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Abstract

This thesis is devoted to providing some “travel tips” that arise from my personal
visit in the world of p(artitions) and q(-series).

In the first part, we will focus on partition congruences, especially from an elemen-
tary perspective. We first give a completely elementary proof of an infinite family of
congruences modulo powers of 5 for the number of partitions of n into distinct parts.
As a by-product, we also consider some eta-quotient representations concerning the
Rogers–Ramanujan continued fraction.

In the second part, our attention is turned to identities. The first two chapters in
this part are devoted to partition identities — one treats weighted partition rank and
crank moments and the other investigates partitions with bounded part differences. Then
in a series of three chapters, a general theory of span one linked partition ideals will
be presented. We start from several conjectures of Kanade and Russell and then link
this theory with directed graphs. A comprehensive example on Gleißberg’s identity will
finally be discussed. The last chapter in this part will be devoted to analytic identities
of Rogers–Ramanujan type with manipulations of basic hypergeometric series heavily
involved.

In the third part, asymptotic aspects of integer partitions will be investigated. We
first use square-root partitions into distinct parts to illustrate a refined Meinardus-type
approach. In the next three chapters, we will focus on modular infinite products that
concern either Dedekind eta function or Jacobi theta function with the assistance of
Rademacher’s circle method. Finally, we will study nonmodular infinite products that
are related to a conjecture of Seo and Yee.

In the last part, we will leave for another world of p, that is, the world of patterns
in inversion sequences. We mainly focus on two recent conjectures, one of which on
0012-avoidance is due to Lin and Ma and the other on the avoidance of triples of binary
relations is due to Lin.
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Chapter 1 |

Introduction

1.1 Notation and Terminology

1.1.1 The Theory of Partitions

The theory of partitions was given to birth in a letter [119] from Leibniz to Bernoulli
in September 1674, in which Leibniz asked for the number of representations of a positive
integer n as a sum of positive integers, which is now called the number of integer partitions
of n, usually denoted by p(n), if the order of the summands is not taken into account.

Definition 1.1.1. An integer partition of a positive integer n is a non-increasing sequence
of positive integers whose sum equals n. These summands are called parts of this partition.
We usually use p(n) to denote the number of partitions of n. Conventionally, we also put
p(0) = 1, which means that 0 has an empty partition ∅ containing no parts.

Notation 1.1.1. Given a partition λ, we denote by ](λ) and |λ| the number of parts
and the sum of parts of λ, respectively.

For example, the partitions of 0, 1, . . . , 5 are listed in Table 1.1.
Of course, we may impose or lessen restrictions on the parts of partitions. One

important example is that the parts are required to be pairwise distinct.

Definition 1.1.2. A distinct partition is a partition such that its parts are pairwise
distinct. We will use pD(n) to denote the number of distinct partitions of n.

In Table 1.2, we will delete those partitions in Table 1.1 with repeated parts and
leave all distinct partitions.

Another important variant of partitions is called overpartitions.

Definition 1.1.3. An overpartition is a partition where the first occurrence of each
distinct part may be overlined. We will use p(n) to denote the number of overpartitions
of n.
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Table 1.1. Partitions of 0, 1, . . . , 5

n p(n) partitions of n
0 1 ∅
1 1 1
2 2 2, 1 + 1
3 3 3, 2 + 1, 1 + 1 + 1
4 5 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1
5 7 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1,

1 + 1 + 1 + 1 + 1

Table 1.2. Distinct partitions of 0, 1, . . . , 5

n pD(n) distinct partitions of n
0 1 ∅
1 1 1
2 1 2,���1 + 1
3 2 3, 2 + 1,(((((1 + 1 + 1
4 2 4, 3 + 1,���2 + 2,(((((2 + 1 + 1,((((((

(1 + 1 + 1 + 1
5 3 5, 4 + 1, 3 + 2,(((((3 + 1 + 1,(((((2 + 2 + 1,((((((

(2 + 1 + 1 + 1,

((((
(((

((1 + 1 + 1 + 1 + 1

For example, 4 has 14 overpartitions:

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2,

2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

The name of overpartitions was given by Corteel and Lovejoy [72] in 2004, but they
have already been extensively used by Andrews in 1967 [5], by Joichi and Stanton in
1987 [105] and by Corteel in 2003 [71].

Regarding combinatorial aspects of partitions, an important concept is Ferrers dia-
gram, which is also known as Young diagram.

Definition 1.1.4. Given an integer partition λ, its Ferrers diagram is a diagram of
squares aligned in the upper-left corner such that the n-th row has the same number of
squares as the n-th part of λ.
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Using Ferrers diagrams, we are able to define two other important combinatorial
objects.

Definition 1.1.5. Given an integer partition λ, its conjugate λ is the partition whose
Ferrers diagram can be obtained by flipping the Ferrers diagram of λ along the main
diagonal.

Definition 1.1.6. Given an integer partition λ, its Durfee square is the largest square
contained in its Ferrers diagram.

For example, the Ferrers diagram of 5 + 3 + 3 + 2 + 2 + 1 is shown in Figure 1.1(a).
It can be seen from Figure 1.1(b) that its conjugate is 6 + 5 + 3 + 1 + 1. Finally, it has a
Durfee square of size 3, which is given in Figure 1.1(c).

Figure 1.1. Ferrers diagram

λ = 5 + 3 + 3 + 2 + 2 + 1 has conjugate λ = 6 + 5 + 3 + 1 + 1 and a Durfee square of size 3.

(a). λ (b). λ (c). Durfee square

Of course, the theory of partitions is rather vast. To end this section, I will not
hesitate to recommend Andrews’ monograph: The theory of partitions [12].

1.1.2 The Theory of q-Series

Before going into details of the theory of q-series, it is necessary to introduce some
notations.

Notation 1.1.2 (q-Pochhammer symbols). Let q ∈ C be such that |q| < 1. Let n ∈ Z.

(A; q)n :=


n−1∏
k=0

(1− Aqk) if n ≥ 0,

1/(Aqn; q)−n if n < 0,

(A; q)∞ :=
∏
k≥0

(1− Aqk),

3



(A1, A2 . . . , Am; q)n := (A1; q)n(A2; q)n · · · (Am; q)n,

(A1, A2, . . . , Am; q)∞ := (A1; q)∞(A2; q)∞ · · · (Am; q)∞,A1, A2, . . . , AmA
B1, B2, . . . , BmB

; q

n

:= (A1; q)n(A2; q)n · · · (AmA ; q)n
(B1; q)n(B2; q)n · · · (BmB ; q)n

and A1, A2, . . . , AmA
B1, B2, . . . , BmB

; q

∞

:= (A1; q)∞(A2; q)∞ · · · (AmA ; q)∞
(B1; q)∞(B2; q)∞ · · · (BmB ; q)∞

.

With these notations, we may also define the basic hypergeometric (or q-hypergeometric)
function rφs and the bilateral basic hypergeometric (or bilateral q-hypergeometric) func-
tion rψs, which lie in the core of the theory of q-series.

Notation 1.1.3 (q-Hypergeometric function rφs).

rφs

A1, A2, . . . , Ar

B1, B2, . . . , Bs

; q, z
 :=

∑
n≥0

 A1, A2, . . . , Ar

q, B1, B2, . . . , Bs

; q

n

(
(−1)nq(

n
2)
)s−r+1

zn.

Notation 1.1.4 (Bilateral q-hypergeometric function rψs).

rψs

A1, A2, . . . , Ar

B1, B2, . . . , Bs

; q, z
 :=

∞∑
n=−∞

A1, A2, . . . , Ar

B1, B2, . . . , Bs

; q

n

(
(−1)nq(

n
2)
)s−r

zn.

Also, the q-binomial coefficients are important.

Notation 1.1.5 (q-Binomial coefficient).

n
m

 =
n
m


q

:=


(q; q)n

(q; q)m(q; q)n−m
if 0 ≤ m ≤ n,

0 otherwise.

Roughly speaking, the theory of q-series deals with identities. It seems that the first
important monograph is Bailey’s 1935 book [32], but according to Richard Askey, the
best monograph should be George Gasper’s copy of Bailey’s book, which is now published
as [83]. For a selection of q-series identities, Andrews’ chapter (Chapter 17) of the “NIST
handbook of mathematical functions” [16] provides a good reference.

Let me excerpt several important identities as instances.
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Theorem 1.1.1 (Eluer’s first sum). For |z| < 1,

1φ0

0
−

; q, z
 =

∑
n≥0

zn

(q; q)n
= 1

(z; q)∞
. (1.1.1)

Theorem 1.1.2 (Eluer’s second sum). For |z| < 1,

0φ0

−
−

; q, z
 =

∑
n≥0

(−1)nq(
n
2)zn

(q; q)n
= (z; q)∞. (1.1.2)

Theorem 1.1.3 (q-Gauß sum). For |c| < |ab|,

2φ1

a, b
c

; q, c
ab

 =
∑
n≥0

a, b
q, c

; q

n

(
c

ab

)n
=
 c/a, c/b
c, c/(ab)

; q

∞

. (1.1.3)

Theorem 1.1.4 (q-Binomial theorem). For N ≥ 0,

1φ0

q−N
−

; q, z
 = (zq−N ; q)N . (1.1.4)

1.1.2.1 Generating Functions

Generating functions create a fantastic kingdom where the worlds of p and q meet.
Let us begin with the first deep result (in the 16th century) due to Euler [78].

Theorem 1.1.5 (Generating function of p(n)). We have

∑
n≥0

p(n)qn = 1
(q; q)∞

. (1.1.5)

This identity can be understood as follows.

1
(q; q)∞

=
∏
k≥1

1
1− qk

=
∏
k≥1

(
1 + qk + q2k + q3k + · · ·

)
.

Now the term qmk can be treated in the sense that the part k appears m times. Hence,
if we expand the infinite product, the coefficient of qn exactly enumerate the number of
partitions of n.
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It is notable that if we expand the reciprocal of the infinite product in (1.1.5), namely,
(q; q)∞, one has

(q; q)∞ = 1− q − q2 + q5 + q7 − q12 − q15 + · · · .

If one pays attention to the powers, then it could be observed that they are simply
pentagonal numbers. In [78], Euler conjectured an identity based on this observation,
which was proved by himself a couple of years later and is now known as Euler’s Pentagonal
Number Theorem.

Theorem 1.1.6 (Euler’s Pentagonal Number Theorem). We have

(q; q)∞ =
∞∑

n=−∞
(−1)nqn(3n−1)/2. (1.1.6)

It follows by multiplying (1.1.5) and (1.1.6) that p(n) can be computed recursively by

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− · · · .

Next, q-series sometimes help us reduce the difficulty of proving partition identities.
The simplest example is still due to Euler [78].

Theorem 1.1.7. For n ≥ 0, the number of partitions of n into distinct parts is the same
as the number of partitions of n into odd parts.

Proof. Let po(n) denote the number of partitions of n into odd parts. Then,

∑
n≥0

po(n)qn =
∏
k≥1

1
1− q2k−1

=
∏
k≥1

1
1− q2k−1

1− q2k

1− q2k

=
∏
k≥1

1− q2k

1− qk

=
∏
k≥1

(1− qk)(1 + qk)
1− qk

=
∏
k≥1

(1 + qk).

This is just the generating function for distinct partitions.
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Finally, partitions can help us understand or even prove q-series identities. Let us
use Euler’s first sum as an example. Here we shall prove the special case:

∑
k≥0

qk

(q; q)k
= 1

(q; q)∞
.

Proof. We enumerate partitions with exactly k parts. If we take the conjugate of such
a partition, then it has the largest part of size k. Below the largest part, we have a
partition with largest part not exceeding k. Hence, such partitions can be enumerated
by the generating function

qk

(q; q)k
.

Finally, we sum up k ≥ 0 to arrive at the desired identity.

1.1.3 The Theory of Numbers

When studying the asymptotic behavior of certain sequences or complex functions,
we require the following traditional notations.

First, we have the Vinogradov notations introduced by I.M. Vinogradov in the 1930s.

Notation 1.1.6 (Vinogradov notations). We say f(x)� g(x) if there exists an absolute
constant C such that |f(x)| ≤ Cg(x). If the constant C depends on some variables, then
we attach a subscript and write f(x)�variables g(x). Likewise, we write f(x)� g(x) if
g(x)� f(x).

The Bachmann–Landau notations are also useful.

Notation 1.1.7 (Bachmann–Landau notations). The big-O notation1 is defined in the
usual way: f(x) = O(g(x)) means that f(x)� g(x). Again, subscripts are allowed as
the Vinogradov notations. Also, we have the small-o notation: f(x) = o(g(x)) means
that lim f(x)/g(x) = 0. Further, if lim f(x)/g(x) = 1, then we write f(x) ∼ g(x).

1.1.4 The Theory of Patterns

Let π = π1π2 · · · πn be a permutation of [n] := {1, 2, . . . , n}. One of its most natural
encodings is known as its inversion sequence.

1Here O stands for “Ordnung”, which means “order of” in German; see [31].
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Definition 1.1.7. The inversion sequence of π = π1π2 · · · πn is a sequence e1e2 · · · en of
length n where for each i, ei is the number of integers larger than i that precede πi in π.
That is,

ei = ]{1 ≤ j < i : πj > πi}.

We can see from the above definition that for each i, we always have 0 ≤ ei ≤ i− 1.
Notice that given two permutations, their inversion sequences are different. Since there
are exactly n! permutations of [n], we conclude that there is a bijection between Sn, the
set of permutations of [n], and the set of sequences of length n:

{e1e2 · · · en : 0 ≤ ei ≤ i− 1 for all i ∈ [n]},

as the cardinality of the above set is also n!. Therefore, we have the second definition of
inversion sequences.

Definition 1.1.8. A sequence e = e1e2 · · · en of natural numbers is called an inversion
sequence if 0 ≤ ei ≤ i − 1 for all i ∈ [n]. We usually denote by In the set of inversion
sequences of length n.

Let v, w ∈ Nn be two words of length n.

Definition 1.1.9. We say v and w are order isomorphic if for eack k, the k-th smallest
entries of v and w occur at the same places. Further, we say the reduction of v is a
sequence obtained by replacing the k-th smallest entries of v with k − 1. In particular, v
and its reduction are order isomorphic.

Example 1.1.1. (16, 5, 14, 14, 0, 19, 20, 1, 20, 5)2 and (5, 3, 4, 4, 1, 6, 7, 2, 7, 3) are order
isomorphic. They both reduce to (4, 2, 3, 3, 0, 5, 6, 1, 6, 2).

Now we turn our attention to patterns in sequences.

Definition 1.1.10. We say a sequence e contains a given pattern p if there exists a
subsequence of e such that it is order isomorphic to p; otherwise, we say that e avoids
the pattern p.

Example 1.1.2. The sequence e = e1e2 · · · e6 = 002030 does not avoid the pattern 100
since the subsequence e3e4e6 = 200 is order isomorphic to 100, but avoids 011 since no
subsequences of e are order isomorphic to 011.

2Do you realize this sequence may be converted to “Penn State”?
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Notation 1.1.8. Let p1, p2, . . . , pm be given patterns. We denote by In(p1, p2, . . . , pm)
the set of inversion sequences of length n that avoid all of the patterns p1, p2, . . . , pm.

It is known that permutations that avoid given patterns have extensive applications
in computer science, biology and many other fields; see the monograph of Kitaev [114].
Considering the close connection between permutations and inversion sequences, there
are also flourish trends in the study of pattern avoidance in inversion sequences in recent
years.

1.1.4.1 Kernel Method

The kernel method is a powerful tool to discover a closed form of a generating function
if functional equations concerning it is known. In the perspective of Helmut Prodinger
[142], this method originated as an exercise in the first volume of Donald Knuth’s book
“The Art of Computer Programming” [115, Exercise 4, §2.2.1, p. 243]. Then it was turned
into a method in the work of Banderier er al. [34] on generating trees.

To briefly illustrate this method, I will use Knuth’s exercise with the solution provided
by Prodinger [142]. I will omit the combinatorial statements while only focus on the
generating function.

Theorem 1.1.8. Let F (x, q) ∈ R[[q]][[x]] satisfy the functional equation

F (x, q) = xqF (x, q) + q

x

(
F (x, q)− F (0, q)

)
+ 1. (1.1.7)

Then,

F (x, q) =

1−
√

1− 4q2

2q − x

qx2 − x+ q
. (1.1.8)

Proof. We first rewrite the functional equation (1.1.7) as

(qx2 − x+ q)F (x, q) = qF (0, q)− x. (1.1.9)

Here the coefficient (qx2 − x + q) on the left-hand side is usually called the kernel
polynomial.

If we treat the kernel polynomial (qx2 − x + q) as a polynomial in x, it is easy to
compute its two roots

r1(q) = 1−
√

1− 4q2

2q and r2(q) = 1 +
√

1− 4q2

2q .

9



Now we have
F (x, q) = qF (0, q)− x

q(x− r1(q))(x− r2(q)) .

Notice that r1(q) = q +O(q2). Therefore, 1/(x− r1(q)) has no power series expansion
around (0, 0). However, as F (x, q) is a formal power series in x and q, we must have that
x− r1(q) is a factor of the numerator and thus qF (0, q) = r1(q). That is,

F (0, q) = r1(q)
q

= 1−
√

1− 4q2

2q2 (1.1.10)

and the desired result follows by substituting the above into (1.1.9).

1.2 State of the Art

1.2.1 Partition Congruences

The theory of partition congruences, which is now a blooming topic, was given to
birth when Ramanujan studied the table of the values of p(n) up to n = 200, which is
calculated by Major MacMahon.

Table 1.3. Values of p(n) for 1 ≤ n ≤ 20

n 1 2 3 4 5
p(n) 1 2 3 5 7
n 6 7 8 9 10
p(n) 11 15 22 30 42
n 11 12 13 14 15
p(n) 56 77 101 135 176
n 16 17 18 19 20
p(n) 231 297 385 490 627

If one looks at the column where n ≡ 4 (mod 5) in Table 1.3, it can be seen that
p(n) is divisible by 5. With such an observation, Ramanujan [146] announced in 1919
the following congruences.

Theorem 1.2.1. We have

p(5n+ 4) ≡ 0 (mod 5), (1.2.1)
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p(7n+ 5) ≡ 0 (mod 7) (1.2.2)

and

p(11n+ 6) ≡ 0 (mod 11). (1.2.3)

The proofs of the first two congruences were given in [146] while the proof of the last
was announced one year later in a short note [147] and was finally published in [148], in
which indeed a unified proof of all three congruences was presented.

It is also notable that in [146], Ramanujan actually showed an identity which is
regarded as his “Most Beautiful Identity” by both Hardy and MacMahon [151, p. xxxv].

Theorem 1.2.2. We have

∑
n≥0

p(5n+ 4)qn = 5(q5; q5)5
∞

(q; q)6
∞
. (1.2.4)

From this identity, (1.2.1) follows as a direct corollary.

There are many directions to generalize Ramanujan’s congruences. First, what happens
if one changes the moduli to powers of 5, 7 and 11? Such general families of congruences
were indeed conjectured by Ramanujan himself in 1919 [150] in which the conjecture for
powers of 7 is incorrect. But this was fixed later by Watson [171].

Theorem 1.2.3. We have, for ` ∈ {5, 7, 11} and α ≥ 1,

p(`αn+ δα,`) ≡

0 (mod `α) ` = 5, 11,

0 (mod 7dα+1
2 e) ` = 7,

(1.2.5)

with 0 ≤ δα,` ≤ `α − 1 such that

24δα,` ≡ 1 (mod `α).

Watson [171] was able to prove the cases of powers of 5 and 7 using modular forms.
But for the case of powers of 11, he stated that

“Da die Untersuchung der Aussage über 11α recht langweilig ist, verschiebe
ich den Beweis dieses Falles auf eine spätere Abhandlung.”

Nearly thirty years later in 1967, Atkin [28] eventually completed the project of proving
the case of powers of 11 with an agreement with Watson’s assertion that the proof is
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“langweilig.” Some fifteen years later in the 1980s, elementary proofs of the cases of
powers of 5 and 7 were further discovered, respectively by Hirschhorn and Hunt [100]
and Garvan [79]. However, elementary proof of the case of powers of 11 is still a mystery.

Another question we could ask about partition congruences is what happens if one
changes the moduli to an arbitrary integer? This problem was first considered by Atkin
in the 1960s with discoveries like

p(113 · 13n+ 237) ≡ 0 (mod 13).

Along this direction, the most exciting result is obtained by Ono [137] in 2000.

Theorem 1.2.4. For any positive integer m that is coprime to 6, there exists an arith-
metic progression Amn+Bm such that

p(Amn+Bm) ≡ 0 (mod m). (1.2.6)

Ono also provided examples like

p(1074 · 31n+ 30064597) ≡ 0 (mod 31).

In 2001, Weaver [172] compiled a list of 76,065 Ramanujan-like congruences while the
list was extended by Johansson [104] to 22,474,608,014 congruences in 2012.

1.2.2 Rank and Crank of Integer Partitions

In the previous section, we have introduced partition congruences from the analytic
side. A natural question is that can we interpret these congruences, especially (1.2.1),
(1.2.2) and (1.2.3), combinatorially? In other words, can we find a combinatorial statistic
such that we can split the partitions of, for example, 5n+ 4, into five subclasses of equal
size with the statistic satisfying a certain property in each subclass? This idea was first
raised in 1944 by Dyson [76], who was an undergraduate at that time.

The first statistic Dyson defined is called rank.

Definition 1.2.1. The rank of an integer partition is the largest part minus the number
of parts.

We list the rank of all partitions of 4, 5 and 6 in Table 1.4. From this Table, one may
observe that the partitions of 4 and 5 are divided into five and seven equally numerous
subclasses according to the rank modulo 5 and 7. Based on this observation, Dyson
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Table 1.4. Ranks of all partitions of 4, 5 and 6

partitions of 4 rank partitions of 5 rank partitions of 6 rank
4 3 5 4 6 5

3 + 1 1 4 + 1 2 5 + 1 3
2 + 2 0 3 + 2 1 4 + 2 2

2 + 1 + 1 −1 3 + 1 + 1 0 4 + 1 + 1 1
1 + 1 + 1 + 1 −3 2 + 2 + 1 −1 3 + 3 1

2 + 1 + 1 + 1 −2 3 + 2 + 1 0
1 + 1 + 1 + 1 + 1 −4 3 + 1 + 1 + 1 −1

2 + 2 + 2 −1
2 + 2 + 1 + 1 −2

2 + 1 + 1 + 1 + 1 −3
1 + 1 + 1 + 1 + 1 + 1 −5

made the following conjecture, which was proved by Atkin and Swinnerton-Dyer [30]
about ten years later.

