.2)
2n=2 ifn > 2.

Notice that Corollary 15.4.2 is equivalent to

L(l;q9) =) (nzl fulk,n — 1)> q"

n>1 \k=0
=q+¢ +2¢° +4¢" +8¢° + 16¢° + - --
)

1—-2q

Now we prove a bivariate strengthening of the above that will be utilized in our proof of
Theorem 15.1.1.
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Theorem 15.4.3. We have

q(1—q)?

L(x;q) = : 15.4.3
@)= T2 —ag 1549
Proof. For n > 2, it follows from (a), (b) and (c) of Lemma 15.3.1 that
n—1 n—3 n—2
Z fulk,n — Dk =271 4 Z Z fo1 (K, n — 2)2*
k=0 k=0 k'=k
n—3 K n—3
="y > faci(Kin—2)>" "+ foi(n—2,n —2) > 2"
k' =0 k=0 k=0
n—3 1 — :L,Ic’+1 1 — pn—2
_ ,..n—1 / -
=z —i-gz:ofn_l(k:,n 2) T -
Therefore,
1 1—z ! 1—zg?
_ ,n—1 o .
Lu(@) = 2" 4 o (Lna(1) = 2Lna (1) = 5=+
Multiplying the above by ¢" and summing over n > 2, we have
2
xq ¢(1—x)
L(x;q) —q=—L(1;q) — ——L(x;q) — ———
(wq) —q =7 L(g) — 7 _L(x:9) [
or
(1 —zq)(1 — 2z +2q)L(z;q) = q(1 — 2q)L(1;9) + ¢(1 — ¢)(1 — z). (15.4.4)

Applying the kernel method yields

l—2z+29=0,
q(1 —2q)L(1;q) +q(1 —q)(1 —x) = 0.

Solving the first equation of the system for x gives

Substituting the above into the second equation of the system, we have

q(1—q)

L(1;q) = e
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Substituting the above back to (15.4.4), we arrive at (15.4.3). O

15.5 Proof of Theorem 15.1.1

We first establish two relations concerning D(x; q).

Lemma 15.5.1. We have

1
1 —xzq
__4a
1—xzq

D(z;q) = D(0;q) (15.5.1)

F(1,1;9). (15.5.2)

Proof. We know from Lemma 15.3.3 that

Z Ti: fn(k7 k)‘rkqn = Z ni fn—k(oﬁ 0)$kqn

n>2 k=0 n>2 k=0

(withn/ =n — k) = Z Z fn/(o’ O)xnfn/qn

n/>2n>n’'

= > fw(0,0)27 3 (zq)"

n'>2 n>n'

LS 10,0007

1—xzq 1S9

Noticing that D;(x) = 0, we have

D(z;q) = D(0; q),

1—2aq

which is the first part of the lemma. For the second part, we deduce from Lemma
15.3.1(d) that

D(0;q) = Z fa(0,0)¢"

n>2
n—2 ¢

=Y 3> faa(K,0)g"
n>240'=0k"=0
=qF(1,1;q).

Therefore, (15.5.2) follows. O

Next, we show a relation between F(z,1;q) and F(1,1;q).
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Lemma 15.5.2. We have

l1—q
1,1;q). 15.5.
TP 1a) (15.5.3)

F(x,1;q9) =

Proof. For n > 2, it follows from Lemma 15.3.1(d) that

n—2
:an(ﬁ,ﬁ)xg
=0
n—2n—-2 /(
SIS
(=0 0= k'=
n—2
=D oD SN RNG) o
=0k'=
n—2 ¢ . k’+1
- Z Z fn 1 k, gl
=0k'=

_ (Fn_l(l,l)—an_l(ar,l))-

1—=x

Therefore,

A | ) :
D(x;q) = 1_ﬂn(F(Ll,q) v F(x,159)).
Substituting (15.5.2) into the above yields

q
1 —zq

F(L,1i9) = T (F(L,1iq) — aF (. Li)).

from which (15.5.3) follows. O
We then construct a functional equation for F(z,y;q).

Lemma 15.5.3. We have

rq Yyq .

q q(1—q) q(1 = q = 2yq + 2yq* + v°¢*)
=—F(,y;q) + F(1,1;q9) + )
e ) (1 —y)(1—zyq) ( ) (1 —2yq)(1 — zyq)
(15.5.4)
Proof. We first observe that
n—2 (-1 n—1
Z Sl 03y + 37 fulk, Oy = Fu(z,y) = > falk,n —1)z"y !
(=1 k=0 k=0
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= F(z,y) —y" ' L,(2). (15.5.5)

Notice also that

Z fall, O)2'y" = Dy(zy). (15.5.6)