Theorem 1.2.5. Let N(k,m, n) denote the number of partitions of n whose rank is
congruent to k modulo m. Then,

N(0, 5, 5n+ 4) = N(1, 5, 5n+ 4) = · · · = N(4, 5, 5n+ 4) = p(5n+ 4)
5 (1.2.7)

and

N(0, 7, 7n+ 5) = N(1, 7, 7n+ 5) = · · · = N(6, 7, 7n+ 5) = p(7n+ 5)
7 . (1.2.8)

Figure 1.2. Splitting a partition through the Durfee square

1
(zq; q)n

1
(z−1q; q)n

qn
2
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Let N(m,n) denote the number of partitions of n whose rank is m. We may define a
bivariate generating function

∑
n≥0

∞∑
m=−∞

N(m,n)zmqn.

This generating function can be easily obtained through the Durfee square. In Figure 1.2,
we can see that for any partition λ with Durfee square of size n, there is a partition λ1

with largest part not exceeding n below the Durfee square. Also, to the left of the Durfee
square, there is another partition λ2 with the number of parts not exceeding n. Taking
the conjugate of λ2, we can see that λ2 is also a partition with largest part not exceeding
n. Finally, the rank of λ of simply the number of parts in λ2 minus the number of parts
in λ1. We therefore arrive at the following identity.

Theorem 1.2.6. We have

∑
n≥0

∞∑
m=−∞

N(m,n)zmqn =
∑
n≥0

qn
2

(zq; q)n(z−1q; q)n
. (1.2.9)

From this generating function identity, the following symmetry property can be
deduced without difficulty.

Theorem 1.2.7. We have
N(m,n) = N(−m,n). (1.2.10)

On the other hand, we see from Table 1.4 that partitions of 6 are not divided into
eleven subclasses of equal size according to the rank modulo 11. Therefore, Dyson further
conjectured in [76] the existence of another statistic called crank such that there exists a
unified combinatorial interpretation of all three Ramanujan’s congruences (1.2.1), (1.2.2)
and (1.2.3) through this statistic. Let me quote Dyson’s original words:

“One is thus led irresistibly to the conclusion that there must be some analogue
modulo 11 . . .

I hold in fact:

That there exists an arithmetical coefficient similar to, but more recondite
than, the rank of a partition; I shall call this hypothetical coefficient the
“crank” of the partition, . . .

. . . . . .

14



. . . Whatever the final verdict of posterity may be, I believe the “crank” is
unique among arithmetical functions in having been named before it was
discovered. May it be preserved from the ignominious fate of the planet
Vulcan!”

This statistic was found after over four decades by Andrews and Garvan [23] after
Garvan’s discovery of the vector crank shortly beforehand [80].

Definition 1.2.2. The crank of a partition λ is defined by

crank(λ) :=

`(λ) if ω(λ) = 0,

µ(λ)− ω(λ) if ω(λ) > 0,
(1.2.11)

where µ(λ) denotes the number of parts in λ larger than ω(λ).

Table 1.5. Cranks of all partitions of 4, 5 and 6

partitions of 4 crank partitions of 5 crank partitions of 6 crank
4 4 5 5 6 6

3 + 1 0 4 + 1 0 5 + 1 0
2 + 2 2 3 + 2 4 4 + 2 4

2 + 1 + 1 −2 3 + 1 + 1 −1 4 + 1 + 1 −1
1 + 1 + 1 + 1 −4 2 + 2 + 1 1 3 + 3 3

2 + 1 + 1 + 1 −3 3 + 2 + 1 1
1 + 1 + 1 + 1 + 1 −5 3 + 1 + 1 + 1 −3

2 + 2 + 2 2
2 + 2 + 1 + 1 −2

2 + 1 + 1 + 1 + 1 −4
1 + 1 + 1 + 1 + 1 + 1 −6

In Table 1.5, the cranks of all partitions of 4, 5 and 6. One can see how the equally
numerous subclasses appear according to the crank modulo 5, 7 and 11.

Let M(m,n) denote the number of partitions of n whose rank is m except for n = 1
where M(−1, 1) = −M(0, 1) = M(1, 1) = 1. The following result was due to Andrews
and Garvan.
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Theorem 1.2.8. We have

∑
n≥0

∞∑
m=−∞

M(m,n)zmqn = (q; q)∞
(zq; q)∞(z−1q; q)∞

. (1.2.12)

We have a similar symmetry property to the rank case.

Theorem 1.2.9. We have
M(m,n) = M(−m,n). (1.2.13)

Finally, Dyson’s crank now is not fabled!

Theorem 1.2.10. Let M(k,m, n) denote the number of partitions of n whose crank is
congruent to k modulo m. Then,

M(0, 5, 5n+ 4) = M(1, 5, 5n+ 4) = · · · = M(4, 5, 5n+ 4) = p(5n+ 4)
5 , (1.2.14)

M(0, 7, 7n+ 5) = M(1, 7, 7n+ 5) = · · · = M(6, 7, 7n+ 5) = p(7n+ 5)
7 (1.2.15)

and

M(0, 11, 11n+ 6) = M(1, 11, 11n+ 6) = · · · = M(10, 11, 11n+ 6) = p(11n+ 6)
11 .

(1.2.16)

1.2.3 Identities of Rogers–Ramanujan Type

Another ingenious work of Ramanujan [145], which was claimed in 1913 in his first
letter to Hardy, is about the Rogers–Ramanujan identities, which should indeed be
attributed to Rogers in a paper [156] that was completely ignored.

Theorem 1.2.11 (First Rogers–Ramanujan identity). The number of partitions of a
non-negative integer n into parts congruent to ±1 modulo 5 is the same as the number of
partitions of n such that each two consecutive parts have difference at least 2.

Theorem 1.2.12 (Second Rogers–Ramanujan identity). The number of partitions of a
non-negative integer n into parts congruent to ±2 modulo 5 is the same as the number of
partitions of n such that each two consecutive parts have difference at least 2 and such
that the smallest part is at least 2.

Their analytic forms, which are in terms of generating functions, also look nice.
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Theorem 1.2.13 (Rogers–Ramanujan identities (analytic form)). We have

∑
n≥0

qn
2

(q; q)n
= 1

(q, q4; q5)∞
(1.2.17)

and

∑
n≥0

qn
2+n

(q; q)n
= 1

(q2, q3; q5)∞
. (1.2.18)

One can observe that in the Rogers–Ramanujan identities, two types of partition
sets are considered. One partition set consists of partitions under certain congruence
conditions. For example, in the first Rogers–Ramanujan identity, we enumerate partitions
into parts congruent to ±1 modulo 5. The other partition set contains partitions under
certain difference conditions. For example, we require that each two consecutive parts
have difference at least 2 in the first Rogers–Ramanujan identity.

More identities of the same flavor were discovered by mathematicians including Schur
[160], Gleißberg [84], Gordon [86], Göllnitz [85], Andrews [7] and so forth. Let me excerpt
Schur’s 1926 identity as an example.

Theorem 1.2.14 (Schur). Let A(n) denote the number of partitions of n into distinct
parts congruent to ±1 modulo 3.

Let B(n) denote the number of partitions of n into parts congruent to ±1 modulo 6.
Let C(n) denote the number of partitions of n such that the difference between two

consecutive parts is at least 3 and greater than 3 if the smaller part is a multiple of 3.
Then,

A(n) = B(n) = C(n). (1.2.19)

The most standard proof of Schur’s 1926 identity is based on recurrences [6], but
there are also combinatorial proofs through bijections [40] and weighted words [3].

In the 1970s, George Andrews [8,10,11] further started a systematic study of Rogers–
Ramanujan type identities and developed a general theory in which the concept of linked
partition ideals was introduced. Unfortunately, this theory was then almost ignored.
However, three chapters of this thesis are devoted to give a revisit of Andrews’ idea and
to make it more feasible.

Finally, it is notable that identities of Rogers–Ramanujan type also have deep
connections with other branches of mathematics. One instance is with representations
of Lie algebras shown in a series of papers of Lepowsky and Wilson [120–123]. For
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example, they considered level 3 modules for the affine Lie algebra ŝl2, from which they
also obtained a proof of the Rogers–Ramanujan identities. Along this line, Kanade and
Russell [108] discovered more identities of Rogers–Ramanujan type by experiments, which
are now known as Kanade–Russell conjectures.

Further, identities of Rogers–Ramanujan type may even have connections with theories
outside of mathematics. For example, in statistical mechanics, the hard hexagon model
has the solution, which was due to Baxter [36], involving the Rogers–Ramanujan identities.

1.2.4 Asymptotics

There is a natural injection between partitions of n and n+ 1, that is, we can append
1 as a part to each partition of n so that a partition of n+ 1 is constructed. This implies
that {p(n)} is an increasing sequence for n ≥ 1. The next question is how large p(n) is?
In other words, is there an asymptotic formula or even an exact formula for p(n)?

This question was first treated by Hardy and Ramanujan [96] in 1918 using a method
which is now called the Hardy–Littlewood circle method.

Theorem 1.2.15. As n→∞,

p(n) ∼ 1
4
√

3
n−1e

2π
√
n√

6 . (1.2.20)

One could imagine how shocked MacMahon was when Ramanujan presented him the
value of p(200). Let me simply quote a piece of lines from the movie “The Man Who
Knew Infinity.”

(M stands for MacMahon and R stands for Ramanujan.)

M: Well, here we are. p(200), the moment of truth . . .Well, you first. What
is your formula given you?

R: Three billion nine hundred and seventy two thousand nine hundred and
ninety eight million.

M: My God! You are close [*silent for 5 seconds*] within two percent. Well,
I will be damned.

Well, what is the exact value of p(200) then? The answer is

p(200) = 3, 972, 999, 029, 388.
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There are a number of ways to study the asymptotic behavior of a sequence, all
starting with the generating function. Recall that the generating function of p(n) is

P (q) = 1
(q; q)∞

= 1
(1− q)(1− q2)(1− q3) · · · .

The easiest method is Ingham’s Tauberian theorem, which is stated as follows.

Theorem 1.2.16 (Ingham [101]). Let f(q) = ∑
n≥0 a(n)qn be a power series with weakly

increasing nonnegative coefficients and radius of convergence equal to 1. If there are
constants A > 0 and λ, α ∈ R such that

f
(
e−t
)
∼ λtαe

A
t

as t→ 0+, then

a(n) ∼ λ

2
√
π

A
α
2 + 1

4

n
α
2 + 3

4
e2
√
An

as n→∞.

Since p(n) is non-decreasing, it is only necessary to study the asymptotics of P (q) as
q → 1− along the real line.

But it is not always the case that the non-decreasing condition is satisfied for a given
sequence. In such cases, one should continue with some more complicated calculations.
Let us still use p(n) to illustrate. The basic idea here is Cauchy’s integral formula. Recall
that

p(n) = 1
2πi

∮
C:|q|=r

P (q)
qn+1 dq,

where the contour C is inside the unit disc and the contour integral is taken counter-
clockwise.

Since
P (q) = 1

(1− q)(1− q2)(1− q3) · · · ,

one can see that P (q) has a dominant pole at q = 1. Hence, if the radius of the contour
C inside the unit disc is taken to approach 1, then the main contribution comes from the
arc close to 1. This is essentially the principle of Wright’s circle method.

When we study the asymptotics, one important function that always appears is the
modified Bessel function of the first kind or the I-Bessel function.
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Definition 1.2.3. The modified Bessel function of the first kind is defined by

Is(x) =
∞∑
m=0

1
m!Γ(m+ s+ 1)

(
x

2

)2m+s
, (1.2.21)

where Γ(z) is the gamma function.

Its asymptotic behavior is also well known.

Theorem 1.2.17 (Cf. [2, p. 377, (9.7.1)]). For fixed s, when | arg x| < π/2,

Is(x) ∼ ex√
2πx

(
1− 4s2 − 1

8x + (4s2 − 1)(4s2 − 9)
2!(8x)2 − · · ·

)
. (1.2.22)

After considering the dominant pole at q = 1, one could even move further by noticing
that the pole of P (q) at −1 is 1/2 as “important” as the pole at 1, the pole at primitive
cube roots of unity is 1/3 as “important,” and so on. Hence, we could focus on the
asymptotic behavior of P (q) on arcs inside the unit disc that is close to a rational point
on the unit circle, that is, a point of the form exp(2πih/k). Based on this idea along with
other techniques, Rademacher [143] eventually arrived at an exact formula as follows.

Theorem 1.2.18. We have

p(n) = 1
2
√

2π
∑
k≥1

Ak(n)
√
k
d

dn

 2√
n− 1

24

sinh
π
k

√
2
3

(
n− 1

24

) , (1.2.23)

where
Ak(n) =

∑
0≤h<k

gcd(h,k)=1

eπi(s(h,k)−2nh/k)

with s(h, k) being the Dedekind sum defined by

s(d, c) :=
∑

n mod c

((
dn

c

))((
n

c

))

where

((x)) :=

x− bxc − 1/2 if x 6∈ Z,

0 if x ∈ Z.

Let me end this section with an example given on page 70 of [12].
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Example 1.2.1. Let us use the first 8 terms in Rademacher’s formula to estimate p(200):

+ 3, 972, 998, 993, 185.896
+ 36, 282.978
− 87.584
+ 5.147
+ 1.424
+ 0.071
+ 0.000
+ 0.044

3, 972, 999, 029, 387.975

Eureka! We are only .025 away from the exact value!
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Part I |
Congruences
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Outline

• Chapter 2 is devoted to an elementary proof of an infinite family of congruences
modulo powers of 5 for pD(n), the number of partitions of n into distinct parts.

• Chapter 3 is devoted to some eta-quotient representations concerning the Rogers–
Ramanujan continued fraction.
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Chapter 2 |

Partitions into Distinct Parts Modulo Powers of 5

This chapter comes from

• S. Chern and M. D. Hirschhorn, Partitions into distinct parts modulo powers of 5, Ann. Comb.
23 (2019), no. 3-4, 659–682. Also in: George E. Andrews—80 Years of Combinatory Analysis,
305–328, Birkhäuser/Springer, Cham, 2021. (Ref. [64])

2.1 Introduction and Main Result

Let pD(n) denote the number of partitions of n into distinct parts. Then

∑
n≥0

pD(n)qn = (−q; q)∞ = E(q2)
E(q) (2.1.1)

where
E(q) = (q; q)∞.

Like the ordinary partition function p(n), pD(n) also enjoys an infinite family of
congruences modulo powers of 5. Namely,

pD

(
52α+1n+ 52α+2 − 1

24

)
≡ 0 (mod 5α). (2.1.2)

It should be noted that this congruence, which is due to Rødseth [154] and independently
to Gordon and Hughes [87], requires the theory of modular forms in its proof. On the
other hand, the congruence for p(n) stated as follows,

p
(
5αn+ δα

)
≡ 0 (mod 5α) (2.1.3)
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where

δα =


19× 5α + 1

24 if α is odd,

23× 5α + 1
24 if α is even,

(2.1.4)

which was conjectured by Ramanujan [150] in 1919, was first demonstrated by Watson
[171] in 1938, again, with the help of modular forms. However, in 1981, it was shown by
Hirschhorn and Hunt [100] that (2.1.3) could also be achieved by a purely elementary
approach, which is based on a modular equation of degree 5.

Now a natural question arises:

Can we prove (2.1.2) by an elementary method, or even using the words of Mike
Hirschhorn, by only “high School algebra, but taken somewhat further?”

The goal of this chapter is to settle this problem in affirmative. Our result can be
stated as follows.

Theorem 2.1.1. For α ≥ 1,

∑
n≥0

pD

(
52α−1n+ 52α − 1

24

)
qn = γ

(52α−1)/24∑
i=1

x2α−1,iζ
i−1, (2.1.5)

∑
n≥0

pD

(
52αn+ 52α − 1

24

)
qn = δ

(52α+1−5)/24∑
i=1

x2α,iζ
i−1 (2.1.6)

where

γ = E(q2)2E(q5)3

E(q)4E(q10) , δ = E(q2)3E(q5)4

E(q)5E(q10)2 , ζ = q
E(q2)E(q10)3

E(q)3E(q5) (2.1.7)

and where the coefficient vectors xα = (xα,1, xα,2, · · · ) are given recursively by

x1 = (1, 0, · · · ), (2.1.8)

and for α ≥ 1,

x2α = x2α−1A (2.1.9)
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and

x2α+1 = x2αB, (2.1.10)

where A is the matrix (αi,j)i,j≥1 and B is the matrix (βi,j)i,j≥1 where the αi,j and βi,j are
given by

∑
i,j≥1

αi,jx
iyj = Nα

D′
(2.1.11)

and

∑
i,j≥1

βi,jx
iyj = Nβ

D′
(2.1.12)

where

Nα = (y + 160y2 + 2800y3 + 16000y4 + 32000y5)x

+ (180y2 + 3000y3 + 16800y4 + 32000y5)x2

+ (75y2 + 1215y3 + 6600y4 + 12000y5)x3

+ (14y2 + 220y3 + 1150y4 + 2000y5)x4

+ (y2 + 15y3 + 75y4 + 125y5)x5, (2.1.13)

Nβ = (5y + 660y2 + 14400y3 + 120000y4 + 448000y5 + 640000y6)x

+ (y + 680y2 + 14900y3 + 123200y4 + 456000y5 + 640000y6)x2

+ (265y2 + 5785y3 + 47500y4 + 174000y5 + 240000y6)x3

+ (46y2 + 1000y3 + 8150y4 + 29500y5 + 40000y6)x4

+ (3y2 + 65y3 + 525y4 + 1875y5 + 2500y6)x5 (2.1.14)

and

D′ = 1− (205y + 4300y2 + 34000y3 + 120000y4 + 160000y5)x

− (215y + 4475y2 + 35000y3 + 122000y4 + 160000y5)x2

− (85y + 1750y2 + 13525y3 + 46000y4 + 60000y5)x3

− (15y + 305y2 + 2325y3 + 7875y4 + 10000y5)x4
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− (y + 20y2 + 150y3 + 500y4 + 625y5)x5. (2.1.15)

Furthermore, for α ≥ 1,

x2α+1,i ≡ 0 (mod 5α), (2.1.16)

x2α+2,i ≡ 0 (mod 5α), (2.1.17)

from which it follows that for α ≥ 1,

pD

(
52α+1n+ 52α+2 − 1

24

)
≡ 0 (mod 5α), (2.1.18)

pD

(
52α+2n+ 52α+2 − 1

24

)
≡ 0 (mod 5α). (2.1.19)

(Of course, (2.1.19) is a special case of (2.1.18).)

2.2 Preliminaries

Let

R(q) =
 q, q4

q2, q3; q5


∞

, χ(−q) = (q; q2)∞ = E(q)
E(q2) .

Then ([98, (8.1.1)])

E(q) = E(q25)
(

1
R(q5) − q − q

2R(q5)
)
, (2.2.1)

([98, (8.4.4)])

1
E(q) = E(q25)5

E(q5)6

(
1

R(q5)4 + q

R(q5)3 + 2q2

R(q5)2 + 3q3

R(q5) + 5q4

−3q5R(q5) + 2q6R(q5)2 − q7R(q5)3 + q8R(q5)4
)
, (2.2.2)

([98, (40.2.3)])

R(q2)−R(q)2 = 2q
 q, q, q9, q9

q3, q5, q5, q7; q10


∞

, (2.2.3)
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([98, (40.2.4)])

R(q2) +R(q)2 = 2
q, q4, q6, q9

q2, q5, q5, q8; q10


∞

, (2.2.4)

([98, (41.1.3)])

1− qR(q)R(q2)2 =
q, q4, q5, q5, q6, q9

q2, q3, q3, q7, q7, q8; q10


∞

, (2.2.5)

([98, (41.1.2)])

1 + qR(q)R(q2)2 =
q2, q2, q5, q5, q8, q8

q, q4, q4, q6, q6, q9 ; q10


∞

, (2.2.6)

([98, (34.8.4)])

E(q2)4

E(q)2 − q
E(q10)4

E(q5)2 = E(q2)E(q5)3

E(q)E(q10) (2.2.7)

and ([98, (34.8.3)])

E(q5)4

E(q10)2 −
E(q)4

E(q2)2 = 4qE(q)E(q10)3

E(q2)E(q5) . (2.2.8)

We require the following results.

Lemma.

R(q2)
R(q)2 −

R(q)2

R(q2) = 4q χ(−q)
χ(−q5)5 , (2.2.9)

R(q2)−R(q)2

R(q2) +R(q)2 = qR(q)R(q2)2, (2.2.10)

1
R(q)R(q2)2 − q

2R(q)R(q2)2 = χ(−q5)5

χ(−q) , (2.2.11)

32



1− qR(q)R(q2)2

1 + qR(q)R(q2)2 = R(q)2

R(q2) , (2.2.12)

R(q)
R(q2)3 + q2R(q2)3

R(q) = χ(−q5)5

χ(−q) − 2q + 4q2 χ(−q)
χ(−q5)5 , (2.2.13)

1
R(q)3R(q2) + q2R(q)3R(q2) = χ(−q5)5

χ(−q) + 2q + 4q2 χ(−q)
χ(−q5)5 , (2.2.14)

χ(−q5)5

χ(−q) + q = E(q2)4E(q5)2

E(q)2E(q10)4 (2.2.15)

and

1− 4q χ(−q)
χ(−q5)5 = E(q)4E(q10)2

E(q2)2E(q5)4 . (2.2.16)

Proof of (2.2.9). If we multiply (2.2.3) by (2.2.4) and divide by R(q)2R(q2), we find that

R(q2)
R(q)2 −

R(q)2

R(q2) = (R(q2)−R(q)2)(R(q2) +R(q)2)
R(q)2R(q2)

=
2q
 q, q, q9, q9

q3, q5, q5, q7; q10


∞

· 2
q, q4, q6, q9

q2, q5, q5, q8; q10


∞ q, q, q4, q4, q6, q6, q9, q9, q2, q8

q2, q2, q3, q3, q7, q7, q8, q8, q4, q6; q10


∞

= 4q
q, q3, q5, q7, q9

q5, q5, q5, q5, q5; q10


∞

= 4q (q; q2)∞
(q5; q10)5

∞

= 4q χ(−q)
χ(−q5)5 .
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Proof of (2.2.10). If we divide (2.2.3) by (2.2.4), we obtain

R(q2)−R(q)2

R(q2) +R(q)2 = q

 q, q, q9, q9

q3, q5, q5, q7; q10


∞q, q4, q6, q9

q2, q5, q5, q8; q10


∞

= q

q, q2, q8, q9

q3, q4, q6, q7; q10


∞

= q

q, q4, q6, q9, q2, q2, q8, q8

q2, q3, q7, q8, q4, q4, q6, q6; q10


∞

= qR(q)R(q2)2.