Now, by Lemma 15.3.1(e), we may separate

n—2 (-1 n—240-1 £
Yo Sk Oty =303 > fua (K 02ty
(=1 k=0 (=1 k=0 k'=k
n—240—1n—2
+ 220D far(k O)aty”
(=1 k=0 0'=¢
We further notice that the first term on the right-hand side can be separated as
n—2/0-1 /¢ n—2 /(-1 (-1 n—2/¢—1
ZZ an (K 0)akyt = ZZ an (K0 fkyeﬂLZan—l(&E)xk ¢
=1 k=0 k'=k (=1 k=0 k'=k (=1 k=0
We have
n—2/40—1 /-1
Y20 faa(E Oty
(=1 k=0 k'=k
n—2 ¢—1 k'
=3 > faaK, 0y o
(=1 k'=0 k=0
n—2 (-1 | — k1
=3 > faaK, Oy ———
(=1 k=0 L—x
n—2 ¢ 1 — Ik/+1 n—2 1 — gt
= Z Z fn*1<k/?€)y€ 1 - Z fnflwv g)z/ 1
(=0 k'=0 =0
1
= T anl(lay) anfl(x7y)
11—z
1 n—2 n—1, n—2
-1 x(anl(y) +y" % = 2Dy (zy) — 2"y )
Also,
n—2 K

/—1
{=1 k=0

¢
_ (-
—;)fnflwag)y 1— 71
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1

- m(Dn_l(y) +y" 2~ Dy (zy) — xn—Qyn—z)

On the other hand,

n—2/¢—1n—2 n—24¢—
ZZanlkgxy—Zanlkgl Z?J
(=1 k=0 ¢'= =1 k=0 t=k+1
n—2 0 — 741
y —Y
= fa1(k, E’ k
=5 S =
nz:Z zf’: k+1 _ yz/+1
= foa(k, 0)x
=0 k=0 3 -y
= 1gy<Fn—1($y, 1) — Fn_l(x,y)).
Therefore,
n—2 /(-1
S fulk, Oty
0=1 k=0
1
= 1— 71 (Fn—l(lay) - an—l(xay)) + &J(Fn_l(xy, 1) — Fn_l({lj,y)>
— Dy (2y) — 2" 2y 2 (15.5.7)

It follows from (15.5.5), (15.5.6) and (15.5.7) that

E(2,y) —y" 'L(x)
= Dy (zy) + 1:17<Fn—1(17y) —aFua(2,y)

+ gy(Fn_l(xy, 1) — Foy(x, y)) — Dy (2y) — 2" 2y 2

1
Therefore,
Fz,y:9) =y~ Ll yq)
_ : q ) :
=D(zy;q) + (F(1,y:0) — 2 F(,y:9))
yq ’
+ 1_y(f(xy, 1q) — F(2,y:9)) — ¢D(xy; ) —

Applying (15.4.3), (15.5.2) and (15.5.3) gives the desired result. O

With the assistance of the kernel method, we may deduce a functional equation
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satisfied by F(1,y;q).

Lemma 15.5.4. We have

q q(1 —y)(1 — g — 2yq + 2y¢* + ¥*¢*)
F(ly;q) = ——F(1,1;q) + . 15.5.8
(1.5:4) l—y+y%q (1 1) (1—q)(1—2yq)(1 —y+y%q) ( )
Proof. We multiply both sides of (15.5.4) by (1 —z)(1 —y). Then
((1=y+ya) —2(1 —y — g+ 2yq)) F(x,y; q)
q(1 —q)(1 —x)
—q(1—y)F(1,y; F(1,1;
q(1 —y)F(Ly;q) + [ (1,1;q)
L A= o)1=y — g 2yq +2y¢° +4°¢)
(1 —2yq)(1 — zyq)
We treat the kernel polynomial as a function in = and solve
(I—y+yq) —z(1-y—q+2yq) =0
so that
o tTytuya
l—y—q+2yq
Substituting the above into
q(1 —q)(1 —x)
0=1q(1 —y)F(1,y; F(1,1;
q(1 —y)F(L,y;q9) + —— (1, 1;q)
L= 2)( = y)(1 — g = 2y + 29¢° + 4°¢°)
(1= 2yq)(1 - zyq) ’
we arrive at (15.5.8) after simplification. O

Finally, we are ready to complete the proof of Theorem 15.1.1.

Proof of Theorem 15.1.1. Tt is known that (cf. [163, A279561])

Y (1 " 2 (@ ill)) o= 42q(1+_(1q)_(12q_) 4;)_ & (15.5.9)

n>1
We then rewrite (15.5.8) as

(1 —y)(1 — g —2yq + 2yq® + y*¢?)
(1—q)(1—2yq)

(1—y+v*)F(1,y;q) = ¢F(1,1;9) +
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We treat the kernel polynomial as a function in y and solve

1—y+y’q=0.
Then
1 FV1—-4q
Y12 = 2—(]
We choose the solution
1—+/1—4q
yl — 2—q

since y; = 1+ ¢+ O(¢?) as ¢ — 0. Substituting y = y; into

(1 —y)(1 —q—2yq + 2y¢* + y*¢?)