Proof of (2.2.11). If we multiply (2.2.5) by (2.2.6) and divide by R(q)R(q2)2, we find

1
R(q)R(q2)2 − q

2R(q)R(q2)2 = (1− qR(q)R(q2)2)(1 + qR(q)R(q2)2)
R(q)R(q2)2

=

q, q4, q5, q5, q6, q9

q2, q3, q3, q7, q7, q8; q10


∞

q2, q2, q5, q5, q8, q8

q, q4, q4, q6, q6, q9 ; q10


∞q, q4, q6, q9

q2, q3, q7, q8; q10


∞

q2, q2, q8, q8

q4, q4, q6, q6; q10


∞

=
q5, q5, q5, q5, q5

q, q3, q5, q7, q9 ; q10


∞

= χ(−q5)5

χ(−q) .

Proof of (2.2.12). If we divide (2.2.5) by (2.2.6) we obtain

1− qR(q)R(q2)2

1 + qR(q)R(q2)2 =

q, q4, q5, q5, q6, q9

q2, q3, q3, q7, q7, q9; q10


∞q2, q2, q5, q5, q8, q8

q, q4, q4, q6, q6, q9 ; q10


∞
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=
 q, q, q4, q4, q6, q6, q9, q9, q4, q6

q2, q2, q3, q3, q7, q7, q8, q8, q2, q8; q10


∞

= R(q)2

R(q2) .

Proof of (2.2.13). Note that (2.2.10) is equivalent to (2.2.12), because they are both
equivalent to

R(q2)−R(q)2 = qR(q)3R(q2)2 + qR(q)R(q2)3. (2.2.17)

If we divide (2.2.17) by R(q)R(q2)3 and rearrange, we find that

R(q)
R(q2)3 = 1

R(q)R(q2)2 − q
R(q)2

R(q2) − q, (2.2.18)

while if we divide (2.2.17) by R(q)2, rearrange and multiply by q, we obtain

q2R(q2)3

R(q) = −q2R(q)R(q2)2 + q
R(q2)
R(q)2 − q. (2.2.19)

If we add (2.2.18) and (2.2.19), we obtain

R(q)
R(q2)3 + q2R(q2)3

R(q) =
(

1
R(q)R(q2)2 − q

2R(q)R(q2)2
)
− 2q + q

(
R(q2)
R(q)2 −

R(q)2

R(q2)

)

= χ(−q5)5

χ(−q) − 2q + 4q2 χ(−q)
χ(−q5)5 .

Proof of (2.2.14). If we multiply (2.2.9) by (2.2.11) and add (2.2.13), we find that

1
R(q)3R(q2) + q2R(q)3R(q2) =

(
R(q2)
R(q)2 −

R(q)2

R(q2)

)(
1

R(q)R(q2)2 − q
2R(q)R(q2)2

)

+
(
R(q)
R(q2)3 + q2R(q2)3

R(q)

)

= 4q χ(−q)
χ(−q5)5 ·

χ(−q5)5

χ(−q)
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+
(
χ(−q5)5

χ(−q) − 2q + 4q2 χ(−q)
χ(−q5)5

)

= χ(−q5)5

χ(−q) + 2q + 4q2 χ(−q)
χ(−q5)5 .

Proof of (2.2.15).

χ(−q5)5

χ(−q) + q = E(q2)E(q5)5

E(q)E(q10)5 + q

= E(q5)2

E(q10)4

(
E(q2)E(q5)3

E(q)E(q10) + q
E(q10)4

E(q5)2

)

= E(q5)2

E(q10)4 ·
E(q2)4

E(q)2 .

Proof of (2.2.16).

1− 4q χ(−q)
χ(−q5)5 = 1− 4qE(q)E(q10)5

E(q2)E(q5)5

= E(q10)2

E(q5)4

(
E(q5)4

E(q10)2 − 4qE(q)E(q10)3

E(q2)E(q5)

)

= E(q10)2

E(q5)4 ·
E(q)4

E(q2)2 .

2.3 The Work of Baruah and Begum

It is fair to mention that our idea is motivated by a recent work of Baruah and Begum
[35], in which the following results were shown.

∑
n≥0

pD(5n+ 1)qn = E(q2)2E(q5)3

E(q)4E(q10) , (2.3.1)
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∑
n≥0

pD(25n+ 1)qn = E(q2)3E(q5)4

E(q)5E(q10)2

×

1 + 160q
(
E(q2)E(q10)3

E(q)3E(q5)

)
+ 2800q2

(
E(q2)E(q10)3

E(q)3E(q5)

)2

+16000q3
(
E(q2)E(q10)3

E(q)3E(q5)

)3

+ 32000q4
(
E(q2)E(q10)3

E(q)3E(q5)

)4
 , (2.3.2)

as well as the corresponding result for
∑
n≥0

pD(125n+ 26)qn.

Now let us reprove (2.3.1). We have

∑
n≥0

pD(n)qn = (−q; q)∞ = E(q2)
E(q)

= E(q25)5

E(q5)6

(
1

R(q5)4 + q

R(q5)3 + 2q2

R(q5)2 + 3q3

R(q5) + 5q4

−3q5R(q5) + 2q6R(q5)2 − q7R(q5)3 + q8R(q5)4
)

× E(q50)
(

1
R(q10) − q

2 − q4R(q10)
)
.

It follows that

∑
n≥0

pD(5n+ 1)qn

= E(q5)5E(q10)
E(q)6

×
((

1
R(q)3R(q2) + q2R(q)3R(q2)

)
− 5q − 2q

(
R(q2)
R(q)2 −

R(q)2

R(q2)

))

= E(q5)5E(q10)
E(q)6

×
((

χ(−q5)5

χ(−q) + 2q + 4q2 χ(−q)
χ(−q5)5

)
− 5q − 2q · 4q χ(−q)

χ(−q5)5

)

= E(q5)5E(q10)
E(q)6

(
χ(−q5)5

χ(−q) − 3q − 4q2 χ(−q)
χ(−q5)5

)

= E(q5)5E(q10)
E(q)6

(
χ(−q5)5

χ(−q) + q

)(
1− 4q χ(−q)

χ(−q5)5

)

=
(
E(q5)5E(q10)

E(q)6

)(
E(q2)4E(q5)2

E(q)2E(q10)4

)(
E(q)4E(q10)2

E(q2)2E(q5)4

)
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= E(q2)2E(q5)3

E(q)4E(q10) .

Note that (2.3.1) is the case α = 1 of (2.1.5).

2.4 The Modular Equation

We obtain the modular equation for ζ.

Let ζ(q5) = Z.

Theorem 2.4.1.

ζ5 − (205Z + 4300Z2 + 34000Z3 + 120000Z4 + 160000Z5)ζ4

− (215Z + 4475Z2 + 35000Z3 + 122000Z4 + 160000Z5)ζ3

− (85Z + 1750Z2 + 13525Z3 + 46500Z4 + 60000Z5)ζ2

− (15Z + 305Z2 + 2325Z3 + 7875Z4 + 10000Z5)ζ

− (Z + 20Z2 + 150Z3 + 500Z4 + 625Z5) = 0. (2.4.1)

Proof. Let H be the huffing operator, given by

H

(∑
n

a(n)qn
)

=
∑
n

a(5n)q5n. (2.4.2)

We can show, using extremely lengthy but elementary calculations (see §2.9), that

H(ζ) = 41Z + 860Z2 + 6800Z3 + 24000Z4 + 32000Z5,

(2.4.3)

H(ζ2) = 86Z + 10195Z2 + 366600Z3 + 6534800Z4 + 68384000Z5 + 450720000Z6

+ 1907200000Z7 + 5056000000Z8 + 7680000000Z9 + 5120000000Z10,

(2.4.4)

H(ζ3) = 51Z + 27495Z2 + 2836265Z3 + 128688900Z4 + 3343692000Z5

+ 56283680000Z6 + 656205600000Z7 + 5502096000000Z8

+ 33821312000000Z9 + 153192960000000Z10

+ 506956800000000Z11 + 1195008000000000Z12
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+ 1904640000000000Z13 + 1843200000000000Z14

+ 819200000000000Z15,

(2.4.5)

H(ζ4) = 12Z + 32674Z2 + 8579260Z3 + 831492275Z4 + 42958434000Z5

+ 1396773180000Z6 + 31314949600000Z7 + 511802288800000Z8

+ 6319880448000000Z9 + 60349364480000000Z10

+ 452174745600000000Z11 + 2679038592000000000Z12

+ 12574269440000000000Z13 + 46561935360000000000Z14

+ 134544588800000000000Z15 + 297365504000000000000Z16

+ 485949440000000000000Z17 + 553779200000000000000Z18

+ 393216000000000000000Z19 + 131072000000000000000Z20

(2.4.6)

and

H(ζ5) = Z + 21370Z2 + 13932050Z3 + 2684902125Z4 + 251131688125Z5

+ 14097638650000Z6 + 532547945100000Z7 + 14515766554000000Z8

+ 298883447380000000Z9 + 4797842366000000000Z10

+ 61395781800000000000Z11 + 636255683040000000000Z12

+ 5398601306880000000000Z13 + 37772239436800000000000Z14

+ 21875584000000000000000Z15 + 1049457704960000000000000Z16

+ 4160657715200000000000000Z17 + 13552680960000000000000000Z18

+ 35909189632000000000000000Z19 + 76195266560000000000000000Z20

+ 126438604800000000000000000Z21 + 158138368000000000000000000Z22

+ 140247040000000000000000000Z23 + 78643200000000000000000000Z24

+ 20971520000000000000000000Z25.

(2.4.7)

Let η be a fifth root of unity other than 1, and for i = 0, 1, 2, 3, 4 define

ζi = ζ(ηiq). (2.4.8)
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Then the power sums π1, · · · , π5 of the ζi are given by

π1 = ζ0 + · · · + ζ4 = 5H(ζ),

π2 = ζ2
0 + · · · + ζ2

4 = 5H(ζ2),

· · ·

π5 = ζ5
0 + · · · + ζ5

4 = 5H(ζ5). (2.4.9)

From (2.4.9) we obtain the symmetric functions σ1, · · · , σ5 of the ζi,

σ1 =
∑
i

ζi = π1

= 205Z + 4300Z2 + 34000Z3 + 120000Z4 + 160000Z5,

σ2 =
∑
i<j

ζiζj = 1
2(π1σ1 − π2)

= −215Z − 4475Z2 − 35000Z3 − 122000Z4 − 160000Z5,

σ3 =
∑
i<j<k

ζiζjζk = 1
3(π1σ2 − π2σ1 + π3)

= 85Z + 1750Z2 + 13525Z3 + 46000Z4 + 60000Z5,

σ4 =
∑

i<j<k<l

ζiζjζkζl = 1
4(π1σ3 − π2σ2 + π3σ1 − π4)

= −15Z − 305Z2 − 2325Z3 − 7875Z4 − 10000Z5,

σ5 = ζ0ζ1 · · · ζ4 = 1
5(π1σ4 − π2σ3 + π3σ2 − π4σ1 + π5)

= Z + 20Z2 + 150Z3 + 500Z4 + 625Z5. (2.4.10)

Now, ζ0, · · · , ζ4 are the roots of

(X − ζ0)(X − ζ1)(X − ζ2)(X − ζ3)(X − ζ4)

= X5 − σ1X
4 + σ2X

3 − σ3X
2 + σ4X − σ5 = 0, (2.4.11)

or,

X5 − (205Z + 4300Z2 + 34000Z3 + 120000Z4 + 160000Z5)X4

− (215Z + 4475Z2 + 35000Z3 + 122000Z4 + 160000Z5)X3

− (85Z + 1750Z2 + 13525Z3 + 46500Z4 + 60000Z5)X2
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− (15Z + 305Z2 + 2325Z3 + 7875Z4 + 10000Z5)X

− (Z + 20Z2 + 150Z3 + 500Z4 + 625Z5) = 0. (2.4.12)

In particular, ζ is a root, and we obtain (2.4.1).

Remark. It is truly remarkable, amazing even, that although π1, · · · π5 are polynomials
of degree up to 25, σ1, · · · , σ5 are of degree 5.

2.5 Some Important Recurrences and Generating Functions

Let U be the unitizing operator, given by

U

(∑
n

a(n)qn
)

=
∑
n

a(5n)qn. (2.5.1)

It follows from (2.4.1) that for i ≥ 6, ui = U(ζ i) satisfies the recurrence

ui = (205ζ + 4300ζ2 + 34000ζ3 + 120000ζ4 + 160000ζ5)ui−1

+ (215ζ + 4475ζ2 + 35000ζ3 + 122000ζ4 + 160000ζ5)ui−2

+ (85ζ + 1750ζ2 + 13525ζ3 + 46500ζ4 + 60000ζ5)ui−3

+ (15ζ + 305ζ2 + 2325ζ3 + 7875ζ4 + 10000ζ5)ui−4

+ (ζ + 20ζ2 + 150ζ3 + 500ζ4 + 625ζ5)ui−5. (2.5.2)

The recurrence (2.5.2), together with the five initial values u1, u2 · · · , u5, which can
be read off from (2.4.3)–(2.4.7) by replacing Z by ζ, gives

∑
i≥1

uix
i = N

D
(2.5.3)

where

N = (41ζ + 860ζ2 + 6800ζ3 + 24000ζ4 + 32000ζ5)x

+ (86ζ + 1790ζ2 + 14000ζ3 + 48800ζ4 + 64000ζ5)x2

+ (51ζ + 1050ζ2 + 8115ζ3 + 27900ζ4 + 36000ζ5)x3

+ (12ζ + 244ζ2 + 1869ζ3 + 6300ζ4 + 8000ζ5)x4

+ (ζ + 20ζ2 + 150ζ3 + 500ζ4 + 625ζ5)x5 (2.5.4)
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and

D = 1− (205ζ + 4300ζ2 + 34000ζ3 + 120000ζ4 + 160000ζ5)x

− (215ζ + 4475ζ2 + 35000ζ3 + 122000ζ4 + 160000ζ5)x2

− (85ζ + 1750ζ2 + 13525ζ3 + 46500ζ4 + 60000ζ5)x3

− (15ζ + 305ζ2 + 2325ζ3 + 7875ζ4 + 10000ζ5)x4

− (ζ + 20ζ2 + 150ζ3 + 500ζ4 + 625ζ5)x5. (2.5.5)

From (2.5.3)–(2.5.5) we deduce that for i ≥ 1,

U(ζ i) = ui =
5i∑
j=1

µi,jζ
j (2.5.6)

where the µi,j are given by

∞∑
i=1

5i∑
j=1

µi,jx
iyj = N ′

D′
(2.5.7)

where

N ′ = (41y + 860y2 + 6800y3 + 24000y4 + 32000y5)x

+ (86y + 1790y2 + 14000y3 + 48800y4 + 64000y5)x2

+ (51y + 1050y2 + 8115y3 + 27900y4 + 36000y5)x3

+ (12y + 244y2 + 1869y3 + 6300y4 + 8000y5)x4

+ (y + 20y2 + 150y3 + 500y4 + 625y5)x5 (2.5.8)

and

D′ = 1− (205y + 4300y2 + 34000y3 + 120000y4 + 160000y5)x

− (215y + 4475y2 + 35000y3 + 122000y4 + 160000y5)x2

− (85y + 1750y2 + 13525y3 + 46500y4 + 60000y5)x3

− (15y + 305y2 + 2325y3 + 7875y4 + 10000y5)x4

− (y + 20y2 + 150y3 + 500y4 + 625y5)x5. (2.5.9)

More importantly, if we multiply (2.4.1) by γ and apply the operator U , we see that
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vi = U(γζ i−1) satisfy the recurrence (2.5.2) (with v for u).
Also, using the same sort of calculations as in §2.4 (see §2.9 Appendix),

v1 = U(γ) = δ(1 + 160ζ + 2800ζ2 + 16000ζ3 + 32000ζ4),

(2.5.10)

v2 = U(γζ) = δ(385ζ + 40100ζ2 + 1312800ζ3 + 20912000ζ4 + 189920000ζ5

+ 1043200000ζ6 + 3456000000ζ7 + 6400000000ζ8 + 5120000000ζ9),

(2.5.11)

v3 = U(γζ2) = δ(290ζ + 119015ζ2 + 11235600ζ3 + 476348000ζ4 + 11537760000ζ5

+ 179434400000ζ6 + 1908992000000ζ7 + 14377472000000ζ8

+ 77783040000000ζ9 + 301644800000000ζ10 + 821248000000000ζ11

+ 1495040000000000ζ12 + 1638400000000000ζ13 + 819200000000000ζ14),

(2.5.12)

v4 = U(γζ3) = δ(99ζ + 157795ζ2 + 36522125ζ3 + 3308569500ζ4

+ 161943150000ζ5 + 4995603800000ζ6 + 105933588800000ζ7

+ 1628976896000000ζ8 + 18797435520000000ζ9 + 166360908800000000ζ10

+ 1143762304000000000ζ11 + 6142300160000000000ζ12

+ 25729781760000000000ζ13 + 83330457600000000000ζ14

+ 204857344000000000000ζ15 + 370032640000000000000ζ16

+ 463667200000000000000ζ17 + 360448000000000000000ζ18

+ 131072000000000000000ζ19)

(2.5.13)

and

v5 = U(γζ4) = δ(16ζ + 118090ζ2 + 63835100ζ3 + 11315760375ζ4

+ 1002222145000ζ5 + 53778439200000ζ6 + 1946392973200000ζ7

+ 50789296612000000ζ8 + 998696483520000000ζ9 + 15256932894400000000ζ10

+ 185007570368000000000ζ11 + 1807671489280000000000ζ12

+ 14376293539840000000000ζ13 + 93630345523200000000000ζ14

+ 500636522496000000000000ζ15 + 2195582095360000000000000ζ16

+ 7860788428800000000000000ζ17 + 22768123904000000000000000ζ18
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+ 52564656128000000000000000ζ19 + 94522572800000000000000000ζ20

+ 127664128000000000000000000ζ21 + 121896960000000000000000000ζ22

+ 73400320000000000000000000ζ23 + 209715200000000000000000000ζ24).

(2.5.14)

It follows that for i ≥ 1,

U(γζ i−1) = δ
5i∑
j=1

αi,jζ
j−1 (2.5.15)

where

∞∑
i=1

5i∑
j=1

αi,jx
iyj = Nα

D′
(2.5.16)

where

Nα = (y + 160y2 + 2800y3 + 16000y4 + 32000y5)x

+ (180y2 + 3000y3 + 16800y4 + 32000y5)x2

+ (75y2 + 1215y3 + 6600y4 + 12000y5)x3

+ (14y2 + 220y3 + 1150y4 + 2000y5)x4

+ (y2 + 15y3 + 75y4 + 125y5)x5 (2.5.17)

and D′ is given in (2.5.9).

Similarly, if we multiply (2.4.1) by q−1δ and apply the operator U , we see that
wi = U(q−1δζ i−1) satisfy (2.5.2) (with w for u).

Also,

w1 = U(q−1δ) = γ(5 + 660ζ + 14400ζ2 + 120000ζ3 + 448000ζ4 + 640000ζ5),

(2.5.18)

w2 = U(q−1δζ) = γ(1 + 1705ζ + 171700ζ2 + 6083200ζ3 + 110016000ζ4

+ 178080000ζ5 + 797120000ζ6 + 34688000000ζ7 + 94720000000ζ8

+ 148480000000ζ9 + 1024000000000ζ10),

(2.5.19)

w3 = U(q−1δζ2) = γ(1545ζ + 523885ζ2 + 48836000ζ3 + 2157580000ζ4
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+ 55972480000ζ5 + 950485600000ζ6 + 11233328000000ζ7

+ 95713408000000ζ8 + 598718720000000ζ9 + 2762265600000000ζ10

+ 9317888000000000ζ11 + 22405120000000000ζ12 + 36454400000000000ζ13

+ 36044800000000000ζ14 + 16384000000000000ζ15),

(2.5.20)

w4 = U(q−1δζ3) = γ(686ζ + 753625ζ2 + 161075075ζ3 + 14497246500ζ4

+ 727863490000ζ5 + 23458401400000ζ6 + 526452595200000ζ7

+ 8658501792000000ζ8 + 107918950400000000ζ9 + 1042082905600000000ζ10

+ 7904596864000000000ζ11 + 47450048000000000000ζ12

+ 225774243840000000000ζ13 + 847926476800000000000ζ14

+ 2486042624000000000000ζ15 + 5577277440000000000000ζ16

+ 9255321600000000000000ζ17 + 107151360000000000000000ζ18

+ 7733248000000000000000ζ19 + 2621440000000000000000ζ20)

(2.5.21)

and

w5 = U(q−1δζ4) = γ(163ζ + +630970ζ2 + 295013300ζ3

+ 50030923625ζ4 + 4413689785000ζ5 + 240963519250000ζ6

+ 8992052284600000ζ7 + 244243690752000000ζ8 + 5037514186320000000ζ9

+ 81262009334400000000ζ10 + 1047144506208000000000ζ11

+ 10942698476160000000000ζ12 + 93715045227520000000000ζ13

+ 662259232256000000000000ζ14 + 387577451008000000000000ζ15

+ 18796453150720000000000000ζ16 + 75357109452800000000000000ζ17

+ 248290942976000000000000000ζ18 + 665623035904000000000000000ζ19

+ 1429384069120000000000000000ζ20 + 2401107968000000000000000000ζ21

+ 3040870400000000000000000000ζ22 + 2731540480000000000000000000ζ23

+ 1551892480000000000000000000ζ24 + 419430400000000000000000000ζ25).

(2.5.22)
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It follows that for i ≥ 1,

U(q−1δζ i−1) = γ
5i+1∑
j=1

βi,jζ
j−1 (2.5.23)

where

∞∑
i=1

5i+1∑
j=1

βi,jx
iyj = Nβ

D′
(2.5.24)

where

Nβ = (5y + 660y2 + 14400y3 + 120000y4 + 448000y5 + 640000y6)x

+ (y + 680y2 + 14900y3 + 123200y4 + 456000y5 + 640000y6)x2

+ (265y2 + 5785y3 + 47500y4 + 174000y5 + 240000y6)x3

+ (46y2 + 1000y3 + 8150y4 + 29500y5 + 40000y6)x4

+ (3y2 + 65y3 + 525y4 + 1875y5 + 2500y6)x5 (2.5.25)

and D′ is given in (2.5.9).

2.6 Proof of the First Part of Theorem 2.1.1

The first part of Theorem 2.1.1 follows by a simple induction from (2.3.1), (2.5.15)
and (2.5.23), as we now demonstrate.

We know that (2.1.5) is true for α = 1.
Suppose (2.1.5) is true for some α ≥ 1.
Then

∑
n≥0

pD

(
52α−1n+ 52α − 1

24

)
qn = γ

(52α−1)/24∑
i=1

x2α−1,iζ
i−1. (2.6.1)

If we apply the operator U to (2.6.1) and use (2.5.15), we find

∑
n≥0

pD

(
52α−1(5n) + 52α − 1

24

)
qn =

(52α−1)/24∑
i=1

x2α−1,iU(γζ i−1)

=
(52α−1)/24∑

i=1
x2α−1,iδ

5i∑
j=1

αi,jζ
j−1
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= δ
(52α+1−5)/24∑

j=1

(52α−1)/24∑
i=1

x2α−1,iαi,j

 ζj−1

= δ
(52α+1−5)/24∑

j=1
x2α,jζ

j−1,

or,

∑
n≥0

pD

(
52αn+ 52α − 1

24

)
qn = δ

(52α+1−5)/24∑
j=1

x2α,jζ
j−1,

which is (2.1.6).
Now suppose (2.1.6) is true for some α ≥ 1.
Then

∑
n≥0

pD

(
52αn+ 52α − 1

24

)
qn−1 = q−1δ

(52α+1−5)/24∑
i=1

x2α,iζ
i−1. (2.6.2)

If we apply the operator U to (2.6.2) and use (2.5.23), we find

∑
n≥0

pD

(
52α(5n+ 1) + 52α − 1

24

)
qn =

(52α+1−5)/24∑
i=1

x2α,iU(q−1δζ i−1)

=
(52α+1−5)/24∑

i=1
x2α,iγ

5i+1∑
j=1

βi,jζ
j−1

= γ
(52α+2−1)/24∑

j=1

(52α+1−5)/24∑
i=1

x2α,iβi,j

 ζj−1

= γ
(52α+2−1)/24∑

j=1
x2α+1,jζ

j−1,

or,

∑
n≥0

pD

(
52α+1n+ 52α+2 − 1

24

)
qn = γ

(52α+2−1)/24∑
j=1

x2α+1,jζ
j−1,

which is (2.1.5) with α + 1 for α.
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2.7 Proof of the Second Part of Theorem 2.1.1

Let ν(n) denote the (highest) power of 5 that divides n.

We prove the following theorem.

Theorem 2.7.1.

ν(αi,j) ≥
⌊5j − i− 1

6

⌋
, (2.7.1)

ν(βi,j) ≥
⌊5j − i− 1

6

⌋
. (2.7.2)

Proof. Let λi,j = ν(αi,j), ρi,j =
⌊5j − i− 1

6

⌋
.

Observe that from the recurrence (2.5.2), for i, j ≥ 6,

λi,j ≥ min(λi−1,j−1 + 1, λi−1,j−2 + 2, λi−1,j−3 + 3, λi−1,j−4 + 4, λi−1,j−5 + 4

λi−2,j−1 + 1, λi−2,j−2 + 2, λi−2,j−3 + 4, λi−2,j−4 + 3, λi−2,j−5 + 4,

λi−3,j−1 + 1, λi−3,j−2 + 3, λi−3,j−3 + 2, λi−3,j−4 + 3, λi−3,j−5 + 4,

λi−4,j−1 + 1, λi−4,j−2 + 1, λi−4,j−3 + 2, λi−4,j−4 + 3.λi−4,j−5 + 4,

λi−5,j−1 + 0, λi−5,j−2 + 1, λi−5,j−3 + 2, λi−5,j−4 + 3, λi−5,j−5 + 4). (2.7.3)

On the other hand,

ρi,j = min(ρi−1,j−1 + 1, ρi−1,j−2 + 2, ρi−1,j−3 + 3, ρi−1,j−4 + 4, ρi−1,j−5 + 4

ρi−2,j−1 + 1, ρi−2,j−2 + 2, ρi−2,j−3 + 4, ρi−2,j−4 + 3, ρi−2,j−5 + 4,

ρi−3,j−1 + 1, ρi−3,j−2 + 3, ρi−3,j−3 + 2, ρi−3,j−4 + 3, ρi−3,j−5 + 4,

ρi−4,j−1 + 1, ρi−4,j−2 + 1, ρi−4,j−3 + 2, ρi−4,j−4 + 3, ρi−4,j−5 + 4,

ρi−5,j−1 + 0, ρi−5,j−2 + 1, ρi−5,j−3 + 2, ρi−5,j−4 + 3, ρi−5,j−5 + 4). (2.7.4)

For, the right side of (2.7.4)

= min
(⌊5j − i+ 1

6

⌋
,
⌊5j − i+ 2

6

⌋
,
⌊5u− i+ 3

6

⌋
,
⌊5j − i+ 4

6

⌋
,
⌊5j − i− 1

6

⌋
⌊5j − i+ 2

6

⌋
,
⌊5j − i+ 3

6

⌋
,
⌊5j − i+ 10

6

⌋
,
⌊5j − i− 1

6

⌋
,
⌊5j − i

6

⌋
,⌊5j − i+ 3

6

⌋
,
⌊5j − i+ 10

6

⌋
,
⌊5j − i− 1

6

⌋
,
⌊5j − i

6

⌋
,
⌊5j − i+ 1

6

⌋
,
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⌊5j − i+ 4
6

⌋
,
⌊5j − i− 1

6

⌋
,
⌊5j − i

6

⌋
,
⌊5j − i+ 1

6

⌋
,
⌊5j − i+ 3

6

⌋
,⌊5j − i− 1

6

⌋
,
⌊5j − i

6

⌋
,
⌊5j − i+ 1

6

⌋
,
⌊5j − i+ 2

6

⌋
,
⌊5j − i+ 3

6

⌋)
=
⌊5j − i− 1

6

⌋
= ρi,j.

The values of λi,j − ρi,j for 1 ≤ i ≤ 5 and for 1 ≤ j ≤ 5 are given in the following
tables. Note that they are all non-negative. (We use • for ∞.)

j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
i 1 0 0 0 0 0 • · · ·

2 • 0 0 0 0 0 0 0 1 0 • · · ·
3 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • · · ·
4 • 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • · · ·
5 • 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 • · · ·

(2.7.5)

i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
j 1 0 • · · ·

2 0 0 0 0 0 0 • · · ·
3 0 0 0 0 0 0 0 1 0 0 0 • · · ·
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 • · · ·
5 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 • · · ·

(2.7.6)

(2.7.1) follows from (2.7.3)–(2.7.6) by induction.

The proof of (2.7.2) is essentially the same as that of (2.7.1). The boundary values
are given by the following tables.
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j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
i 1 1 0 0 1 0 0 • · · ·

2 0 0 0 0 0 0 0 0 0 0 0 • · · ·
3 • 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 • · · ·
4 • 0 2 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 • · · ·
5 • 0 0 0 0 0 2 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 2 0 0 0 • · · ·

(2.7.7)

i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
j 1 1 0 • · · ·

2 0 0 0 0 0 1 0 • · · ·
3 0 0 0 2 0 0 0 0 0 0 1 0 • · · ·
4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 • · · ·
5 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 • · · ·

(2.7.8)

Theorem 2.7.2. For α ≥ 0,

ν(x2α+1,1) ≥ α, ν(x2α+1,i) ≥ α +
⌊5i− 8

6

⌋
for i ≥ 2, (2.7.9)

ν(x2α+2,i) ≥ α +
⌊5i− 2

6

⌋
. (2.7.10)

Proof. If we replace ν(A) by
(⌊5j − i− 1

6

⌋)
i,j≥1

and ν(B) by
(⌊5j − i− 1

6

⌋)
i,j≥1

with

the exception ν(b1,1) = 1, and we start with ν(x1) = (0, ∞, · · · ), the results follow by
induction.

This completes the proof of Theorem 2.1.1.
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2.8 Calculations

We find that

x1 = (1, 0, · · · ), (2.8.1)

x2 = (1, 160, 2800, 16000, 32000, 0, · · · ), (2.8.2)

x3 = (5 ∗ 33, 22 ∗ 5 ∗ 1039573, 24 ∗ 52 ∗ 84358511, 26 ∗ 53 ∗ 1519417629,

28 ∗ 53 ∗ 57468885219, 210 ∗ 54 ∗ 239126250621, 220 ∗ 56 ∗ 493702983,

216 ∗ 57 ∗ 57851635449, 217 ∗ 58 ∗ 155363323153, 222 ∗ 58 ∗ 99443868167,

220 ∗ 59 ∗ 1277863945093, 223 ∗ 511 ∗ 82117001559, 224 ∗ 512 ∗ 85675198911,

229 ∗ 514 ∗ 916288433, 229 ∗ 513 ∗ 32357578059, 233 ∗ 514 ∗ 2366343709,

236 ∗ 516 ∗ 57370733, 237 ∗ 517 ∗ 22998577, 236 ∗ 518 ∗ 30309607,

238 ∗ 518 ∗ 20313321, 240 ∗ 519 ∗ 2181069, 243 ∗ 521 ∗ 18319,

248 ∗ 523 ∗ 29, 246 ∗ 522 ∗ 521, 249 ∗ 522 ∗ 37, 250 ∗ 523, 0, · · · ), (2.8.3)

in agreement with Baruah and Begum and

ν(x1) = (0, ∞, · · · ), (2.8.4)

ν(x2) = (0, 1, 2, 3, 3, ∞, · · · ), (2.8.5)

ν(x3) = (1, 1, 2, 3, 3, 4, 6, 7, 8, 8, 9, 11, 12, 14, 13, 14, 16, 17, 18, 18, 19, 21,

23, 22, 22, 23, ∞, · · · ). (2.8.6)

2.9 Proof of (2.4.3)

We provide a proof of (2.4.3). The proofs of (2.4.4)–(2.4.7), (2.5.10)–(2.5.14) and
(2.5.18)–(2.5.22) are similar but lengthier.

We require the following results.

Lemma. Let

K = q−1χ(−q5)5

χ(−q) = q−1E(q2)E(q5)5

E(q)E(q10)5 . (2.9.1)
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Then

R(q2)
R(q)2 −

R(q)2

R(q2) = 4
K
, (2.9.2)

1
R(q)R(q2)2 − q

2R(q)R(q2)2 = qK, (2.9.3)

R(q)
R(q2)3 + q2R(q2)3

R(q) = q

K − 2 + 4
K

, (2.9.4)

1
R(q)3R(q2) + q2R(q)3R(q2) = q

K + 2 + 4
K

, (2.9.5)

1
R(q)5 − q

2R(q)5 = q

K + 4 + 8
K

+ 16
K2

, (2.9.6)

R(q2)
R(q)7 + q2R(q)7

R(q2) = q

K + 6 + 20
K

+ 32
K2 + 64

K3

, (2.9.7)

1
R(q)10 + q4R(q)10 = q2

K2 + 8K + 34 + 96
K

+ 192
K2 + 2546

K3 + 256
K4

, (2.9.8)

1
R(q)8R(q2) − q

4R(q)8R(q2) = q2

K2 + 6K + 20 + 44
K

+ 64
K2 + 64

K3

, (2.9.9)

R(q2)
R(q)12 − q

4R(q)12

R(q2) = q2

K2 + 10K + 52 + 180
K

+ 448
K2 + 832

K3 + 1024
K4 + 1024

K5

,
(2.9.10)
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K + 1 = q−1E(q2)4E(q5)2

E(q)2E(q10)4 , (2.9.11)

1− 4
K

= E(q)4E(q10)2

E(q2)2E(q5)4 (2.9.12)

and

1
K − 4 = ζ. (2.9.13)

Proofs of (2.9.2)–(2.9.5). (2.9.2) is (2.2.9), (2.9.3) is (2.2.11), (2.9.4) is (2.2.13) and
(2.9.5) is (2.2.14).

Proof of (2.9.6).

1
R(q)5 − q

2R(q5) =
(
R(q2)
R(q)2 −

R(q)2

R(q2)

)(
1

R(q)3R(q2) + q2R(q)3R(q2)
)

+
(

1
R(q)R(q2)2 − q

2R(q)R(q2)2
)

= 4
K
· q
(
K + 2 + 4

K

)
+ qK

= q

K + 4 + 8
K

+ 16
K2

.

Proof of (2.9.7).

R(q2)
R(q)7 + q2R(q)7

R(q2) =
(
R(q2)
R(q)2 −

R(q)2

R(q2)

)(
1

R(q)5 − q
2R(q)5

)

+
(

1
R(q)3R(q2) + q2R(q)3R(q2)

)

= 4
K
· q
(
K + 4 + 8

K
+ 16
K2

)
+ q

(
K + 2 + 4

K

)

= q

K + 6 + 20
K

+ 32
K2 + 64

K3

.
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Proof of (2.9.8).

1
R(q)10 + q4R(q)10 =

(
1

R(q)5 − q
2R(q)5

)2

+ 2q2

= q2
(
K + 4 + 8

K
+ 16
K2

)2
+ 2q2

= q2

K2 + 8K + 34 + 96
K

+ 192
K2 + 2546

K3 + 256
K4

.

Proof of (2.9.9).

1
R(q)8R(q2) − q

4R(q)8R(q2)

=
(

1
R(q)5 − q

2R(q)5
)(

1
R(q)3R(q2) + q2R(q)3R(q2)

)
− q2

(
R(q2)
R(q)2 −

R(q)2

R(q2)

)

= q
(
K + 4 + 8

K
+ 16
K2

)
· q
(
K + 2 + 4

K

)
− q2

( 4
K

)

= q2

K2 + 6K + 20 + 44
K

+ 64
K2 + 64

K3

.

Proof of (2.9.10).

R(q2)
R(q)12 − q

4R(q)12

R(q2)

=
(
R(q2)
R(q)2 −

R(q)2

R(q2)

)(
1

R(q)10 + q4R(q)10
)

+
(

1
R(q)8R(q2) − q

4R(q)8R(q2)
)

= 4
K
· q2

(
K2 + 8K + 34 + 96

K
+ 192
K2 + 256

K3 + 256
K3

)
+ q2

(
K2 + 6K + 20 + 44

K
+ 64
K2 + 64

K3

)

= q2

K2 + 10K + 52 + 180
K

+ 448
K2 + 832

K3 + 1024
K4 + 1024

K5

.
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Proofs of (2.9.11) and (2.9.12). (2.9.11) is (2.2.15) and (2.9.12) is (2.2.16).

Proof of (2.9.13).

K − 4 = K
(

1− 4
K

)
= q−1E(q2)E(q5)5

E(q)E(q10)5 ·
E(q)4E(q10)2

E(q2)2E(q5)4 = q−1 E(q)3E(q5)
E(q2)E(q10)3 = 1

ζ
,

from which the result follows.

Proof of (2.4.3). We start by noting that (2.4.3) is equivalent to

U(ζ) = 41ζ + 860ζ2 + 6800ζ3 + 24000ζ4 + 32000ζ5. (2.9.14)

We have

U(ζ) = U

(
q
E(q2)E(q10)3

E(q)3E(q5)

)

= E(q2)3

E(q) U

(
q
E(q2)
E(q)3

)

= E(q2)3

E(q) U

(
qE(q50)

(
1

R(q10) − q
2 − q4R(q10)

)

×
(
E(q25)5

E(q5)6

)3 ( 1
R(q5)4 + q

R(q5)3 + 2q2

R(q5)2 + 3q3

R(q5) + 5q4

−3q5R(q5) + 2q6R(q5)2 − q7R(q5)3 + q8R(q5)4
)3
)

= E(q2)3E(q5)15E(q10)
E(q)19

(
51q

(
1

R(q)8R(q2) − q
4R(q)8R(q2)

)

−9q
(

1
R(q)10 + q4R(q)10

)
− q

(
R(q2)
R(q)12 − q

4R(q)12

R(q2)

)

+153q2
(

1
R(q)3R(q2) + q2R(q)3R(q2)

)
− 177q2

(
1

R(q)5 − q
2R(q)5

)

−78q2
(
R(q2)
R(q)7 + q2R(q)7

R(q2)

)
− 219q3

(
R(q2)
R(q)2 −

R(q)2

R(q2)

)
− 71q3

)

= E(q2)3E(q5)15E(q10)
E(q)19

×
(

51q · q2
(
K2 + 6K + 20 + 44

K
+ 64
K2 + 64

K3

)
−9q · q2

(
K2 + 8K + 34 + 96

K
+ 192
K2 + 256

K3 + 256
K4

)
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−q · q2
(
K2 + 10K + 52 + 180

K
+ 448
K2 + 832

K3 + 1024
K4 + 1024

K5

)
+153q2 · q

(
K + 2 + 4

K

)
− 177q2 · q

(
K + 4 + 8

K
+ 16
K2

)
−78q2 · q

(
K + 6 + 20

K
+ 32
K2 + 64

K3

)
− 219q3

( 4
K

)
− 71q3

)
= q3E(q2)3E(q5)15E(q10)

E(q)19

× (K + 1)2(K − 4)
K5 (41K4 + 204K3 + 416K2 + 384K + 256)

= q3E(q2)3E(q5)15E(q10)
E(q)19 · (K + 1)2(K − 4)

K5

× (41(K − 4)4 + 860(K − 4)3 + 6800(K − 4)2 + 24000(K − 4) + 32000)

= q3E(q2)3E(q5)15E(q10)
E(q)19 · (K + 1)2(K − 4)6

K5

×
(

41
K − 4 + 860

(K − 4)2 + 6800
(K − 4)3 + 24000

(K − 4)4 + 32000
(K − 4)5

)

= q3
(
E(q2)3E(q5)15E(q10)

E(q)19

)(
q−1E(q2)4E(q5)2

E(q)2E(q10)4

)2 (
q−1 E(q)3E(q5)

E(q2)E(q10)3

)6

×
(
q
E(q)E(q10)5

E(q2)E(q5)5

)5

(41ζ + 860ζ2 + 6800ζ3 + 24000ζ4 + 32000ζ5)

= 41ζ + 860ζ2 + 6800ζ3 + 24000ζ4 + 32000ζ5.

2.10 Endnotes

Using a similar argument, I [56] obtained an elementary proof of an infinite family of
congruences modulo powers of 5 for g(n) given by

∑
n≥0

g(n)qn = (q2; q2)3
∞

(q; q)2
∞
. (2.10.1)

Theorem 2.10.1. For α ≥ 1 and n ≥ 0,

g

(
52α−1n+ 52α − 1

6

)
≡ 0 (mod 5α). (2.10.2)

Further, g(n) is closely related to the number of 1-shell totally symmetric plane
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partitions of n, denoted by s(n). As a consequence, we have the following result.

Theorem 2.10.2. For α ≥ 1 and n ≥ 0,

s
(
2 · 52α−1n+ 52α−1

)
≡ 0 (mod 5α). (2.10.3)

For a detailed description, see [56].

2.11 References

[35] N. D. Baruah and N. M. Begum, Exact generating functions for the number of
partitions into distinct parts, Int. J. Number Theory 14 (2018), no. 7, 1995–2011.

[56] S. Chern, 1-Shell totally symmetric plane partitions (TSPPs) modulo powers of 5,
Ramanujan J. 55 (2021), no. 2, 713–731.

[64] S. Chern and M. D. Hirschhorn, Partitions into distinct parts modulo powers of 5,
Ann. Comb. 23 (2019), no. 3-4, 659–682. Also in: George E. Andrews—80 Years
of Combinatory Analysis, 305–328, Birkhäuser/Springer, Cham, 2021.

[87] B. Gordon and K. Hughes, Ramanujan congruences for q(n), Analytic number
theory (Philadelphia, Pa., 1980), pp. 333–359, Lecture Notes in Math., 899,
Springer, Berlin-New York, 1981.

[98] M. D. Hirschhorn, The power of q. A personal journey, Developments in Mathe-
matics, 49. Springer, Cham, 2017. xxii+415 pp.

[100] M. D. Hirschhorn and D. C. Hunt, A simple proof of the Ramanujan conjecture for
powers of 5, J. Reine Angew. Math. 326 (1981), 1–17.

[150] S. Ramanujan, The lost notebook and other unpublished papers, Narosa Publishing
House, New Delhi, 1988.

[154] Ø. Rødseth, Congruence properties of the partition functions q(n) and q0(n), Arbok
Univ. Bergen Mat.-Natur. Ser. (1969), no. 13, 27 pp.

[171] G. N. Watson, Ramanujans Vermutung über Zerfällungszahlen, J. Reine Angew.
Math. 179 (1938), 97–128.