0=¢qF(L1;q9) + (1= q)(1 = 2yq) |

we find that

—(1—-2¢)(1 —4¢) + (1 —2¢)yT—4g

2(1 = ¢q)(1 —4q)
1 —4g+(1—-2¢)/T—4q
o 2(1—q)(1 - 4q)

F(1,1;q) =

~1. (15.5.10)

This implies that for n > 1,
n—1 2 n—1 £
() = S X w0 = oo,
i=1 \* (=0 k=0

Therefore, Conjecture 15.1.1 is true. O]
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Chapter 16
Lin’s Conjecture on Inversion Sequences Avoiding Pat-

terns of Relation Triples

This chapter comes from

¢ G. E. Andrews and S. Chern, A proof of Lin’s conjecture on inversion sequences avoiding patterns
of relation triples, J. Combin. Theory Ser. A 179 (2021), 105388, 20 pp. (Ref. [22])

16.1 Introduction

Apart from the usual pattern avoidance with fixed patterns, Martinez and Savage

[132] also considered the following variation.

Definition 16.1.1 (Martinez and Savage [132]). We denote by I,(p1, p2, p3s) where
p1, P2, p3 € {<, >, <, >, =,#, —} the set of inversion sequences e = ejes - - - ¢, € I, such

that there are no indices 1 <17 < j < k < n with

€ pP1€5, €026 and  e; p3 e.

Here the binary relation “—" stands for “no restriction”, that is, if e; —e;, then we assume

that there is no restriction on the order of e; and e;.

Since the work of Martinez and Savage, the enumerations of such sequences have been
investigated extensively. In particular, a handful of Wilf equivalences among the 343
possible sets of inversion sequences avoiding patterns of relation triples were conjectured
in [132] and proved later in [37,39,45,90,113,126,127,175].

A further direction for the study of pattern avoidance is to take account of various
statistics and investigate their distribution over pattern avoiding sequences; see, for
instance, [45,113,127,132]. Along this road, in [127], Lin conjectured a curious identity
concerning the ascent statistic over I,,(>,#,>) and I,(>, #, >).

We first recall that the ascent statistic is defined as follows.
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Definition 16.1.2. Let e = ejes---¢, € I,. We define, asc(e) ;= #{i € [n—1] : ¢; <

eit1}, that is, the number of ascents of e.

Conjecture 16.1.1 (Lin [127, Conjecture 2.4]). For n > 1,

Z Zasc(e) — Z Zn—l—asc(e)‘ (1611)

e€l, (>,#,>) e€l, (>,#,>)

Below are the expressions of (16.1.1) for 1 <n < 6:

1,
142,
144z + 22,
1410z 4 1122 + 23,
1+ 202 + 552% + 2523 4 2*,
1+ 352 + 18822 + 2202° 4 502 + 2°.

It is notable that the Wilf equivalence of I,,(>,#,>) and L,(>,#,>) was first
conjectured by Martinez and Savage [132] and later proved bijectively by Lin [127].
However, Lin’s bijection, although preserves other statistics, does not imply his conjecture.

Our objective of this chapter is to confirm Conjecture 16.1.1. More precisely, what

we are going to show is the following equivalent form.

Theorem 16.1.1. Forn > 1,

Z Zasc(e) — Z Zn—l—asc(e). (1612)

eEIn(>,7ﬁ,Z) eeIn(Z:¢7>)

One will see that by replacing z with 27! in (16.1.2) and then multiplying 2z"~! on
both sides, the identity (16.1.1) follows.

Our proof of Theorem 16.1.1 is algebraic with the application of the kernel method.
But as commented in [127], a bijective proof of Conjecture 16.1.1 would be more intriguing.

Such a proof still remains mysterious.

16.2 Sequences in 1,(>,#,>) and I1,,(>, #, >)

In this section, we prove some combinatorial properties of sequences in I,,(>, #, >)

and I,(>,#,>). In particular, we are interested in the behavior of the subsequence
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from the left-most appearance of the largest entry to the last entry. The study of such
subsequences will lead to useful recurrences concerning these inversion sequences which

will be presented in the next section.

Definition 16.2.1. Let ¢ = eje5 - - - €, be a sequence of natural numbers in which e, is
the left-most appearance of the largest entry. We call the subsequence esepy 1 - - - €, the

tail of e, denoted by 7(e). For example,
7(0,1,0,3,1,3,5,3,3,3,6,5,7,8,8,6,8,6,8) = (8,8,6,8,6,8).

Definition 16.2.2. We use a>j to denote a sequence of consecutive a’s appearing at

least k times, that is,

aa - Q.
———
>k times

16.2.1 Sequences in L,(>, #,>)

Lemma 16.2.1. Let e € I,(>,#,>). Then the tail of e has the form
a>1 bzo (thh a > b),

that is, a sequence of at least one a followed by several b’s while the subsequence of b

might be empty.

Proof. Recall that for any e € I,,(>,#,>), we cannot find indices ¢ < j < k such that
e; >e;, ejFe, and e; > ey. (16.2.1)

Let e, = a be the left-most appearance of the largest entry in e. We first claim that
among €p.1, ..., €y, there do not exist two distinct entries both of which are smaller than
a. Otherwise, if we have such two entries e; and ey, (with (41 < j < k < n), then ese; ey
satisfies (16.2.1), which is not allowed. The above indicates that esyq, ..., e, € {a,b} for
some b < a.

Further, if we have ey = a for some ¢ +1 < ¢' < n, then we must have e; = a for all
¢ +1 < j </l Otherwise, if there exists one such index j with e; = b, then esejep = aba
satisfies (16.2.1).

The desired lemma therefore follows. O]
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Equipped with Lemma 16.2.1, we may categorize I,(>,#, >) into four disjoint types.

(Below we always assume that a > b.)

» TYPE I.
The tail of e € I,(>, #, >) is of the form

> Or ax>i bzz;

» TvPE II
The tail of e is of the form

a;
» TvYPE III.
The tail of e is of the form
a>2 b;
» TYPE IV.
The tail of e is of the form
ab.

16.2.2 Sequences in I,(>, #, >)

Lemma 16.2.2. Let e € I,,(>,#,>). Then the tail of e has the form
abzg a>q (wzth a > b),

that is, a sequence of one a followed by several b’s and then by several a’s while the

subsequence of b and the second subsequence of a might be empty.

Proof. Recall that for any e € I,(>,#,>), we cannot find indices i < j < k such that
e, >e;, ejFe, and e > ey. (16.2.2)

Let e, = a be the left-most appearance of the largest entry in e. We first claim that

among ep,1, ..., €,, there do not exist two distinct entries both of which are smaller than
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a. Otherwise, if we have such two entries e; and e;, (with £+ 1 < j < k < n), then ese ey
satisfies (16.2.1), which is not allowed. The above indicates that esyq, ..., e, € {a,b} for
some b < a.

Further, if we have ey = b for some ¢ + 1 < ¢' < n, then we must have e; = b for all
(+1 < j </ Otherwise, if there exists one such index j with e; = a, then esejep = aab
satisfies (16.2.1).

Also, if we have ey = a for some ¢ + 1 < ¢ < n, then we must have e, = a for all
" < k <n. Otherwise, if there exists one such index k with e, = b, then esepmer, = aab
satisfies (16.2.1).

The desired lemma therefore follows. O]

Analogously, we categorize I,,(>, #, >) into four disjoint types. (Below we also assume
that a > b.)

» Tvype L.
The tail of e € I,,(>, #, >) is of the form

asy or absy or absjass;

» TvpPE II
The tail of e is of the form

a;
» TvypE III.
The tail of e is of the form
ab>1 a;
» TvyPE IV.
The tail of e is of the form
ab.
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16.3 Recurrences and Generating Functions

16.3.1 Recurrences

For 1 <11 <4, let
L..>#,>)={ecl, (> #, >):eisof Type i}
and

I(A)(>, #,>):={e €L, ;(>,#,>) : the largest entry of e is A}.

n,i

We further write

filn, A= 7 2 (16.3.1)

el (> #,>)

Notice that the initial values of the f;’s are

fi(l,A) = f35(1,A) = fu(1,A) =0 forall A >0, (16.3.2)
1 for A =0,

fo(1L,A) = (16.3.3)
0 otherwise,

and
f3(2,A) =0 forall A >0. (16.3.4)

Lemma 16.3.1. For n > 2, we have

(a). for A >0,
filn,A) = fi(n — 1,A) + fa(n — 1,A) + fs(n — 1, A) + fa(n — 1, A);

(b). for A =0 and A > n,
fz(n,A) :O,
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and for 1 <A <n-—1,

foln, A) = > (zfl(n — LAY+ zfo(n —1,A)

0<A/<A
+2fs(n = L,A) + 2fs(n — 1, A));

(c). for A >0,
fs(n,A) = fs(n — 1,A) + fa(n — 1, A);

(d). forA=0and A>n—1,
f4(n,A) :O,

and for 1 <A <n-—2,
fim, ) = 3 (2filn = LA) + fo(n — 1, A)

0<A/<A

+zfs(n—1,A") + 2 fs(n — 1,A')).

Further,

(b)). for1<A<n-—1,
fg(n,A) — fQ(n,A — 1) = zfl(n,A — 1),
(d). for1 <A <n-—2

fa(n, A) — fa(n, A —1) = foln — 1, A) + 2 f3(n, A — 1).

Proof. To prove (a), (b), (¢) and (d) of the lemma, we need to bijectively construct

sequences in the desired subset of I,,_1(>, #, >) for each type of sequences in IV (>, #, >).

Such constructions will be presented explicitly below by deleting one paticular element

from each sequence in IY) (>, £, >) of a fixed type. The inverse constructions from the
desired subset of I,_;(>,#,>) to each type of sequences in IV (>, £ >) will not be
explicitly given but they are simply done by adding the paticular element to where it is

deleted. In the sequel, we always write e = ejeq - - - e, € IN (>, £, >).