57



Chapter 3 |

Eta-quotient Representations and Rogers–Ramanujan Con-
tinued Fraction

This chapter comes from

• S. Chern and D. Tang, The Rogers–Ramanujan continued fraction and related eta-quotient
representations, Bull. Aust. Math. Soc. 103 (2021), no. 2, 248–259. (Ref. [66])

As one might have already seen from the previous chapter, in proceeding in the
same manner with proofs of (2.4.4)–(2.4.7), (2.5.10)–(2.5.14) and (2.5.18)–(2.5.22), we
encounter terms of the form

P (α, β) := 1
qαR(q)α+2βR(q2)2α−β + (−1)α+βqαR(q)α+2βR(q2)2α−β (3.0.1)

with α ≥ 0. Hence, it is necessary to take further investigation. But before moving
forward, let us first review some background materials.

3.1 Background and Results

Recall that

R(q) =
 q, q4

q2, q3; q5


∞

(3.1.1)

is indeed the infinite product form of the Rogers–Ramanujan continued fraction that was
discovered by Rogers [155], independently by Ramanujan [149], and also independently
by Schur [159]. In the literature, the Rogers–Ramanujan continued fraction often refers
to the generalized continued fraction

q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · · ,
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but here we will discard the factor of q1/5, that is, we define

R(q) := 1
1 +

q

1 +
q2

1 +
q3

1 + · · · .

It is known (see, for example, [98, p. 145]) that (3.1.1) holds.
In the past, modular equations for the Rogers–Ramanujan continued fraction have

been studied extensively by many mathematicians, including Rogers and Ramanujan
themselves [20,149,150,157,170]. For example, [98, (40.1.10)] states that

(
R(q2)−R(q)2

)(
1 + qR(q)R(q2)2

)
= 2qR(q)R(q2)3 (3.1.2)

and [98, (40.1.12)] states that

(
R(q3)−R(q)3

)(
1 + q2R(q)R(q3)3

)
= 3qR(q)2R(q3)2. (3.1.3)

Now let us turn our attention to P (α, β) defined in (3.0.1) for α ∈ Z≥0 and β ∈ Z.

Theorem 3.1.1. Let K be as in (2.9.1), namely,

K = q−1 (q2; q2)∞(q5; q5)5
∞

(q; q)∞(q10; q10)5
∞
. (3.1.4)

Then the following recurrence relations hold:

P (α, β + 1) = 4K−1P (α, β) + P (α, β − 1) (3.1.5)

and

P (α + 2, β) = KP (α + 1, β) + P (α, β). (3.1.6)

We also have initial values:

P (0, 0) = 2, (3.1.7)

P (0, 1) = R(q2)
R(q)2 −

R(q)2

R(q2) = 4K−1, (3.1.8)

P (1, 0) = 1
qR(q)R(q2)2 − qR(q)R(q2)2 = K (3.1.9)
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and

P (1,−1) = R(q)
qR(q2)3 + qR(q2)3

R(q) = 4K−1 − 2 +K. (3.1.10)

Interestingly, we also have an analog with R(q3) involved. Let us define, for α ∈ Z≥0

and β ∈ Z,

Q(α, β) := 1
qαR(q)2α+3βR(q3)α−β + (−1)αqαR(q)2α+3βR(q3)α−β. (3.1.11)

Theorem 3.1.2. Let

S = q−2 (q; q)3
∞(q3; q3)3

∞
(q5; q5)3

∞(q15; q15)3
∞

(3.1.12)

and

T = q−2 (q3; q3)∞(q5; q5)5
∞

(q; q)∞(q15; q15)5
∞
. (3.1.13)

Then the following recurrence relations hold:

Q(α, β + 1) =
(
2 + 9T−1

)
Q(α, β)−Q(α, β − 1) (3.1.14)

and

Q(α + 2, β) =
−1

4S + 9
4T
−1 + 1

4T + 3
2

Q(α + 1, β) +Q(α, β). (3.1.15)

We also have initial values:

Q(0, 0) = 2, (3.1.16)

Q(0, 1) = R(q3)
R(q)3 + R(q)3

R(q3) = 2 + 9T−1, (3.1.17)

Q(1, 0) = 1
qR(q)2R(q3) − qR(q)2R(q3) = −1

4S + 9
4T
−1 + 1

4T + 3
2 (3.1.18)

and

Q(1,−1) = R(q)
qR(q3)2 −

qR(q3)2

R(q) = −1
4S + 9

4T
−1 + 1

4T −
3
2 . (3.1.19)
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Remark 3.1.1. Let us take a look at the initial values in Theorems 3.1.1 and 3.1.2. We
find that (3.1.8) is (2.2.9), (3.1.9) is (2.2.11) and (3.1.10) is (2.2.13). Also, (3.1.17) is
due to Gugg [91]. However, the two complicated identities (3.1.18) and (3.1.19) appear
to be novel.

Remark 3.1.2. It follows from (3.1.16), (3.1.17) and the recurrence relation (3.1.14) that

Q(0,−1) = R(q)3

R(q3) + R(q3)
R(q)3 = 2 + 9T−1. (3.1.20)

Also, Gugg [91, Theorem 5.1] proved that

Q(2,−1) = 1
q2R(q)R(q3)3 + q2R(q)R(q3)3 = −2 + T. (3.1.21)

Therefore, we deduce from (3.1.18)–(3.1.21) and (3.1.15) the following relation between
S and T .

Corollary 3.1.3. We have

81 + 144T + 46T 2 − 16T 3 + T 4 − 18ST − 2ST 3 + S2T 2 = 0. (3.1.22)

It follows from (3.1.7) and (3.1.8) together with the recurrence relation (3.1.5) that
for each β ∈ Z, we can represent P (0, β) in terms of K. Likewise, we have similar
representations for P (1, β) for each β ∈ Z. Finally, the recurrence relation (3.1.6)
reveals that for each α ≥ 2 and β ∈ Z, we have P (α, β) ∈ Z[K,K−1]. In Table 3.1,
we list the representations of P (α, β) in terms of K with 0 ≤ α ≤ 2 and −3 ≤ β ≤ 3.
Similar arguments can be applied to Q(α, β) to show that for each α ∈ Z≥0 and β ∈ Z,
Q(α, β) ∈ Q[S, T, T−1]. Since the representations of Q(α, β) are much lengthier, we will
not list them concretely like Table 3.1.

Let H be the upper half complex plane, and put H∗ := H ∪ Q ∪ {i∞}. For any
positive integer N , let Γ0(N) be the Hecke congruence subgroup of level N defined by

Γ0(N) :=


a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod N)

 .
Let K0(N) be the field of meromorphic functions on the compact Riemann surface
Γ0(N)\H∗. It follows from Newman [135] that K is in K0(10), and S and T are both in
K0(15). Hence, we have the following results.

61



Table 3.1. Representations of P (α, β) in Z[K,K−1]

β

α
0 1

−3 −64K−3 − 12K−1 64K−3 − 32K−2 + 20K−1 − 6 +K

−2 16K−2 + 2 −16K−2 + 8K−1 − 4 +K

−1 −4K−1 4K−1 − 2 +K

0 2 K

1 4K−1 4K−1 + 2 +K

2 16K−2 + 2 16K−2 + 8K−1 + 4 +K

3 64K−3 + 12K−1 64K−3 + 32K−2 + 20K−1 + 6 +K

β

α
2

−3 −64K−3 + 64K−2 − 44K−1 + 20− 6K +K2

−2 16K−2 − 16K−1 + 10− 4K +K2

−1 −4K−1 + 4− 2K +K2

0 2 +K2

1 4K−1 + 4 + 2K +K2

2 16K−2 + 16K−1 + 10 + 4K +K2

3 64K−3 + 64K−2 + 44K−1 + 20 + 6K +K2

Corollary 3.1.4. For any α ∈ Z≥0 and β ∈ Z, P (α, β) ∈ Z[K,K−1] and hence P (α, β) ∈
K0(10).

Corollary 3.1.5. For any α ∈ Z≥0 and β ∈ Z, Q(α, β) ∈ Q[S, T, T−1] and hence
Q(α, β) ∈ K0(15).

3.2 Proofs of the Recurrences

We shall prove the following identities, from which the recurrence relations (3.1.5),
(3.1.6), (3.1.14) and (3.1.15) follow immediately.

P (α, β)P (0, 1) = P (α, β + 1)− P (α, β − 1), (3.2.1)

P (α + 1, β)P (1, 0) = P (α + 2, β)− P (α, β), (3.2.2)
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Q(α, β)Q(0, 1) = Q(α, β + 1) +Q(α, β − 1) (3.2.3)

and

Q(α + 1, β)Q(1, 0) = Q(α + 2, β)−Q(α, β). (3.2.4)

Proof of (3.2.1) and (3.2.2). It follows from (2.9.1) that

P (α, β)P (0, 1)

=
(

1
qαR(q)α+2βR(q2)2α−β + (−1)α+βqαR(q)α+2βR(q2)2α−β

)(
R(q2)
R(q)2 −

R(q)2

R(q2)

)

=
(

1
qαR(q)α+2βR(q2)2α−β

R(q2)
R(q)2 − (−1)α+βqαR(q)α+2βR(q2)2α−βR(q)2

R(q2)

)

−
(

1
qαR(q)α+2βR(q2)2α−β

R(q)2

R(q2) − (−1)α+βqαR(q)α+2βR(q2)2α−βR(q2)
R(q)2

)

=
(

1
qαR(q)α+2(β+1)R(q2)2α−(β+1) + (−1)α+(β+1)qαR(q)α+2(β+1)R(q2)2α−(β+1)

)

−
(

1
qαR(q)α+2(β−1)R(q2)2α−(β−1) + (−1)α+(β−1)qαR(q)α+2(β−1)R(q2)2α−(β−1)

)
= P (α, β + 1)− P (α, β − 1).

This is (3.2.1). Also, (3.2.2) follows by a similar argument.

Proof of (3.2.3) and (3.2.4). It follows from (3.1.11) that

Q(α, β)Q(0, 1)

=
(

1
qαR(q)2α+3βR(q3)α−β + (−1)αqαR(q)2α+3βR(q3)α−β

)(
R(q3)
R(q)3 + R(q)3

R(q3)

)

=
(

1
qαR(q)2α+3βR(q3)α−β

R(q3)
R(q)3 + (−1)αqαR(q)2α+3βR(q3)α−βR(q)3

R(q3)

)

+
(

1
qαR(q)2α+3βR(q3)α−β

R(q)3

R(q3) + (−1)αqαR(q)2α+3βR(q3)α−βR(q3)
R(q)3

)

=
(

1
qαR(q)2α+3(β+1)R(q3)α−(β+1) + (−1)αqαR(q)2α+3(β+1)R(q3)α−(β+1)

)

+
(

1
qαR(q)2α+3(β−1)R(q3)α−(β−1) + (−1)αqαR(q)2α+3(β−1)R(q3)α−(β−1)

)
= Q(α, β + 1) +Q(α, β − 1).
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This is (3.2.3). Likewise, one may derive (3.2.4).

3.3 Proofs of (3.1.18) and (3.1.19)

As we have seen in Remark 3.1.1, the only (and true!) difficulty is proving (3.1.18)
and (3.1.19). Let us begin with an interesting relation between Q(1, 0) and Q(1,−1).

Lemma 3.3.1. We have

Q(1, 0)−Q(1,−1) =
 1
qR(q)2R(q3) − qR(q)2R(q3)

−
 R(q)
qR(q3)2 −

qR(q3)2

R(q)

 = 3.

(3.3.1)

Proof. Notice that

LHS of (3.3.1) =

(
R(q3)−R(q)3

)(
1 + q2R(q)R(q3)3

)
qR(q)2R(q3)2 = 3,

in the last identity of which we use the modular equation (3.1.3). Therefore, (3.3.1)
follows.

Lemma 3.3.1 implies that if one of (3.1.18) and (3.1.19) is proved, then the other
follows automatically.

Now recall that K0(N) is the field of meromorphic functions on the compact Riemann
surface Γ0(N)\H∗. Further, the U -operator is defined in (2.5.1). A standard result [25,
pp. 80–82] states that for any positive integer N , if f ∈ K0(5N), we have U(f) ∈ K0(N).

Our proof of (3.1.18) relies on a surprisingly neat 5-dissection identity as follows.

Lemma 3.3.2. We have

U

E(q3)2

E(q)

 = E(q3)3E(q5)2

E(q)3E(q15) . (3.3.2)

Proof. It follows from Newman [135] that

q−1E(q3)3E(q5)3

E(q)3E(q15)3 ∈ K0(15)

and

q−5E(q3)2E(q25)
E(q)E(q75)2 ∈ K0(75).
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If we compare the Fourier expansions of

q−1E(q3)3E(q5)3

E(q)3E(q15)3 and U

q−5E(q3)2E(q25)
E(q)E(q75)2

,
which are both in K0(15), it can be observed that

U

q−5E(q3)2E(q25)
E(q)E(q75)2

 = q−1E(q3)3E(q5)3

E(q)3E(q15)3 ,

from which (3.3.2) follows.

Now we move to prove (3.1.18). It follows from the 5-dissection identities for E(q)
and 1/E(q), namely, (2.2.1) and (2.2.2), that

E(q3)2

E(q) = E(q25)5E(q75)2

E(q5)6

×
(

1
R(q5)4 + q

R(q5)3 + 2q2

R(q5)2 + 3q3

R(q5) + 5q4

− 3q5R(q5) + 2q6R(q5)2 − q7R(q5)3 + q8R(q5)4
)(

1
R(q15) − q

3 − q6R(q15)
)2

,

from which we extract

U

E(q3)2

E(q)

 = q2E(q5)5E(q15)2

E(q)6

( 1
q2R(q)4R(q3)2 + q2R(q)4R(q3)2

)

− 4
(

1
qR(q)2R(q3) − qR(q)2R(q3)

)
− 3

(
R(q)
qR(q3)2 −

qR(q3)2

R(q)

)

+ 2
(
R(q3)
R(q)3 + R(q)3

R(q3)

)
− 5

.
Hence,

E(q3)3E(q5)2

E(q)3E(q15) = q2E(q5)5E(q15)2

E(q)6

(
Q(2, 0)− 4Q(1, 0)− 3Q(1,−1) + 2Q(0, 1)− 5

)
,

that is,
S = Q(2, 0)− 4Q(1, 0)− 3Q(1,−1) + 2Q(0, 1)− 5.
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It follows from (3.2.4) and (3.1.16) that

Q(2, 0) = Q(1, 0)2 +Q(0, 0) = Q(1, 0)2 + 2

and from (3.2.4) and (3.1.21) that

Q(1,−1)Q(1, 0) = Q(2,−1)−Q(0,−1) = −9T−1 − 4 + T.

Also, (3.3.1) states that
Q(1, 0)−Q(1,−1) = 3.

Therefore,

S =
(
Q(1, 0)2 + 2

)
− 4Q(1, 0)− 3Q(1,−1) + 2Q(0, 1)− 5

= Q(1, 0)
(
Q(1,−1) + 3

)
− 4Q(1, 0)− 3

(
Q(1, 0)− 3

)
+ 2Q(0, 1)− 3

= −4Q(1, 0) +Q(1, 0)Q(1,−1) + 2Q(0, 1) + 6

= −4Q(1, 0) +
(
−9T−1 − 4 + T

)
+ 2

(
2 + 9T−1

)
+ 6

= −4Q(1, 0) + 9T−1 + 6 + T,

from which (3.1.18) follows. Further, (3.1.19) follows from (3.1.18) and (3.3.1).

3.4 Endnotes

Mike Hirschhorn emailed me on Aug 28, 2019 with a beautiful bivariate generating
function identity:

∑
α,β≥0

P (α, β)xαyβ = 2−Kx− 4K−1y + (K + 2 + 4K−1)xy
(1−Kx− x2)(1− 4K−1y − y2) (3.4.1)

where K is as in (2.9.1). Analogously, one could obtain

∑
α,β≥0

P (α,−β)xαyβ = 2−Kx+ 4K−1y + (K − 2 + 4K−1)xy
(1−Kx− x2)(1 + 4K−1y − y2) . (3.4.2)

A direct application of the “series expansion” command in most computer algebra systems
such as Mathematica to the above relations makes it easier to find the expression of
P (α, β); see the discussion in [56, §2.1].
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Outline

• Chapter 4 is devoted to weighted partition rank and crank moments that are closely
related to Andrews–Beck type congruences.

• Chapter 5 is devoted to partitions with bounded part differences in which both analytic
and combinatorial aspects will be discussed.

• Chapters 6–8 are devoted to a general theory of span one linked partition ideals.

• Chapter 9 is devoted to analytic identities of Rogers–Ramanujan type based on basic
hypergeometric transformation formulas.

70



Chapter 4 |

Weighted Partition Rank and Crank Moments

This chapter comes from

• S. Chern, Weighted partition rank and crank moments. I. Andrews–Beck type congruences, to
appear in Proceedings of the Conference in Honor of Bruce Berndt. (Ref. [58])

• S. Chern, Weighted partition rank and crank moments. II. Odd-order moments, to appear in
Ramanujan J. (Ref. [59])

• S. Chern, Weighted partition rank and crank moments. III. A list of Andrews–Beck type
congruences modulo 5, 7, 11 and 13, to appear in Int. J. Number Theory. (Ref. [60])

4.1 Introduction

4.1.1 Rank and Crank of an Integer Partition

Let us first recall the definition of rank and crank of an integer partition λ. We use
](λ), ω(λ) and `(λ) to denote the number of parts in λ, the number of ones in λ and the
largest part in λ, respectively.

The rank of λ is defined by Dyson [76]:

rank(λ) := `(λ)− ](λ),

namely, the largest part minus the number of parts in λ. On the other hand, Andrews
and Garvan [23] defined the crank of a partition λ by

crank(λ) :=

`(λ) if ω(λ) = 0,

µ(λ)− ω(λ) if ω(λ) > 0,

where µ(λ) denotes the number of parts in λ larger than ω(λ).
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The two partition statistics were introduced to combinatorially interpret Ramanujan’s
celebrated congruences:

p(5n+ 4) ≡ 0 (mod 5), (4.1.1)

p(7n+ 5) ≡ 0 (mod 7) (4.1.2)

and

p(11n+ 6) ≡ 0 (mod 11). (4.1.3)

Now let N(m,n) (resp. M(m,n)) count the number of partitions of n whose rank
(resp. crank) is m. Further, we shall put M(−1, 1) = −M(0, 1) = M(1, 1) = 1 and
M(m, 1) = 0 otherwise.

4.1.2 Ordinary and Symmetrized Rank and Crank Moments

In general, there are two types of rank and crank moments attracting broad research
interest. The first type, which is due to Atkin and Garvan [29], is the most natural. Let
us define k-th ordinary rank and crank moments respectively by

Nk(n) :=
∞∑

m=−∞
mkN(m,n) =

∑
λ`n

rankk(λ) (4.1.4)

and

Mk(n) :=
∞∑

m=−∞
mkM(m,n) =

∑
λ`n

crankk(λ). (4.1.5)

In light of the symmetry property that N(m,n) = N(−m,n) and M(m,n) = M(−m,n),
we see that the odd order moments are all zero. For the even order moments, Atkin and
Garvan [29] showed that the generating functions of Mk(n) are related to quasimodular
forms, while Bringmann, Garvan and Mahlburg [42] showed that the generating functions
of Nk(n) are related to quasimock theta functions.

On the other hand, Andrews [14] defined the k-th symmetrized rank moment by

ηk(n) :=
∞∑

m=−∞

(
m+ bk−1

2 c
k

)
N(m,n) =

∑
λ`n

(
rank(λ) + bk−1

2 c
k

)
. (4.1.6)
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As a crank analog, Garvan [82] defined the k-th symmetrized crank moment by

µk(n) :=
∞∑

m=−∞

(
m+ bk−1

2 c
k

)
M(m,n) =

∑
λ`n

(
crank(λ) + bk−1

2 c
k

)
. (4.1.7)

It was shown that ηk(n) = µk(n) = 0 when k is odd. Further, the generating functions
of the even order symmetrized moments η2k(n) and µ2k(n) can be nicely formulated
(cf. [14, 82]):

∑
n≥1

η2k(n)qn = 1
(q; q)∞

∑
n≥1

(−1)n−1qn(3n−1)/2+kn 1 + qn

(1− qn)2k (4.1.8)

and

∑
n≥1

µ2k(n)qn = 1
(q; q)∞

∑
n≥1

(−1)n−1qn(n−1)/2+kn 1 + qn

(1− qn)2k . (4.1.9)

4.1.3 Main Results

Recall that P denotes the set of integer partitions. Parallel to (4.1.4), (4.1.5), (4.1.6)
and (4.1.7), we define the weighted k-th ordinary and symmetrized rank and crank
moments by

N ]
k(n) :=

∑
λ`n

](λ) rankk(λ), (4.1.10)

Mω
k (n) :=

∑
λ`n

ω(λ) crankk(λ), (4.1.11)

η]k(n) :=
∑
λ`n

](λ)
(

rank(λ) + bk−1
2 c

k

)
(4.1.12)

and

µωk (n) :=
∑
λ`n

ω(λ)
(

crank(λ) + bk−1
2 c

k

)
. (4.1.13)

For the weighted rank moments, we have relations as follows.

Theorem 4.1.1. Let k be a positive integer. We have

∑
n≥1

N ]
2k−1(n)qn = − 1

(q; q)∞
∑
n≥1

(−1)n−1qn(3n+1)/2 P2k(qn)
(1− qn)2k , (4.1.14)
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where Pk(u) is defined recursively by P1(u) = 1 and for k ≥ 1,

Pk+1(u) =
(
1− u+ (k + 1)u

)
Pk(u) +

(
u− u2

)
P ′k (u), (4.1.15)

where P ′k (u) as usual denotes dPk(u)/du. In particular,

N ]
2k−1(n) = −1

2N2k(n). (4.1.16)

Remark 4.1.1. It is worth pointing out that the polynomials Pk(u) satisfy the exponential
generating function

P(u, t) :=
∑
k≥1

Pk(u) t
k

k! = − eut − et

eut − uet
. (4.1.17)

To see this, we translate the recurrence (4.1.15) into the functional equation

∂

∂t
P(u, t)− 1 = P(u, t) + ut

∂

∂t
P(u, t) +

(
u− u2

) ∂
∂u

P(u, t).

Solving the above PDE with the boundary condition P(u, 0) = 0 yields (4.1.17).

Theorem 4.1.2. Let k be a positive integer. We have

∑
n≥1

η]2k−1(n)qn = − k

(q; q)∞
∑
n≥1

(−1)n−1qn(3n−1)/2+kn 1 + qn

(1− qn)2k . (4.1.18)

In particular,

η]2k−1(n) = −k · η2k(n). (4.1.19)

We also have crank analogs.

Theorem 4.1.3. Let k be a positive integer. We have

∑
n≥1

Mω
2k−1(n)qn = − 1

(q; q)∞
∑
n≥1

(−1)n−1qn(n+1)/2 P2k(qn)
(1− qn)2k , (4.1.20)

where Pk(u) is as in Theorem 4.1.1. In particular,

Mω
2k−1(n) = −1

2M2k(n). (4.1.21)
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Theorem 4.1.4. Let k be a positive integer. We have

∑
n≥1

µω2k−1(n)qn = − k

(q; q)∞
∑
n≥1

(−1)n−1qn(n−1)/2+kn 1 + qn

(1− qn)2k . (4.1.22)

In particular,

µω2k−1(n) = −k · µ2k(n). (4.1.23)

4.2 Warm-up: The First Moment

Let us warm up with the first moment case.

Theorem 4.2.1. We have

∑
λ∈P

](λ) rank(λ)q|λ| = −
∑
n≥1

qn
2

(q; q)2
n

n∑
m=1

qm

(1− qm)2 . (4.2.1)

It follows that

∑
λ`n

](λ) rank(λ) = −1
2N2(n). (4.2.2)

Remark 4.2.1. It is worth pointing out that the following generating function identity for
N2(n) is used most frequently.

∑
n≥0

N2(n)qn = − 2
(q; q)∞

∑
n≥1

(−1)nqn(3n+1)/2(1 + qn)
(1− qn)2 .

See Eq. (3.4) in [15].

Proof. Recall that it was shown in [18] that

N (x, z; q) :=
∑
n≥0

∑
λ`n

x](λ)zrank(λ)qn =
∑
n≥0

xnqn
2

(zq; q)n(xq/z; q)n
. (4.2.3)

We first apply the operator [∂/∂x]x=1 to (4.2.3).

∑
n≥0

∑
λ`n

](λ)zrank(λ)qn

=
∑
n≥0

[
∂

∂x

xnqn
2

(zq; q)n(xq/z; q)n

]
x=1

75



=
∑
n≥0

[
xnqn

2

(zq; q)n(xq/z; q)n
∂

∂x
log

(
xn

(xq/z; q)n

)]
x=1

=
∑
n≥0

qn
2

(zq; q)n(q/z; q)n

[
∂

∂x

(
n log x−

n∑
m=1

log(1− xqm/z)
)]

x=1

=
∑
n≥0

qn
2

(zq; q)n(q/z; q)n

[
n

x
+

n∑
m=1

qm

z − xqm

]
x=1

=
∑
n≥1

qn
2

(zq; q)n(q/z; q)n

(
n+

n∑
m=1

qm

z − qm

)
. (4.2.4)

We next make the following easy observation: for any n ≥ 1 where n can also be ∞,[
∂

∂z
log

(
1

(zq; q)n(q/z; q)n

)]
z=1

=
[

n∑
m=1

(
qm

1− zqm + qm

zqm − z2

)]
z=1

= 0. (4.2.5)

Applying the operator [∂/∂z]z=1 to (4.2.4) and using (4.2.5) yields

∑
n≥0

∑
λ`n

](λ) rank(λ)qn

=
∑
n≥1

[
∂

∂z

qn
2

(zq; q)n(q/z; q)n

(
n+

n∑
m=1

qm

z − qm

)]
z=1

=
∑
n≥1

[
nqn

2

(zq; q)n(q/z; q)n
∂

∂z
log

(
1

(zq; q)n(q/z; q)n

)]
z=1

+
∑
n≥1

n∑
m=1

[
qn

2

(zq; q)n(q/z; q)n
qm

z − qm
∂

∂z
log

(
1

(zq; q)n(q/z; q)n(z − qm)

)]
z=1

= −
∑
n≥1

qn
2

(q; q)2
n

n∑
m=1

qm

(1− qm)2 . (4.2.6)

This is the first part of Theorem 4.2.1.

If one applies the operator
[
∂
∂z

(
z ∂
∂z

)]
z=1

to the generating function

∑
n≥0

∑
λ`n

zrank(λ)qn =
∑
n≥0

qn
2

(zq; q)n(q/z; q)n
,

then one shall find that

∑
n≥0

N2(n)qn =
∑
n≥0

∑
λ`n

rank(λ)2qn
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=
∑
n≥0

[
∂

∂z

(
z
∂

∂z

qn
2

(zq; q)n(q/z; q)n

)]
z=1

=
∑
n≥0

[
∂

∂z

zqn
2

(zq; q)n(q/z; q)n

n∑
m=1

(
qm

1− zqm + qm

zqm − z2

)]
z=1

= 2
∑
n≥1

qn
2

(q; q)2
n

n∑
m=1

qm

(1− qm)2 . (4.2.7)

This combining with (4.2.6) gives the second part of Theorem 4.2.1.

Theorem 4.2.2. We have

∑
λ∈P

ω(λ) crank(λ)q|λ| = − 1
(q; q)∞

∑
n≥1

qn

(1− qn)2 . (4.2.8)

It follows that

∑
λ`n

ω(λ) crank(λ) = −1
2M2(n). (4.2.9)

Remark 4.2.2. It was shown by means of a relation due to Dyson [77] that

M2(n) = 2np(n).

It turns out that ∑
λ`n

ω(λ) crank(λ) = −np(n). (4.2.10)

Proof. As in [23], we have

M(x, z; q) :=
∑
n≥0

∑
λ`n

xω(λ)zcrank(λ)qn = 1− q
(zq; q)∞

+
∑
j≥1

xjqjz−j

(q2; q)j−1(zqj+1; q)∞

= 1− q
(zq; q)∞

∑
j≥0

(zq; q)j
(q; q)j

(
xq

z

)j

= (1− q)(xq2; q)∞
(zq; q)∞(xq/z; q)∞

. (4.2.11)

Here in the last identity we use the q-binomial theorem (see Theorem 2.1 in [12]):

∑
n≥0

(a; q)ntn
(q; q)n

= (at; q)∞
(t; q)∞

.

If we take x = 1 in (4.2.11), then we recover the bivariate generating function in [23].
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Now we apply the operator [∂/∂x]x=1 to (4.2.11).

∑
n≥0

∑
λ`n

ω(λ)zcrank(λ)qn

=
[
∂

∂x

(1− q)(xq2; q)∞
(zq; q)∞(xq/z; q)∞

]
x=1

=
[

(1− q)(xq2; q)∞
(zq; q)∞(xq/z; q)∞

∂

∂x
log

(
(xq2; q)∞

(xq/z; q)∞

)]
x=1

= (q; q)∞
(zq; q)∞(q/z; q)∞

 ∂
∂x

∑
n≥1

(
log(1− xqn+1)− log(1− xqn/z)

)
x=1

= (q; q)∞
(zq; q)∞(q/z; q)∞

∑
n≥1

(
− qn+1

1− qn+1 + qn/z

1− qn/z

)
. (4.2.12)

We then apply the operator [∂/∂z]z=1 to (4.2.12) and use (4.2.5) to deduce

∑
n≥0

∑
λ`n

ω(λ) crank(λ)qn

=
 ∂
∂z

(q; q)∞
(zq; q)∞(q/z; q)∞

∑
n≥1

(
− qn+1

1− qn+1 + qn/z

1− qn/z

)
z=1

=
∑
n≥1

[
(q; q)∞

(zq; q)∞(q/z; q)∞
· qn/z

1− qn/z ·
1

qn − z

]
z=1

= − 1
(q; q)∞

∑
n≥1

qn

(1− qn)2 . (4.2.13)

To prove the second part of Theorem 4.2.2, we apply the operator
[
∂
∂z

(
z ∂
∂z

)]
z=1

to
the generating function

∑
n≥0

∑
λ`n

zcrank(λ)qn = (q; q)∞
(zq; q)∞(q/z; q)∞

.

Then

∑
n≥0

M2(n)qn =
∑
n≥0

∑
λ`n

crank(λ)2qn

=
[
∂

∂z

(
z
∂

∂z

(q; q)∞
(zq; q)∞(q/z; q)∞

)]
z=1

=
 ∂
∂z

z(q; q)∞
(zq; q)∞(q/z; q)∞

∑
m≥1

(
qm

1− zqm + qm

zqm − z2

)
z=1

78



= 2
(q; q)∞

∑
m≥1

qm

(1− qm)2 . (4.2.14)

This combining with (4.2.13) gives the second part of Theorem 4.2.2.

Finally, let spt(n) denote the total number of appearances of the smallest parts in all
of the partitions of n. In [15], it was shown that

spt(n) = 1
2M2(n)− 1

2N2(n).

In view of (4.2.2) and (4.2.9), we immediately obtain the following interesting relation.

Corollary 4.2.3. For n ≥ 0,

spt(n) =
∑
λ`n

](λ) rank(λ)−
∑
λ`n

ω(λ) crank(λ). (4.2.15)

4.3 General Odd Moments

Now we are in a position to prove Theorems 4.1.1–4.1.4.

4.3.1 Rank

We require a reformulation of N (x, z; q) shown in [18]:

N (x, z; q) = 1 + 1
(xq; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2xn
(xq; q)n
(q; q)n−1

×

 1
qn(1− zqn) + x

z
(
1− xqn

z

)
. (4.3.1)

It is convenient to define two auxiliary functions

α(z;Q) := 1
Q(1− zQ) and β(x, z;Q) := x

z
(
1− xQ

z

) .
To study the weighted k-th ordinary rank moment, we require the following family of

operators for k ≥ 1:

Dk(f(z)) :=


∂
∂z
f(z) if k = 1,

∂
∂z
zDk−1(f(z)) if k > 1.

(4.3.2)
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We first show that α(z;Q) and β(x, z;Q) satisfy the following proposition.

Proposition 4.3.1. For each positive integer k, there is a polynomial Pk with integer
coefficients such that

Dk(α(z;Q)) = Pk(zQ)
(1− zQ)k+1 (4.3.3)

and

Dk(β(x, z;Q)) = (−1)k
xPk

(
xQ
z

)
z2
(
1− xQ

z

)k+1 . (4.3.4)

Further, Pk satisfies P1(u) = 1 and for k ≥ 1,

Pk+1(u) =
(
1− u+ (k + 1)u

)
Pk(u) +

(
u− u2

)
P ′k(u). (4.3.5)

Proof. It is not hard to compute that

D1(α(z;Q)) = ∂

∂z
α(z;Q) = 1

(1− zQ)2

and

D1(β(x, z;Q)) = ∂

∂z
β(x, z;Q) = − x

z2
(
1− xQ

z

)2 .

Let us assume that the proposition is true for some k ≥ 1. Then

Dk+1(α(z;Q)) = ∂

∂z
zDk(α(z;Q))

= ∂

∂z

zPk(zQ)
(1− zQ)k+1

=

(
1− zQ+ (k + 1)zQ

)
Pk(zQ) +

(
zQ− z2Q2

)
P ′k(zQ)

(1− zQ)k+2 .

Likewise, we have

Dk+1(β(x, z;Q))
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= (−1)k+1
x

((
1− xQ

z
+ (k + 1)xQ

z

)
Pk

(
xQ
z

)
+
(
xQ
z
− x2Q2

z2

)
P ′k

(
xQ
z

))

z2
(

1− xQ
z

)k+2 .

The proposition follows by induction on k.

Next, for k ≥ 1, we write
[
D2k−1(α(z;Q))

]
z=1

= P2k−1(Q)
(1−Q)2k =: α2k−1(Q)

and [
D2k−1(β(x, z;Q))

]
z=1

= −xP2k−1(xQ)
(1− xQ)2k =: β2k−1(x;Q).

Noticing that α2k−1(Q) + β2k−1(1;Q) = 0, we may factor out (1 − x) from α2k−1(Q) +
β2k−1(x;Q) for all k ≥ 1. Let us write

α2k−1(Q) + β2k−1(x;Q) = (1− x)F2k−1(x;Q).

Applying the trivial identity ∂
∂x

(1− x)f(x)

x=1

= −f(1), (4.3.6)

we deduce that

F2k−1(1;Q) = −
 ∂
∂x

(
α2k−1(Q) + β2k−1(x;Q)

)
x=1

=
 ∂
∂x

xP2k−1(xQ)
(1− xQ)2k


x=1

=
(1− xQ+ 2kxQ)P2k−1(xQ) + (xQ− x2Q2)P ′2k−1(xQ)

(1− xQ)2k+1


x=1

= (1−Q+ 2kQ)P2k−1(Q) + (Q−Q2)P ′2k−1(Q)
(1−Q)2k+1

= P2k(Q)
(1−Q)2k+1 .
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For k ≥ 1, it follows from (4.3.1) that

∑
λ∈P

rank2k−1(λ)x](λ)q|λ| =
[
D2k−1

(
N (x, z; q)

)]
z=1

= 1
(xq; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2xn
(xq; q)n
(q; q)n−1

×

D2k−1

 1
qn(1− zqn) + x

z
(
1− xqn

z

)


z=1

= 1
(xq; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2xn
(xq; q)n
(q; q)n−1

×
(
α2k−1(qn) + β2k−1(x; qn)

)
= 1− x

(xq; q)∞
∑
n≥1

(−1)n−1qn(3n+1)/2xn
(xq; q)n
(q; q)n−1

× F2k−1(x; qn).

Applying (4.3.6) again, we have

∑
λ∈P

](λ) rank2k−1(λ)q|λ| =
 ∂
∂x

∑
λ∈P

rank2k−1(λ)x](λ)q|λ|


x=1

= −
 1

(xq; q)∞
∑
n≥1

(−1)n−1qn(3n+1)/2xn
(xq; q)n
(q; q)n−1

× F2k−1(x; qn)

x=1

= − 1
(q; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2(1− qn)F2k−1(1; qn)

= − 1
(q; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2(1− qn) P2k(qn)
(1− qn)2k+1 .

We therefore arrive at (4.1.14).
Further,

∑
λ∈P

rank2k(λ)q|λ| =
[
D2k

(
N (1, z; q)

)]
z=1

= 1
(q; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2(1− qn)
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×

D2k

 1
qn(1− zqn) + 1

z
(
1− qn

z

)


z=1

= 1
(q; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2(1− qn)

×

 P2k(zqn)
(1− zqn)2k+1 +

P2k
(
qn

z

)
z2
(
1− qn

z

)2k+1


z=1

= 2
(q; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2(1− qn) P2k(qn)
(1− qn)2k+1 .

It turns out that

∑
λ∈P

](λ) rank2k−1(λ)q|λ| = −1
2
∑
λ∈P

rank2k(λ)q|λ|

and hence ∑
λ`n

](λ) rank2k−1(λ) = −1
2
∑
λ`n

rank2k(λ),

which is (4.1.16).

Let us turn to the weighted k-th symmetrized rank moment

η]k(n) =
∑
λ`n

](λ)
(

rank(λ) + bk−1
2 c

k

)
.

We first study the k-th derivatives

∂k

∂zk
zb

k−1
2 c

k! α(z;Q)

and

∂k

∂zk
zb

k−1
2 c

k! β(x, z;Q).

Proposition 4.3.2. For any positive integer k, we have

∂k

∂zk
zb

k−1
2 c

k! α(z;Q) = Qb
k
2 c

(1− zQ)k+1 (4.3.7)

83



and

∂k

∂zk
zb

k−1
2 c

k! β(x, z;Q) = (−1)kx
b k+1

2 cQb
k−1

2 c

(z − xQ)k+1 . (4.3.8)

Proof. The desired results follow directly from Leibniz’s rule.

Let k ≥ 1. We write ∂2k−1

∂z2k−1
zk−1

(2k − 1)!α(z;Q)

z=1

= Qk−1

(1−Q)2k =: α̃2k−1(Q)

and  ∂2k−1

∂z2k−1
zk−1

(2k − 1)!β(x, z;Q)

z=1

= − xkQk−1

(1− xQ)2k =: β̃2k−1(x;Q).

Noticing again that α̃2k−1(Q)+β̃2k−1(1;Q) = 0, we may factor out (1−x) from α̃2k−1(Q)+
β̃2k−1(x;Q) for all k ≥ 1. Hence, we write

α̃2k−1(Q) + β̃2k−1(x;Q) = (1− x)F̃2k−1(x;Q).

It follows from (4.3.6) that

F̃2k−1(1;Q) = −
 ∂
∂x

(
α̃2k−1(Q) + β̃2k−1(x;Q)

)
x=1

=
 ∂
∂x

xkQk−1

(1− xQ)2k


x=1

= kQk−1(1 +Q)
(1−Q)2k+1 .

We know from (4.3.1) that

∑
λ∈P

(
rank(λ) + k − 1

2k − 1

)
x](λ)q|λ|

=
 ∂2k−1

∂z2k−1
zk−1

(2k − 1)!N (x, z; q)

z=1

= 1
(xq; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2xn
(xq; q)n
(q; q)n−1
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×

 ∂2k−1

∂z2k−1
zk−1

(2k − 1)!

 1
qn(1− zqn) + x

z
(
1− xqn

z

)


z=1

= 1
(xq; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2xn
(xq; q)n
(q; q)n−1

(
α̃2k−1(qn) + β̃2k−1(x; qn)

)

= 1− x
(xq; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2xn
(xq; q)n
(q; q)n−1

F̃2k−1(x; qn).

Applying (4.3.6) again, we have

∑
λ∈P

](λ)
(

rank(λ) + k − 1
2k − 1

)
q|λ|

=
 ∂
∂x

∑
λ∈P

(
rank(λ) + k − 1

2k − 1

)
x](λ)q|λ|


x=1

= −
 1

(xq; q)∞
∑
n≥1

(−1)n−1qn(3n+1)/2xn
(xq; q)n
(q; q)n−1

F̃2k−1(x; qn)

x=1

= − 1
(q; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2(1− qn)F̃2k−1(1; qn)

= − 1
(q; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2(1− qn)kq
(k−1)n(1 + qn)
(1− qn)2k+1

= − k

(q; q)∞
∑
n≥1

(−1)n−1qn(3n−1)/2+kn 1 + qn

(1− qn)2k .

This proves (4.1.18). Finally, (4.1.19) follows in light of (4.1.8).

4.3.2 Crank

Analogous to (4.3.1), we need to reformulateM(x, z; q).
Recall the limiting form of Jackson’s theorem (cf. [9, Theorem 3.2]):

6φ5

 w, q
√
w,−q

√
w, a, b, c

√
w,−
√
w,wq/a, wq/b, wq/c

; q, wq
abc


= (wq, q)∞(wq/ab, q)∞(wq/ac, q)∞(wq/bc, q)∞

(wq/a, q)∞(wq/b, q)∞(wq/c, q)∞(wq/abc, q)∞
. (4.3.9)
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If we let w → x, a→ z, b→ x/z and c→∞, then (4.3.9) becomes

(q; q)∞(xq; q)∞
(zq; q)∞(xq/z; q)∞

= 1 +
∑
n≥1

(−1)nqn(n+1)/2 (xq; q)n−1(1− xq2n)(1− z)(1− x/z)
(q; q)n(1− zqn)(1− xqn/z) .

(4.3.10)

Next, notice that

(1− xq2n)(1− z)(1− x/z)
(1− zqn)(1− xqn/z) = 1− xq2n

qn
− (1− qn)(1− xqn)

×

 1
qn(1− zqn) + x

z
(
1− xqn

z

)
. (4.3.11)

Substituting (4.3.11) into (4.3.10) yields

(q; q)∞(xq; q)∞
(zq; q)∞(xq/z; q)∞

= 1 +
∑
n≥1

(−1)nqn(n−1)/2 (xq; q)n−1(1− xq2n)
(q; q)n

+
∑
n≥1

(−1)n−1qn(n+1)/2 (xq; q)n
(q; q)n−1

×

 1
qn(1− zqn) + x

z
(
1− xqn

z

)
. (4.3.12)

Letting n → ∞ in the following terminating very-well-poised 4φ3 series (see [83,
(2.3.4)]):

4φ3

w, q√w,−q√w, q−n√
w,−
√
w,wqn+1 ; q, qn

 =

1 if n = 0,

0 if n ≥ 1,
(4.3.13)

we have

1 +
∑
n≥1

(−1)nqn(n−1)/2 (xq; q)n−1(1− xq2n)
(q; q)n

= 0. (4.3.14)

Substituting (4.3.14) into (4.3.12) yields

(q; q)∞(xq; q)∞
(zq; q)∞(xq/z; q)∞

=
∑
n≥1

(−1)n−1qn(n+1)/2 (xq; q)n
(q; q)n−1

×

 1
qn(1− zqn) + x

z
(
1− xqn

z

)
. (4.3.15)
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Finally, we deduce from (4.2.11) the following result.

Theorem 4.3.3. We have

M(x, z; q) = 1− q
(1− xq)(q; q)∞

∑
n≥1

(−1)n−1qn(n+1)/2 (xq; q)n
(q; q)n−1

×

 1
qn(1− zqn) + x

z
(
1− xqn

z

)
. (4.3.16)

Now notice that the reformulation (4.3.16) ofM(x, z; q) also involves the auxiliary
functions

α(z;Q) = 1
Q(1− zQ) and β(x, z;Q) = x

z
(
1− xQ

z

)
defined in §4.3.1. We therefore may carry out the same procedure to prove Theorems
4.1.3 and 4.1.4. The details are omitted.

4.3.3 Remark

It is worth mentioning more about the necessity of the odd order in the weighted
moments. Let us use N ]

k(n) as an example. As we have seen, to obtain

∑
n≥0

N ]
k(n)qn =

∑
λ∈P

](λ) rankk(λ)q|λ|,

the last step is to apply the operator [∂/∂x]x=1 to

Nk(x; q) :=
∑
λ∈P

rankk(λ)x](λ)q|λ|.