Case 1. If e is of Type I, then we observe that e,_; = e,. By deleting the last entry e,,

we obtain an inversion sequence €’ of length n — 1. Apparently, ¢’ € I,,_1(>,#, >). Also,

we claim that e’ can be any of the four types. For example, if 7(e) = A A, then 7(¢/) = A
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and hence €’ is of Type II. For other cases, we may carry on similar arguments. Further,
the largest entry in ¢’ is still A. Finally, we observe that asc(e) = asc(e’).

Case 2. If e is of Type II, then by deleting the last entry e, = A, we obtain an inversion
sequence €' of length n — 1. Again, we notice that ¢ € I,_;(>,#,>) can be any of
the four types. However, in this case, the largest entry in €’ is smaller than A. This is
because e, = A is the only largest entry in e, but it is deleted. Finally, we observe that
asc(e) = asc(e') + 1.

Case 3. If e is of Type III, then 7(e) is of the form Assb for some b < A. By deleting
ﬁﬁ)l(>, #,>) with largest entry still equal
to A. Also, 7(¢’) is either of the form Assb or of the form Ab. Therefore, €' is of either
Type III or Type IV. Finally, we observe that asc(e) = asc(e’).

Case 4. 1f e is of Type IV, then 7(e) = A b for some b < A. We delete A from e to get €.

It is not hard to verify that ¢’ € I,_;(>,#, >) with largest entry smaller than A. We

one of the A’s, the resulting sequence ¢’ is in I

have three subcases as follows.
e b=e, =¢e, 2. Then ¢ is of Type I and in this case asc(e) = asc(e) + 1.

e b =-¢e, > e, 95 Then b > max{ej, ey, ...,e, 2}. Otherwise, there exists some
e; in ejes---e,_3 such that e; > b = e,. Now the subsequence e;e,_oe, satisfies
e; > e, > €,_9, which is not allowed. It is then obvious that ¢’ is of Type II and

asc(e) = asc(e).

e b=¢e, <e,9. Then 7(ejes---e,_o) must be of the form a>;. Otherwise, there exists
some e; > e,_o with i < n—2. Hence, the subsequence e;e,,_oe,, satisfiese; > e,,_o > e,
and thus satisfies (16.2.1). But this is not allowed. Now if 7(ejez---e,_9) is of the
form a>o, then €’ is of Type III and asc(e) = asc(e’) + 1; if 7(erea- - - e,-2) is of the

form a, then €’ is of Type IV and as well asc(e) = asc(e’) + 1.

Now (a), (b), (¢) and (d) of the lemma are proved. Next, we show (b’) and (d’). For
(b’), we simply notice that

fg(n,A) — f2<n,A — 1)
=zfiln—1LA=1)+zfo(n—1,A=1)+z2fs(n—1,A=1)+ zfy(n —1,A—1)
- Zfl(nﬂA_ 1)7

where we make use of (a) in the last equality. For (d’),

fa(n,A) — fa(n,A = 1)
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=zfiln—1LA=1)+ fo(n—1L,A=1)+z2fs(n—1,A=1)+zfs(n—1,A 1)
= (2filn—=LA= 1)+ foln = LA=1)) + 2(fs(n = LA = 1) + fa(n — 1, A — 1))
= foln — 1L, A) + zf3(n, A — 1),
where we utilize (b’) and (c) in the last equality. O

Proposition 16.3.2. Forn > 1,

filn,A) =0, if A>n—2,
fo(n,A) =0, if A>n—1,
fa(n,A) =0, if A>n—3,
faln,A) =0, ifA>n-—2.

Proof. The equalities for f, and f; come from Lemma 16.3.1(b) and (d). The equalities

for f; and f3 can be proved jointly by a simple induction on n. O]

On the other hand, for 1 <7 <4, let
L..>,#,>)={ecl,(> #,>):eis of Type i}
and
I;/}i)(z, #,>) :={e€l,;(>,#, >) : the largest entry of e is A}.
We further write

hi(n,A) := 725(e), (16.3.5)

Notice that the initial values of the h;’s are
hy(1,A) = hs(1,A) = hy(1,A) =0 for all A >0,

1 for A =0,
ho(1,A) =
0 otherwise,
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and
h3(2,A) =0 forall A > 0.

Lemma 16.3.3. For n > 2, we have

(a). for A >0,
h1<7”L,A> = hl(n — 1,A) —+ hg(n — 1,A) + hg(?’b — 1,A) + h4(n — 1,A),

(b). for A =0 and A > n,
h2(n’A) :Ou

and for 1 <A <n-—1,

ha(n,A) = 3 (2ha(n — 1,A') + 2ha(n — 1, ')
0<A'<A

+ 2hs(n — 1,A') + zha(n — 1, \'));

(c). for A >0,
hs(n,A) = hs(n — 1, A) + zhy(n — 1, A);

(d). for A=0and A >n—1,
h4(n,A) :O,

and for 1 <A <n-—2,
ha(n, A) = 3 (2ha(n = 1,A) + ha(n — 1, \)
0<A' <A

+ha(n =1, ') + zha(n — 1, A)).