Our trick here is that by noticing that Nk(1; q) = 0 when k is odd due to the symmetry
property of the rank function, one may factor out (1− x) from Nk(x; q) so that (4.3.6)
can be applied. However, when k is even, we fail to get the factor (1− x) as Nk(1; q) is
not identical to zero and hence the aforementioned trick cannot be used.

4.4 Andrews–Beck Type Congruences

It is fair to describe the origional motivation of this project.
Recall that the rank and crank statistics interpret Ramanujan’s congruences (4.1.1)–

(4.1.3) in the following way. LetN(k,m, n) (resp.M(m,n)) count the number of partitions
of n whose rank (resp. crank) is congruent to k modulo m.
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First, Atkin and Swinnerton-Dyer [30] proved that for 0 ≤ i ≤ 4,

N(i, 5, 5n+ 4) = 1
5p(5n+ 4)

and that for 0 ≤ i ≤ 6,

N(i, 7, 7n+ 5) = 1
7p(7n+ 5).

On the other hand, Andrews and Garvan [23] showed that for 0 ≤ i ≤ 4,

M(i, 5, 5n+ 4) = 1
5p(5n+ 4),

that for 0 ≤ i ≤ 6,

M(i, 7, 7n+ 5) = 1
7p(7n+ 5)

and that for 0 ≤ i ≤ 10,

M(i, 11, 11n+ 6) = 1
11p(11n+ 6).

One shall see how equally numerous subclasses occur.
In a private communication between George Beck and George Andrews, Beck made

a number of new conjectures along this line. Instead of considering the N(m, k, n) and
M(m, k, n) functions, Beck studied the total number of parts in the partitions of n with
rank congruent to m modulo k, which is defined by NT (m, k, n), and the total number
of ones in the partitions of n with crank congruent to m modulo k, which is defined by
Mω(m, k, n). Let me record one example that was proved later by Andrews in [18].

Theorem 4.4.1. If i = 1 or 4, then for n ≥ 0,

NT (1, 5, 5n+ i) + 2NT (2, 5, 5n+ i)

− 2NT (3, 5, 5n+ i)−NT (4, 5, 5n+ i) ≡ 0 (mod 5). (4.4.1)

But the arithmetic properties of N2(n) are extensively studied. For example, (1.14)
and (1.15) of [14] state that

N2(5n+ 1 or 4) ≡ 0 (mod 5)
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and

N2(7n+ 1 or 5) ≡ 0 (mod 7).

It is also trivial to see that

∑
λ∈P

](λ) rank(λ)q|λ| ≡
∑
n≥0

(
NT (1, 5, n) + 2NT (2, 5, n)

− 2NT (3, 5, n)−NT (4, 5, n)
)
qn (mod 5)

and

∑
λ∈P

](λ) rank(λ)q|λ| ≡
∑
n≥0

(
NT (1, 7, n) + 2NT (2, 7, n)

+ 3NT (3, 7, n)− 3NT (4, 7, n)

− 2NT (5, 7, n)−NT (6, 7, n)
)
qn (mod 7).

We therefore arrive at both (4.4.1) and the below through the fact that

∑
λ`n

](λ) rank(λ) = −1
2N2(n).

Theorem 4.4.2. If i = 1 or 5, then for n ≥ 0,

NT (1, 7, 7n+ i) + 2NT (2, 7, 7n+ i)

+ 3NT (3, 7, 7n+ i)− 3NT (4, 7, 7n+ i)

− 2NT (5, 7, 7n+ i)−NT (6, 7, 7n+ i) ≡ 0 (mod 7). (4.4.2)

In fact, utilizing the relations between ordinary and weighted rank and crank moments,
I [60] am able to discover over 70 congruences modulo 5, 7, 11 and 13 involving NT (r, k, n)
and Mω(r, k, n). Through a computer search, it is believed that the list below is to
some extent complete for these moduli (it should be noted that a handful of unlisted
congruences could be generated by congruences in the main theorems; see remarks below
each theorem).
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Theorem 4.4.3. Let

NT [a1, a2](n) :=
2∑
r=1

ar
(
NT (r, 5, n)−NT (5− r, 5, n)

)

and

Mω[a1, a2](n) :=
2∑
r=1

ar
(
Mω(r, 5, n)−Mω(5− r, 5, n)

)
.

Then (i).

NT [1, 2](5n+ 1) ≡ 0 (mod 5), (4.4.3-1)

NT [1, 2](5n+ 4) ≡ 0 (mod 5); (4.4.3-2)

(ii).

Mω[1, 2](5n) ≡ 0 (mod 5), (4.4.4-1)

Mω[1, 2](5n+ 4) ≡ 0 (mod 5); (4.4.4-2)

(iii).

NT [0, 1](5n) ≡Mω[0, 1](5n) ≡Mω[1, 3](5n) ≡Mω[2, 0](5n)

≡Mω[3, 2](5n) ≡Mω[4, 4](5n) (mod 5), (4.4.5-1)

NT [0, 1](5n+ 1) ≡Mω[0, 1](5n+ 1) (mod 5), (4.4.5-2)

NT [1, 0](5n+ 1) ≡Mω[0, 3](5n+ 1) (mod 5), (4.4.5-3)

NT [0, 1](5n+ 2) ≡Mω[2, 0](5n+ 2) (mod 5), (4.4.5-4)

NT [1, 0](5n+ 2) ≡Mω[0, 3](5n+ 2) (mod 5), (4.4.5-5)

NT [1, 3](5n+ 3) ≡Mω[1, 3](5n+ 3) (mod 5), (4.4.5-6)

NT [0, 1](5n+ 4) ≡Mω[0, 1](5n+ 4) ≡Mω[1, 3](5n+ 4) ≡Mω[2, 0](5n+ 4)

≡Mω[3, 2](5n+ 4) ≡Mω[4, 4](5n+ 4) (mod 5), (4.4.5-7)

NT [1, 0](5n+ 4) ≡Mω[0, 3](5n+ 4) ≡Mω[1, 0](5n+ 4) ≡Mω[2, 2](5n+ 4)

≡Mω[3, 4](5n+ 4) ≡Mω[4, 1](5n+ 4) (mod 5). (4.4.5-8)

Remark 4.4.1. It should be pointed out that one may derive more congruences from
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(4.4.5-2) and (4.4.5-3). For example,

NT [1, 1](5n+ 1) ≡Mω[0, 4](5n+ 1) (mod 5),

which comes from

NT [1, 1](5n+ 1) ≡ NT [0, 1](5n+ 1) +NT [1, 0](5n+ 1)

≡Mω[0, 1](5n+ 1) +Mω[0, 3](5n+ 1)

≡Mω[0, 4](5n+ 1) (mod 5).

Similarly, more congruences could be derived from (4.4.5-4) and (4.4.5-5), and from
(4.4.5-7) and (4.4.5-8). Also, in (4.4.5-1), we have Mω[0, 1](5n) ≡ Mω[1, 3](5n) ≡ · · ·
(mod 5). This is a consequence of (4.4.4-1) by noticing that

Mω[1, 3](5n) ≡Mω[0, 1](5n) +Mω[1, 2](5n) ≡Mω[0, 1](5n) (mod 5).

Similar arguments could be applied to (4.4.5-7) and (4.4.5-8) with the help of (4.4.4-2).
We notice that (4.4.5-1) and (4.4.5-7) imply [47, (4.10)], and (4.4.5-3) and (4.4.5-5)

imply [47, (4.12)].

Theorem 4.4.4. Let

NT [a1, a2, a3](n) :=
3∑
r=1

ar
(
NT (r, 7, n)−NT (7− r, 7, n)

)

and

Mω[a1, a2, a3](n) :=
3∑
r=1

ar
(
Mω(r, 7, n)−Mω(7− r, 7, n)

)
.

Then (i).

NT [0, 1, 4](7n) ≡ 0 (mod 7), (4.4.6-1)

NT [0, 1, 4](7n+ 1) ≡ 0 (mod 7), (4.4.6-2)

NT [1, 0, 2](7n+ 1) ≡ 0 (mod 7), (4.4.6-3)

NT [1, 0, 2](7n+ 3) ≡ 0 (mod 7), (4.4.6-4)

NT [1, 0, 2](7n+ 4) ≡ 0 (mod 7), (4.4.6-5)

NT [0, 1, 4](7n+ 5) ≡ 0 (mod 7), (4.4.6-6)
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NT [1, 0, 2](7n+ 5) ≡ 0 (mod 7); (4.4.6-7)

(ii).

Mω[0, 1, 4](7n) ≡ 0 (mod 7), (4.4.7-1)

Mω[1, 0, 2](7n) ≡ 0 (mod 7), (4.4.7-2)

Mω[0, 1, 4](7n+ 1) ≡ 0 (mod 7), (4.4.7-3)

Mω[1, 0, 2](7n+ 2) ≡ 0 (mod 7), (4.4.7-4)

Mω[1, 3, 0](7n+ 3) ≡ 0 (mod 7), (4.4.7-5)

Mω[0, 1, 4](7n+ 4) ≡ 0 (mod 7), (4.4.7-6)

Mω[0, 1, 4](7n+ 5) ≡ 0 (mod 7), (4.4.7-7)

Mω[1, 0, 2](7n+ 5) ≡ 0 (mod 7), (4.4.7-8)

Mω[1, 0, 2](7n+ 6) ≡ 0 (mod 7). (4.4.7-9)

Remark 4.4.2. Linear combinations of (4.4.6-2) and (4.4.6-3) imply more congruences.
For example, 1× (4.4.6-2) + 1× (4.4.6-3) gives

NT [1, 1, 6](7n+ 1) ≡ 0 (mod 7),

which is the i = 1 case of [18, Theorem 1.2]. More congruences could be derived from
linear combinations of (4.4.6-6) and (4.4.6-7), of (4.4.7-1) and (4.4.7-2), and of (4.4.7-7)
and (4.4.7-8).

We notice that [47, (4.15) and (4.16)] are shown in Part (ii).

Theorem 4.4.5. Let

NT [a1, a2, a3, a4, a5](n) :=
5∑
r=1

ar
(
NT (r, 11, n)−NT (11− r, 11, n)

)

and

Mω[a1, a2, a3, a4, a5](n) :=
5∑
r=1

ar
(
Mω(r, 11, n)−Mω(11− r, 11, n)

)
.
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We also adopt the notation

Mω


a1, a2, a3, a4, a5

b1, b2, b3, b4, b5
... ... ... ... ...
c1, c2, c3, c4, c5

 (n) :=


Mω[a1, a2, a3, a4, a5](n)
Mω[b1, b2, b3, b4, b5](n)

...
Mω[c1, c2, c3, c4, c5](n)

 .

Then (i).

NT [0, 1, 4, 10, 9](11n) ≡ 0 (mod 11), (4.4.8-1)

NT [1, 8, 5, 9, 4](11n+ 1) ≡ 0 (mod 11), (4.4.8-2)

NT [1, 3, 7, 3, 3](11n+ 6) ≡ 0 (mod 11); (4.4.8-3)

(ii).

Mω


0, 0, 0, 1, 8
0, 0, 1, 0, 6
0, 1, 0, 0, 4
1, 0, 0, 0, 2

 (11n) ≡


0
0
0
0

 (mod 11), (4.4.9-1)

Mω


0, 0, 0, 1, 8
0, 0, 1, 0, 6
0, 1, 0, 0, 4

 (11n+ 1) ≡


0
0
0

 (mod 11), (4.4.9-2)

Mω


0, 0, 0, 1, 8
0, 0, 1, 0, 6
1, 0, 0, 0, 2

 (11n+ 2) ≡


0
0
0

 (mod 11), (4.4.9-3)

Mω


0, 0, 0, 1, 8
0, 1, 0, 0, 4
1, 0, 0, 0, 2

 (11n+ 3) ≡


0
0
0

 (mod 11), (4.4.9-4)

Mω


0, 0, 1, 0, 6
0, 1, 0, 5, 0
1, 0, 0, 0, 2

 (11n+ 4) ≡


0
0
0

 (mod 11), (4.4.9-5)

Mω


0, 0, 1, 0, 6
0, 1, 0, 5, 0
1, 0, 0, 0, 2

 (11n+ 5) ≡


0
0
0

 (mod 11), (4.4.9-6)
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Mω


0, 0, 0, 1, 8
0, 0, 1, 0, 6
0, 1, 0, 0, 4
1, 0, 0, 0, 2

 (11n+ 6) ≡


0
0
0
0

 (mod 11), (4.4.9-7)

Mω


0, 0, 1, 0, 6
0, 1, 0, 0, 4
1, 0, 0, 8, 0

 (11n+ 7) ≡


0
0
0

 (mod 11), (4.4.9-8)

Mω


0, 0, 1, 2, 0
0, 1, 0, 0, 4
1, 0, 0, 8, 0

 (11n+ 8) ≡


0
0
0

 (mod 11), (4.4.9-9)

Mω


0, 0, 1, 0, 6
0, 1, 0, 0, 4
1, 0, 0, 0, 2

 (11n+ 9) ≡


0
0
0

 (mod 11), (4.4.9-10)

Mω


0, 0, 0, 1, 8
0, 1, 0, 0, 4
1, 0, 0, 0, 2

 (11n+ 10) ≡


0
0
0

 (mod 11). (4.4.9-11)

Remark 4.4.3. Each of (4.4.9-1)–(4.4.9-11) may lead to more Andrews–Beck type con-
gruences modulo 11 for Mω.

We notice that (4.4.8-2) is [47, (4.6)] and (4.4.8-3) is [47, (4.5)].

Theorem 4.4.6. Let

NT [a1, a2, a3, a4, a5, a6](n) :=
6∑
r=1

ar
(
NT (r, 13, n)−NT (13− r, 13, n)

)

and

Mω[a1, a2, a3, a4, a5, a6](n) :=
6∑
r=1

ar
(
Mω(r, 13, n)−Mω(13− r, 13, n)

)
.

Then (i).

NT [0, 1, 4, 12, 10, 3](13n) ≡ 0 (mod 13), (4.4.10-1)

NT [1, 1, 6, 0, 0, 3](13n+ 1) ≡ 0 (mod 13), (4.4.10-2)

NT [0, 0, 1, 9, 6, 8](13n+ 2) ≡ 0 (mod 13), (4.4.10-3)

NT [1, 0, 3, 9, 1, 11](13n+ 3) ≡ 0 (mod 13), (4.4.10-4)
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NT [1, 5, 8, 7, 12, 12](13n+ 5) ≡ 0 (mod 13), (4.4.10-5)

NT [1, 2, 8, 0, 7, 11](13n+ 6) ≡ 0 (mod 13), (4.4.10-6)

NT [1, 12, 8, 7, 10, 7](13n+ 7) ≡ 0 (mod 13), (4.4.10-7)

NT [1, 6, 11, 8, 0, 0](13n+ 9) ≡ 0 (mod 13), (4.4.10-8)

NT [1, 9, 4, 5, 10, 7](13n+ 10) ≡ 0 (mod 13); (4.4.10-9)

(ii).

Mω[1, 2, 3, 4, 5, 6](13n) ≡ 0 (mod 13). (4.4.11-1)

Remark 4.4.4. We notice that (4.4.10-2) is [47, (4.7)] and (4.4.10-4) is [47, (4.8), corrected].

Proofs of the above congruences also rely on relations between ordinary rank and
crank moments N2s(n) and M2s(n) derived by Atkin and Garvan [29]. See [60] for details.
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Chapter 5 |

Partitions with Bounded Part Differences

This chapter comes from

• S. Chern, A curious identity and its applications to partitions with bounded part differences, New
Zealand J. Math. 47 (2017), 23–26. (Ref. [49])

• S. Chern, An overpartition analogue of partitions with bounded differences between largest and
smallest parts, Discrete Math. 340 (2017), no. 12, 2834–2839. (Ref. [50])

• S. Chern, On a conjecture of George Beck, Int. J. Number Theory 14 (2018), no. 3, 647–651.
(Ref. [51])

• S. Chern, On a conjecture of George Beck. II, Math. Student 88 (2019), no. 1-2, 159–164.
(Ref. [52])

• S. Chern and A. J. Yee, Overpartitions with bounded part differences, European J. Combin. 70
(2018), 317–324. (Ref. [68])

5.1 Introduction

In a paper of Andrews, Beck and Robbins [19], they considered partitions where
the difference between largest and smallest parts is a fixed integer t. Let p(n, t) be the
number of such partitions of n. We have, for example, p(4, 1) = 1 since 4 has only
one such partition: 2 + 1 + 1. In fact, Andrews et al. showed that p(n, 0) = d(n) and
p(n, 1) = n − d(n) where d(n) denotes the number of divisors of n. For t ≥ 2, they
obtained the following generating function

∑
n≥1

p(n, t)qn = qt−1(1− q)
(1− qt)(1− qt−1) −

qt−1(1− q)
(1− qt)(1− qt−1)(q; q)t

+ qt

(1− qt−1)(q; q)t
. (5.1.1)

Motivated by their work, Breuer and Kronholm [41] studied the number of partitions
of n with the difference between largest and smallest parts bounded by t, denoted by
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pt(n), and they showed that the generating function is

∑
n≥1

pt(n)qn = 1
1− qt

(
1

(q; q)t
− 1

)
. (5.1.2)

The proof of Breuer and Kronholm has a geometric flavour, and their main tool used in
the proof is polyhedral cones.

Subsequently, Chapman [48] also provided a simpler proof, which involves q-series
manipulations.

In this chapter, we will further consider other types of partition with bounded part
differences. In fact, their generating functions fit into a general framework.

5.2 A General Identity

Let t be a fixed positive integer. Assume that α, β, q are complex variables with
|q| < 1, q 6= 0, α 6= βq and (βq; q)t 6= 0. We define the following sum

S(α, β; q; t) :=
∑
r≥1

(1− αqr)(1− αqr+1) · · · (1− αqr+t−2)
(1− βqr)(1− βqr+1) · · · (1− βqr+t) qr. (5.2.1)

We have the following identity.

Theorem 5.2.1. We have

S(α, β; q; t) = q

(βq − α)(1− qt)

(
(α; q)t
(βq; q)t

− 1
)
. (5.2.2)

First let us recall two basic hypergeometric series identities.

Lemma 5.2.2 (First q-Chu–Vandermonde Sum [16, Eq. (17.6.2)]). We have

2φ1

a, q−n
c

; q, cq
n

a

 = (c/a; q)n
(c; q)n

. (5.2.3)

Lemma 5.2.3 (q-Analogue of the Kummer–Thomae–Whipple Transformation [83, p.
72, Eq. (3.2.7)]). We have

3φ2

a, b, c
d, e

; q, de
abc

 = (e/a; q)∞(de/bc; q)∞
(e; q)∞(de/abc; q)∞ 3φ2

a, d/b, d/c
d, de/bc

; q, e
a

 . (5.2.4)
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Proof of Theorem 5.2.1. We have

S(α, β; q; t) (5.2.5)

=
∑
r≥1

(1− αqr)(1− αqr+1) · · · (1− αqr+t−2)
(1− βqr)(1− βqr+1) · · · (1− βqr+t) qr

=
∑
r≥1

(α; q)r+t−1(β; q)r
(α; q)r(β; q)r+t+1

qr

=
∑
r≥0

(α; q)r+t(β; q)r+1

(α; q)r+1(β; q)r+t+2
qr+1

= q(1− β)(α; q)t
(1− α)(β; q)t+2

∑
r≥0

(q; q)r(βq; q)r(αqt; q)r
(q; q)r(αq; q)r(βqt+2; q)r

qr

= q(αq; q)t−1

(βq; q)t+1
3φ2

q, βq, αqt
αq, βqt+2; q, q


= q(αq; q)t−1

(βq; q)t+1

(βqt+1; q)∞(q2; q)∞
(βqt+2; q)∞(q; q)∞ 3φ2

q, α/β, q1−t

αq, q2 ; q, βqt+1

 (by Eq. (5.2.4))

= q(αq; q)t−1

(1− q)(βq; q)t
∑
r≥0

(α/β; q)r(q1−t; q)r
(αq; q)r(q2; q)r

(
βqt+1

)r

= q(αq; q)t−1

(1− q)(βq; q)t
(1− α)(1− q)

βqt+1
(
1− α

βq

)
(1− q−t)

∑
r≥0

(
α
βq

; q
)
r+1

(q−t; q)r+1

(α; q)r+1(q; q)r+1

(
βqt+1

)r+1

= q

(βq − α)(qt − 1)
(α; q)t
(βq; q)t

2φ1

 α
βq
, q−t

α
; q, βqt+1

− 1


= q

(βq − α)(qt − 1)
(α; q)t
(βq; q)t

(
(βq; q)t
(α; q)t

− 1
)

(by Eq. (5.2.3))

= q

(βq − α)(1− qt)

(
(α; q)t
(βq; q)t

− 1
)
.

Let us see how to make use of Theorem 5.2.1 to recover (5.1.2). Note that the
generating function for partitions counted by pt(n) with smallest part equal to r is

qr

(1− qr)(1− qr+1) · · · (1− qr+t) .
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It follows that

∑
n≥1

pt(n)qn =
∑
r≥1

qr

(1− qr)(1− qr+1) · · · (1− qr+t) = S(0, 1; q; t).

Hence, by Theorem 5.2.1, we have

∑
n≥1

pt(n)qn = 1
1− qt

(
1

(q; q)t
− 1

)
.

Analogously, we have the following results.

Theorem 5.2.4. Let pdt(n) count the number of partitions of n in which all parts are
distinct and the difference between largest and smallest parts is at most t.

Then ∑
n≥1

pdt(n)qn = 1
1− qt+1 ((−q; q)t+1 − 1) . (5.2.6)

Theorem 5.2.5. Let pot(n) count the number of partitions of n in which all parts are
odd and the difference between largest and smallest parts is at most t.

Then ∑
n≥1

po2t(n)qn = 1
1− q2t

(
1

(q; q2)t
− 1

)
. (5.2.7)

5.3 Overpartitions

A more intriguing problem is about overpartitions with bounded differences. Let
gt(m,n) count the number of overpartitions of n in which there are exactly m overlined
parts, the difference between largest and smallest parts is at most t, and if the difference
between largest and smallest parts is exactly t, then the largest part cannot be overlined.
Then

∑
n≥1

∑
m≥0

gt(m,n)zmqn =
∑
r≥1

(1 + z)qr
1− qr

1 + zqr+1

1− qr+1 · · ·
1 + zqr+t−1

1− qr+t−1
1

1− qr+t

= (1 + z)S(−zq, q; q; t).