Further,
(b). for 1< A<n-—1,

hQ(Tl,A) — hg(n,A — 1) = zhl(n,A — 1),
(d). for 1< A<n-—2,

ha(n,A) — hy(n,A — 1) = ho(n — 1,A) + hs(n, A — 1).
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Proof. In analogy to the proof of Lemma 16.3.1, we construct bijective maps between
each type of sequences in IM) (>, #, >) and the desired subset of I,,_;(>, #, >) while still
only one side of the maps will be explicitly stated. For (a) and (b), we use the same way
as that for Lemma 16.3.1(a) and (b) to reduce e € IN(>,#,>) to ¢’ € I,,_1(>,#,>)
and hence the details are omitted. Now let us treat the rest two cases. We as well write
e=-e1ey €y € I;A)(Z, #,>).

Case 3. If e is of Type IIL, then 7(e) is of the form A by A for some b < A. We distinguish
it into two subcases. It should be pointed out in advance that the largest entry of the

resulting sequence €’ in both cases is still A.

o 7(e) = AbA. Then we delete the last A to get ¢’. We see that ¢’ € Ig\,)l(z, #,>) is of
Type IV. Also asc(e) = asc(e’) + 1.

o 7 is of the form Absy A. Then we delete one of the b’s to get some €’ € IilA,)l(Z, #,>).
This time €’ is of Type III and asc(e) = asc(e’).

Case 4. If e is of Type IV, then 7(e) = A b for some b < A. We as well delete A from e
to get €. Notice that we also have ¢’ € I,,_1(>,#,>) with largest entry smaller than A.

We have three subcases as follows.
e b=-¢e,=-e, 5. Then ¢ is of Type I and in this case asc(e) = asc(e’) + 1.

e b =¢e, > e,-2. Then b > max{ej,ey,...,e,_2}. Otherwise, there exists some
¢; in ejes---e,_3 such that e; > b = e,. Now the subsequence e;e, o€, satisfies
e; > e, > €, o, which is not allowed. If b > max{e;, ey, ..., e, 2}, then €’ is of Type
IT and asc(e) = asc(€’); if b = max{ey,ea,...,e,_o}, then 7(ejey- - - €,_2) must be of

the form bcsy where ¢ = e,_5 < b and hence €' is of Type III and asc(e) = asc(€’).

e b =¢e, < e,9. Then 7(e1ey---€,_2) must be of the form a. Otherwise, there
exists some e; > e,_o with i < n — 2. Hence, the subsequence e;e,_se, satisfies
e; > e, o > e, and thus satisfies (16.2.2). But this is not allowed. Thus, €’ is of Type
IV and asc(e) = asc(e’) + 1.

The proofs of (b’) and (d’) are also similar to those for Lemma 16.3.1. O

Finally, we define, for 1 <i < 4,

giln,A) = > prrtrescle (16.3.6)

el (>,#,>)
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Then in view of (16.3.5),

gi(n, A) = 21 {hi(n, A)}

2z 1

and conversely,

hi(n,A) = 2" {gi(n, A)}

z—z—1

Thus, the initial values of the g;’s are

gl(LA) = 93(17‘/\) = 94(]-7A) =0 forall A Z 07

1 for A =0,
92(1vA) =

0 otherwise,

and
g3(2,A) =0 forall A > 0.

Also, the recurrences for the g;’s can be translated with no difficulty from those for the
h,;’S.

Lemma 16.3.4. For n > 2, we have

(a). for A >0,
gl(naA) = Zgl(n - 17A> + ZgQ(n - 17A> + Zgg(n - 17A> + Zg4<n - 17A)7

(b). for A =0 and A > n,
gQ(naA) = 07

and for 1 < A <n-—1,

g A) = > (g —1,N)+ g0 —1,N)
0<A’<A

+ gg(n — 1,A,) + g4(n — 1,A/));

(c). for A >0,
g3(n, A) = zg3(n — 1, A) + ga(n — 1, A);
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(d). forA=0and A >n—1,
ga(n,A) =0,

and for 1 <A <n-—2,
ga(n, A) = Z (gl(n —1,A) + zg2(n — 1, A')
0<A/<A

+ Zg3(n - 17A/) + 94(n - 17A/)>

Further,

(b"). for1<A<n-—1,
g2(n, A) = g2(n, A = 1) = 27 g1 (n, A = 1);
(d). for1<A<n-2,
ga(n, A) — ga(n, A —1) = zgo(n — 1, A) + g3(n, A — 1).

Similar to Proposition 16.3.2, we have the following equalities.

Proposition 16.3.5. Forn > 1,

=0, ifA>n-—2,

=0, ifA>n-—3,

(n, A)
gZ(naA):O7 ZfA>7”L—1,
(n, A)
(n,A) =0, ifA>n-—2.

16.3.2 Generating Functions

Let

Fit) = Ftia) = 5 5 filn, )23

n>2 A=0

Fao(t) = Faltiq) == Z_j fo(n, A)t" ",

n>2 A=0

Folt) = Folti) = 303 folm, A=A,

n>3 A=0
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Falt) = Falti) = 0% faln, A2 g,

n>2 A=0

It is easy to translate the recurrences of the f;’s in Lemma 16.3.1 to functional equations
of .Fl(t), .Fg(t), fg(t) and .F4(t)

Lemma 16.3.6. We have

Fi(t) — ¢ = tqFi(t) + qFa(t) + t2qF5(t) + tqFu(t),

tF5(t) — (Falt) — Fa(0)) = 2tFu(t),
(16.3.7)
F3(t) = tqFs(t) + qFu(t),

tFu(t) — (Fult) = Fa(0)) = tqFa(t) + 2tFs(t).

Proof. We show the first and second equations as instances. The proof of the third one
is similar to the first and the proof of the fourth one resembles the second.

First, by Lemma 16.3.1(a) and Proposition 16.3.2, we have

Ft) =33 fuln, A2

n>2 A=0
n—2
=> > (fl(n —LA)+ faln = 1L,A) + fa(n — 1,A) + fa(n — 1,/\))15"’2*[‘(]"
n>2 A=0
n—1
= (fl (TL; A) + fg(n, A) + f3(n’ A) + f4(n’ A))tnfl—Aanﬂ
n>1 A=0
n—2 n—1
=1 Fln, 278 g 30 37 foln, M A
n>1 A=0 n>1A=0
n—3 N9
+20 YD faln, A g >0 S fa(n, A A
n2lA=0 n>1 A=0

The first equation follows by recalling the initial values (16.3.2), (16.3.3) and (16.3.4).
For the second equation, we apply Lemma 16.3.1(b’) and Proposition 16.3.2. Then

Folt) =) nz_j fo(n, M)t 2g"

n>2 A=0

n—1
=33 foln, A)t""Rg™  (since fo(n,0) = 0 for n > 2 by Lemma 16.3.1(b))

n>2 A=1
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2filn A= 1) + fu(n, A — 1)) 1A

nZQA:l(
n—2
= (2i(n, A) + fo(n, A))t" 22"
n>2 A=0
n—2
— f1<nA)tn2An t—lZZanAtnlAn

A=0 n>2 A=0

which is essentially the second equation. O

We treat Fi(t), Fa(t), F3(t) and Fy(t) as unknowns and solve the above system so
that they are expressed in terms of F3(0), F4(0), z, ¢ and ¢. In particular, we have the

following expression for Fy(t).

Lemma 16.3.7. We have

Ky (t)Fa(t) = (1 — qt) Py(t), (16.3.8)
where
Py(t) = Fu(0) — (q]:2(0) + F4(0) + ¢F4(0) — zq]-"4(0))t
+ (zq3 + ¢ F»(0) + qF4(O))t2 (16.3.9)
and

Ki(t) =1— (24 2q — 22q)t + (1 +4q — 22q + ¢* — 22¢* + 2°¢°)¢*
—(2q + 2¢* — 2*)t* + ¢*t*. (16.3.10)

Analogously, we define

Gi(t) = Gi(t;q) : ZZglnAt”QA”

n>2 A=0
n—1
Go(t) = Go(t;9) := 2> Y galn, A" A",
n>2 A=0
g() g3tq ZzggnAtnSAn
n>3 A=0
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Gilt) = Galt:0) = 03 galm A2 A

n>2 A=0
By the recurrences of the g;’s in Lemma 16.3.4, the following system holds true.

Lemma 16.3.8. We have

Gi(t) — 2¢° = 219G (t) + qGa(t) + 2%qGs(t) + 2tqGa(t),
1Ga(t) = (Ga(t) = G2(0)) = 1Gu(2),

Ga(t) = 2tqGs(t) + qGa(t),

(16.3.11)

tGa(t) = (Ga(t) — Ga(0)) = tqGal(t) + tGs(1).

We may also solve the above system for Gy(t), Ga(t), Gs(t) and G4(¢). In particular,

we have the following expression for Gy(t).

Lemma 16.3.9. We have

K,()Ga(t) = (1 — 2qt) P, (t), (16.3.12)
where
Py(t) = Ga(0) = (qG2(0) + Ga(0) — qG(0) + 2qG4(0))t
+ (2¢° + 24°G2(0) + 29G4(0) ) (16.3.13)
and

K,(t) =1—(2—2q+22q)t + (1 — 2q + 42q + ¢* — 22¢°* + 2°¢*)t*
— (22q — 2¢* + 222 + (22¢* — 2¢® + 2Pt (16.3.14)

Remark 16.3.1. We could, of course, derive kernel equations for F»(t) and G,(t) instead
of F4(t) and G4(t). But such changes will not make any essential difference after the
application of the kernel method; we are still led to Theorem 16.4.1.

16.4 Proof of Theorem 16.1.1

The objective of this section is to apply the kernel method to establish the following

surprising relations, one of which will lead to a proof of Theorem 16.1.1.
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Theorem 16.4.1. We have

=q(n,n—2) forn >3,
=zgo(n,n—1) forn>2,

=gs(n,n—3)  forn >3,

faln,n —2) =gy(n,n—2) forn>2.

16.4.1 Roots of the Kernel Polynomials

Before applying the kernel method to Fy(t) and G4(t), let us first investigate properties
of the roots of the two kernel polynomials K(t) and Ky (t).

Lemma 16.4.2. Let 1, o, r5 and r4 be the four roots of the quartic polynomial K(t).
Then the quartic polynomial K,(t) has roots s1, Sa, s3 and sy such that for 1 <i <4,

Ty

“TTa—aa (16.4.1)

Si
Proof. We have

Ki(t)=q*(t —r)({t —ro)(t — r3)(t —714).

Since K(t) has constant term 1, we know that the quartic polynomial KF(t) := t*K(t™")

is monic. Further,
Kj(t) = (t=r )t =g )t —rg )t — 7).
Similarly, if K7(t) := t*K,(t"), then

Kg(t)

(= sy )t — sy )t —s37)(t = s57).
Therefore, to obtain the desired relations, it suffices to show
Kj(t) = Ki(t+ (1 - 2)q),

which is easy to verify. O]

For the sake of simplicity when utilizing the general formula for roots of quartic

equations, we assume that 0 < ¢ < 1 and z > 0. It can be computed that as ¢ — 07,

357



K(t) has four roots

ro=1+ (z+v2)g+0.(¢),
r2:1+(z—\/2)q+0 (¢°),

=q "+ V2 - 2+0 d'?),
_ _ z
S R L BYeX L0}

Let s; be as in Lemma 16.4.2 so that they are roots of K,(t). Then

si=1+ (1+Vz)q+0.(¢),
Sg =1+ (1 - ﬁ>q+ 0.(¢%),

L 1 g2 2—-3z 1/2
53 =24+ 354 +T+Oz<q ),
L Lo e 2 ek

16.4.2 Applying the Kernel Method

To apply the kernel method, we need to choose roots of K¢(t) and K,(t) that can
be expanded as a formal power series in q. So only 71, ro and si, Sy are admissible,

respectively. Recall (16.3.8):
Kp(t)Falt) = (1 = qt) Py (t).

We substitute the roots ¢ = r; and 7 into the above and arrive at P¢(t) = 0. Then

recalling (16.3.9) yields the system

= Fi(0) — (4F2(0) + F1(0) + ¢F4(0) — 2qF4(0) )y
(ZC] + ¢*F2(0) + q]:4(0>)7’1a

+
Fa(0) = (qF2(0) + Fu(0) + ¢F4(0) — 2qF4(0))r2
+ (Z(] + ¢ F2(0) + q}"4(0)>7“§
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Solving the above system for F5(0) and F4(0) gives

ZQQ(H +ry—(1+ (1 - Z)Q)Tlrz)
1—q(ry+72)+ (1 — 2)¢rirg

f2(0) =

_ 2q°r17)
1 —q(ry o) + (1= 2)g%rirs

F4(0)

Likewise, we substitute the roots t = s; and s, into Py(t) = 0 and use (16.3.13) to obtain

a similar system, which leads to the solution

ooy s = (1= (1= 2)a)sis)
2( ) - 1 — ZQ(Sl + 32) — Z(l — Z)q28182 )

2q°5159

Ga(0) = 1 —zq(s1 + s2) — 2(1 — 2)¢%s152

Finally, making use of the relations
1= (1= 2)qr,’
Tl (1= 2)gry’

S1

59
we find that

{ F(0) = Ga(0),

F1(0) = G4(0).
Further, by (16.3.7) and (16.3.11), we have

{ Fi(0) = qF(0) + ¢*,
G1(0) = ¢G2(0) + 2¢°,

and

F3(0) = qF4(0),
G3(0) = qGa(0).
Theorem 16.4.1 therefore follows.
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16.4.3 Proof of Theorem 16.1.1

Recalling the definition of the f;’s, we find that, for n > 1,

n—1

oo = ¥ (fl(na A) + fo(n, A) + f3(n, A) + fa(n, A))

e€l, (>,#,>) A=0

=z fo(n+1,n),

where we make use of Lemma 16.3.1(b). Similarly, we have, for n > 1,

n—1

S e 2 Y (91(7% A) + go(n, A) + g3(n, A) + g4(n,A))
6€In(2’7év>) AZO

where Lemma 16.3.4(b) is utilized. By the second relation in Theorem 16.4.1, we find
that for n > 1,

z_lfQ(n +1,n) =gs2(n+1,n),

and therefore complete the proof of (16.1.2).
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