The following result immediately follows from Theorem 5.2.1.

Theorem 5.3.1. We have

∑
n≥1

∑
m≥0

gt(m,n)zmqn = 1
1− qt

(
(−zq; q)t

(q; q)t
− 1

)
. (5.3.1)
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Next, we will turn to the combinatorial aspect.

5.3.1 A Semi-Combinatorial Proof

We show the z = 1 case of (5.3.1) from the viewpoint of over q-binomial coefficients.
Let gt(n) count the number of overpartitions of n in which the difference between

largest and smallest parts is at most t, and if the difference between largest and smallest
parts is exactly t, then the largest part cannot be overlined.

Letting z = 1 in (5.3.1) yields the following identity.

Theorem 5.3.2. We have

∑
n≥1

gt(n)qn = 1
1− qt

(
(−q; q)t
(q; q)t

− 1
)
. (5.3.2)

Recall that the q-binomial coefficientM +N

N

 =
M +N

N


q

is the generating function for partitions where the largest part is at most M and the
number of parts is at most N . In a paper of Dousse and Kim [75], they introduced the
over q-binomial coefficient, denoted by

M +N

N

 =
M +N

N


q

, (5.3.3)

which is an overpartition analog of q-binomial coefficient defined as the generating
function for overpartitions where the largest part is at most M and the number of parts
is at most N . They showed that for positive integers M and N ,

M +N

N

 =
min(M,N)∑

k=0
q(

k+1
2 ) (q; q)M+N−k

(q; q)k(q; q)M−k(q; q)N−k
. (5.3.4)

Of course, if we agree that the number of such overpartitions of 0 is one, then this identity
also holds for M = 0 or N = 0.

Over q-binomial coefficients have many properties similar to those of the standard
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q-binomial coefficients. For example, the following recurrence relation
M +N

N

 =
M +N − 1

N − 1

+ qN

M +N − 1
N

+ qN

M +N − 2
N − 1

 (5.3.5)

holds for any positive integers M and N (see [75, (1.1)]). In fact, it can be proved
combinatorially.

Now we denote by P t(q) the generating function of overpartitions in which the
difference between largest and smallest parts is at most t.

Let λ = (λ1, . . . , λ`) be an overpartition of n with exactly ` parts, λ` = r ≥ 1, and
λ1 ≤ r + t. Then µ = (λ1 − r, . . . , λ`−1 − r) is an overpartition of n− `r with at most
`− 1 parts and greatest part ≤ t. Note that the first occurrence of the smallest part of λ
can be either overlined or not. Hence the generating function for such overpartitions is

2q`r
t+ `− 1

t

,
and hence

P t(q) = 2
∑
`≥1

∑
r≥1

q`r

t+ `− 1
t

 = 2
∑
`≥1

q`

1− q`

t+ `− 1
t

. (5.3.6)

We remark that this identity also holds for t = 0.
On the other hand, overpartitions where the difference between largest and smallest

parts is at most t can be divided into three disjoint cases:

(i) The largest part is at most t;

(ii) The largest part is greater than t, the difference between largest and smallest parts
is exactly t, and the first occurrence of the smallest part is overlined;

(iii) Otherwise.

For Case (i), one readily sees the generating function is

(−q; q)t
(q; q)t

− 1.

For Case (ii), its generating function is

2
∑
r≥1

qr

1− qr
1 + qr+1

1− qr+1 · · ·
1 + qr+t−1

1− qr+t−1
qr+t

1− qr+t = P t(q)− P t−1(q)
2 .
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Finally, let λ = (λ1, . . . , λ`) be an overpartition of Case (iii) with λ1 = r + t (and so
r ≥ 1). We note that µ = (λ1 − r, . . . , λ` − r) is an overpartition of |λ| − `r with at most
` parts and largest part being exactly t. Hence the generating function is

∑
`≥1

∑
r≥1

q`r


t+ `

t

−
t+ `− 1

t− 1


 =

∑
`≥1

q`

1− q`


t+ `

t

−
t+ `− 1

t− 1


 .

We therefore have

P t(q) =
(

(−q; q)t
(q; q)t

− 1
)

+ P t(q)− P t−1(q)
2 +

∑
`≥1

q`

1− q`


t+ `

t

−
t+ `− 1

t− 1


 .

Now we take M → ` and N → t in (5.3.5) and rewrite it as

t+ `

t

−
t+ `− 1

t− 1

 = qt


t+ `− 1

t

+
t+ `− 2

t− 1


 .

We then multiply both sides by q`/(1− q`) and sum over `

∑
`≥1

q`

1− q`


t+ `

t

−
t+ `− 1

t− 1




= qt

∑
`≥1

q`

1− q`

t+ `− 1
t

+
∑
`≥1

q`

1− q`

t+ `− 2
t− 1


 .

From the foregoing argument, we therefore have

P t(q)−
(

(−q; q)t
(q; q)t

− 1
)
− P t(q)− P t−1(q)

2 = qt
P t(q) + P t−1(q)

2 .

Hence,
P t(q) + P t−1(q)

2 = 1
1− qt

(
(−q; q)t
(q; q)t

− 1
)
. (5.3.7)

Finally, we observe that

P t(q) + P t−1(q) = 2
∑
r≥1

qr

1− qr
1 + qr+1

1− qr+1 · · ·
1 + qr+t−1

1− qr+t−1

(
1 + qr+t

1− qr+t + 1
)
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= 4
∑
r≥1

qr

1− qr
1 + qr+1

1− qr+1 · · ·
1 + qr+t−1

1− qr+t−1
1

1− qr+t

= 2
∑
n≥1

gt(n)qn. (5.3.8)

Theorem 5.3.2 therefore follows from (5.3.7) and (5.3.8).

5.3.2 A Real Combinatorial Proof

As one might realize, our combinatorial proof of (5.3.2) is kind of cheating as many
q-series manipulations are still involved. This is why I call it a semi-combinatorial proof.
Our next task is to prove not only (5.3.2) but (5.3.1) in a completely combinatorial
manner.

Let ](λ) be the number of parts of a partition or an overpartition λ. When λ is an
overpartition, we use o(λ) to count the number of overlined parts in λ. We write parts in
weakly decreasing order.

For a positive integer t, we denote by P t the set of (nonempty) overpartitions with
parts less than or equal to t and no parts equal to t overlined, and by Gt the set of
(nonempty) overpartitions with the difference between largest and smallest parts at most
t and the largest part not overlined when the difference between largest and smallest
parts is exactly t. Also, Bt denotes the set of bipartitions where the first subpartition,
which can be an empty partition, consists of only parts equal to t, none overlined, and
the second subpartition is a nonempty overpartition with parts less than or equal to t.

5.3.2.1 Partition Sets Gt and Pt

We first construct a weight preserving map φ from Gt to P t.
For an overpartition π = (π1, π2, . . . , π`) in Gt, let s(π) = bπ`/tc, where bac denotes

the largest integer not exceeding a, and let k(π) be the positive integer k such that
πk ≥ (s(π) + 1)t and πk+1 < (s(π) + 1)t. If there is no such k, then we let k(π) = 0.

We now define a map φ : Gt → P t as follows. For an overpartition π ∈ Gt, let ](π) = `,
s(π) = s and k(π) = k. Then

φ : (π1, π2, . . . , π`)

7→ (t, t, t, . . . , t︸ ︷︷ ︸
s(`−k)+(s+1)k

times

, πk+1 − st, . . . , π` − st, π1 − (s+ 1)t, . . . , πk − (s+ 1)t),
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where all the parts equal to t are not overlined, and if πi is overlined, then πi − st

(or πi − (s + 1)t depending on the value of i) is overlined. In other words, φ takes
π to (t, t, . . . , t, a1, . . . , a`) where a1, . . . , a` are π1, . . . , π` reduced modulo t, cyclically
permuted to make them weakly decreasing.

Here we note that there may be parts equal to 0 in φ(π). If there are any parts equal
to 0, then we delete them so that φ(π) has positive parts only.

Theorem 5.3.3. φ is a weight preserving map from Gt to P t.

Proof. Since π1 − π` ≤ t, s = bπ`/tc, and πk ≥ (s+ 1)t > πk+1, we have

t > πk+1 − st ≥ · · · ≥ π` − st ≥ π1 − (s+ 1)t ≥ · · · ≥ πk − (s+ 1)t.

Thus the parts of φ(π) are less than or equal to t, and if there are overlined parts, they
are less than t.

We now show that no more than one part of the same size is overlined. Since π
is an overpartition, at most one part of the same size is overlined in π. Hence, of
π1 − st, . . . , πk − st, if there are overlined parts, then they must be of different sizes. For
the same reason, of πk+1 − (s+ 1)t, . . . , π` − (s+ 1)t, overlined parts must be of different
sizes. Thus, if π` − st > π1 − (s+ 1)t, then it is clear that all the overlined parts of φ(π)
have different sizes.

Let us suppose that π` − st = π1 − (s + 1)t. Then, we have π1 − π` = t. By the
definition of Gt, we know that all the parts equal to π1 are not overlined. Thus, for parts
in φ(π) that are equal to π` − st = π1 − (s+ 1)t, either the first occurrence or none may
be overlined. Therefore, φ(π) ∈ P t.

We also note that the map φ preserves the weight of π, that is, |φ(π)| = |π|.

As we see in the following example, the map φ is not a bijection.

Example 5.3.1. Let t = 3, π = (7, 4) and π̃ = (4, 4, 3). Then

s(π) = 1, k(π) = 1, φ(π) = (3, 3, 3, 1, 1), |φ(π)| = |π| = 11;

s(π̃) = 1, k(π̃) = 0, φ(π̃) = (3, 3, 3, 1, 1), |φ(π̃)| = |π̃| = 11.

However, φ is a surjection since P t is a subset of Gt and φ(π) = π for any π ∈ P t. So,
we will count how many pre-images each µ ∈ P t has under φ.

Let π ∈ Gt. We describe how to recover π from φ(π). First, note that it is clear from
the definition of s(π) and k(π) that πi − (s(π) + 1)t and πj − s(π)t are the remainders
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of πi and πj when divided by t for 1 ≤ i ≤ k(π) and j > k(π). If the remainders are
equal to 0, then they are deleted in φ(π). Thus if we know the number of such deleted
remainders, we can determine ](π). Also, one of the deleted remainders may have been
overlined.

We then need to find s(π) and k(π), where s(π) is the quotient of the smallest part
of π when divided by t and k(π) counts the number of parts whose quotients are equal
to s(π) + 1. Therefore, once we have ](π), k(π), and s(π) along with the information
on existence of an overlined deleted remainder, it is clear that we can recover π. Thus
possible choices for ](π), k(π), and s(π) with having a deleted remainder overlined or
not will determine the number of pre-images under φ.

In the following lemma, we will see the range for ](π). For any µ ∈ P t, we use
m(µ) = mt(µ) to count the number of parts of µ equal to t.

Lemma 5.3.4. Let π be a nonempty overpartition in Gt and µ = φ(π) in P t. Then we
have

(i) ](π) ≤ ](µ);

(ii) ](π) ≥ ](µ)−m(µ) + δ](µ),m(µ), where δ](µ),m(µ) is the Kronecker delta.

Proof. First, (i) is almost trivial. Under φ, each part of π splits into its residue modulo t
and as many t’s as the quotient, i.e., each part πi contributes dπi/te to the number of
parts of µ. Thus ](π) ≤ ](µ).

Next, we prove (ii). If all of the parts of µ are t, i.e., ](µ) = m(µ), then

](µ)−m(µ) + δ](µ),m(µ) = 1 ≤ `,

where the last inequality follows from the fact that π is nonempty.
We now suppose that µ has a part not equal to t, i.e, ](µ) −m(µ) ≥ 1. From the

definition of φ, we know that the parts of µ not equal to t are the positive remainders of
the parts of π, so at most ` parts of µ are not equal to t. Hence

](µ)−m(µ) + δ](µ),m(µ) = ](µ)−m(µ) ≤ `.

This completes the proof of (ii).

It follows from Lemma 5.3.4 that

δ](µ),m(µ) ≤ ](π)−
(
](µ)−m(µ)

)
≤ m(µ), (5.3.9)
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where ](π)−
(
](µ)−m(µ)

)
is the number of multiples of t in π.

Lemma 5.3.5. Let n be a fixed positive integer, and n′ a fixed nonnegative integer. Then
the following system of equations

x+ y = n,

s x+ (s+ 1)y = n′
(5.3.10)

has exactly one simultaneous solution (x, y, s) ∈ Z>0 × Z≥0 × Z≥0.

Proof. We readily see that y = n′ − s n. Also, since x > 0 and y ≥ 0, it follows from the
first equation that 0 ≤ y < n. Hence

n′

n
− 1 < s ≤ n′

n
,

from which it follows that s = bn′/nc. Therefore, there is only one solution (x, y, s).

We are now ready to determine how many pre-images an overpartition in P t has.

Theorem 5.3.6. Let µ be a nonempty overpartition in P t.
(i) If ](µ) = m(µ), then there are exactly 2m(µ) pre-images in Gt under φ. Moreover,

of those pre-images, exactly m(µ) pre-images have no overlined parts, and the other m(µ)
pre-images have the first occurrence of the smallest parts overlined.

(ii) If ](µ) > m(µ), then there are exactly 2m(µ) + 1 pre-images in Gt under φ.
Moreover, of those pre-images, exactly m(µ) + 1 pre-images have the same number of
overlined parts as µ and the other m(µ) pre-images have one more overlined part than µ
does.

Proof. Let π be a pre-image of µ. By Lemma 5.3.4, we know that

](µ)−m(µ) + δ](µ),m(µ) ≤ ](π) ≤ ](µ). (5.3.11)

Hence, for any integer ` in this range, we want to know how many π ∈ Gt with ](π) = `

can be pre-images of µ.
In order for π to be a pre-image of µ with ](π) = `, s(π) and k(π) must satisfy

s(π)(`− k(π)) + (s(π) + 1)k(π) = m(µ). (5.3.12)
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By the definition of k(π), it should be less than ](π), i.e., `− k(π) > 0. Thus, (5.3.12)
is equivalent to that

(
` − k(π), k(π), s(π)

)
is a solution to (5.3.10) with n = ` and

n′ = m(µ), which is unique.
(i) Suppose that ](µ) = m(µ). By (5.3.11), there are m(µ) choices for `. For a fixed

`, k(π) and s(π) are uniquely determined as seen above. With these
(
`, k(π), s(π)

)
, we

can construct π, in which parts are multiples of t differing by at most t and there are no
overlined parts.

For each π, by having the first occurrence of the smallest parts overlined, we obtain a
different pre-image. Therefore, the total number of pre-images must be equal to 2m(µ) as
claimed. Also, m(µ) pre-images have no overlined parts and the other m(µ) pre-images
have one overlined smallest part.

(ii) Suppose that ](µ) > m(µ). By (5.3.11), there are
(
m(µ) + 1

)
choices for `. For

a fixed `, k(π) and s(π) are uniquely determined. With these
(
`, k(π), s(π)

)
, we can

construct π, in which no multiples of t are overlined.
Note that from the construction of φ, ](µ)−m(µ) counts the nonzero residues of the

parts of π modulo t. So, if ](π) > ](µ)−m(µ), then π must have multiples of t as parts.
For such π, by having the first occurrence of the smallest multiples of t overlined, we
obtain a different pre-image.

Therefore, the total number of pre-images must be equal to
(
2m(µ) + 1

)
as claimed.

Also,
(
m(µ) + 1

)
pre-images have the same number of overlined parts as µ and the other

m(µ) pre-images have one more overlined part than µ does.

Theorem 5.3.6 yields

∑
π∈Gt

zo(π)q|π| =
∑
µ∈Pt

((
1− δ](µ),m(µ)

)
+ (1 + z)m(µ)

)
zo(µ)q|µ|. (5.3.13)

In the following example, we present how to find all the pre-images π of µ.

Example 5.3.2. Let t = 3.
(i) Let µ = (3, 3, 3). Since ](µ) = m(µ) = 3, by Lemma 5.3.4

1 ≤ ](π) ≤ 3.

By solving (5.3.12), we have
(
](π), k(π), s(π)

)
= (1, 0, 3), (2, 1, 1), (3, 0, 1), which yield

(9), (9),
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(6, 3), (6, 3),

(3, 3, 3), (3, 3, 3),

respectively. There are 2m(µ) pre-images.
(ii) Let µ = (3, 3, 3, 1, 1). Since ](µ) = 5 and m(µ) = 3, by Lemma 5.3.4

2 ≤ ](π) ≤ 5.

By solving (5.3.12), we have
(
](π), k(π), s(π)

)
= (2, 1, 1), (3, 0, 1), (4, 3, 0), (5, 3, 0), which

yield

(7, 4),

(4, 4, 3), (4, 4, 3),

(4, 3, 3, 1), (4, 3, 3, 1),

(3, 3, 3, 1, 1), (3, 3, 3, 1, 1),

respectively. Thus, there are 2m(µ) + 1 pre-images.

5.3.2.2 Partition Sets Pt and Bt

We next construct a weight preserving map ψ from P t to Bt.
Let us recall the definition of Bt, from which it is clear that

∑
β∈Bt

zo(β)q|β| = (1 + qt + q2t + · · · )
(

(−zq; q)t
(q; q)t

− 1
)

= 1
1− qt

(
(−zq; q)t

(q; q)t
− 1

)
, (5.3.14)

where o(β) denotes the number of overlined parts in β, which is indeed the number of
overlined parts in the second subpartition of β.

We now construct a map ψ : Bt → P t as follows:

(1) First collect all parts equal to t in both subpartitions and replace an overlined t by
a non-overlined t;

(2) and then append the remaining parts in the second subpartition to the parts
collected in (1).
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For example, [(3), (3, 3, 1, 1)] and [(3), (3, 3, 1, 1)] are both mapped to (3, 3, 3, 1, 1) under
ψ.

Let µ ∈ P t. Suppose that ](µ) = m(µ), i.e., µ has parts equal to t only. Then, its
pre-image β must be a bipartition of this form

[(t, . . . , t︸ ︷︷ ︸
m(µ)−x

), (t, . . . , t︸ ︷︷ ︸
x

)]

for some x > 0 with either the first occurrence or none of t’s in the second subpartition
overlined. Thus there are 2m(µ) pre-images of µ in Bt under ψ. Of those pre-images,
m(µ) pre-images have the same number of overlined parts as µ, and the other m(µ)
pre-images have one more overlined part than µ.

Suppose that ](µ) > m(µ), i.e., µ has a part not equal to t. Then, its pre-image π
must be a bipartition of this form

[(t, . . . , t︸ ︷︷ ︸
m(µ)−x

), (t, . . . , t︸ ︷︷ ︸
x

, µm(µ)+1, . . .)]

for some x ≥ 0 with either the first occurrence or none of t’s in the second subpartition
overlined. Thus there are 2m(µ) + 1 pre-images of µ in Bt under ψ. Of those pre-images,
(m(µ) + 1) pre-images have the same number of overlined parts as µ, and the other m(µ)
pre-images have one more overlined part than µ.

Therefore, it follows from the map ψ that

∑
µ∈Pt

((
1− δ](µ),m(µ)

)
+ (1 + z)m(µ)

)
zo(µ)q|µ| =

∑
β∈Bt

zo(β)q|β|. (5.3.15)

By (5.3.13), (5.3.14), and (5.3.15),

∑
n≥1

∑
m≥0

gt(m,n)zmqn =
∑
π∈Gt

zo(π)q|π| =
∑
β∈Bt

zo(β)q|β| = 1
1− qt

(
(−zq; q)t

(q; q)t
− 1

)
,

which completes the proof of (5.3.1).

5.4 George Beck’s Conjecture

Let us turn our attention to a conjecture due to George Beck (cf. A034296 in the
OEIS [163]).
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Conjecture 5.4.1. The number of gap-free partitions (i.e. partitions with the difference
between each pair of consecutive parts being at most 1) of n is also the sum of the
smallest parts in the distinct partitions (i.e. partitions with distinct parts) of n with an
odd number of parts.

Let gf(n) denote the number of gap-free partitions of n. This sequence is listed as
A034296 in the OEIS [163]. To determine the generating function of gf(n), we only need
the following trivial observation (cf. [17]):

The conjugates of gap-free partitions are partitions where only the largest
part may repeat.

Hence we have ∑
n≥1

gf(n)qn =
∑
t≥1

qt

1− qt (−q; q)t−1. (5.4.1)

Now let us show that, if ssptDO(n) denotes the sum of the smallest parts in the distinct
partitions of n with an odd number of parts, then

∑
n≥1

ssptDO(n)qn =
∑
t≥1

qt

1− qt (−q; q)t−1. (5.4.2)

The following result is a consequence of (5.4.1) and (5.4.2).

Theorem 5.4.1. Conjecture 5.4.1 is true.

To confirm (5.4.2), we require a bivariate generating function identity.

Theorem 5.4.2. Let D be the set of distinct partitions. Let σ(π) denote the smallest
part of a partition π, and ](π) the number of parts of π.

Then ∑
π∈D

σ(π)z](π)q|π| =
∑
t≥1

qt

1− qt
(
(−z; q)t − 1

)
. (5.4.3)

Hence,

∑
n≥1

ssptDO(n)qn = 1
2
∑
π∈D

σ(π)
(
1− (−1)](π)

)
q|π|

= 1
2

∑
t≥1

qt

1− qt
(
(−1; q)t − 1

)
−
∑
t≥1

qt

1− qt
(
(1; q)t − 1

)
=
∑
t≥1

qt

1− qt (−q; q)t−1,

which is as desired.
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5.4.1 An Analytic Proof of (5.4.3)

We have

∑
π∈D

xσ(π)z](π)q|π| =
∑
r≥1

zxrqr(1 + zqr+1)(1 + zqr+2) · · ·

= z
∑
r≥1

xrqr(−zqr+1; q)∞

= z(−zq; q)∞
∑
r≥1

xrqr

(−zq; q)r

= z(−zq; q)∞

2φ1

 0, q
−zq

; q, xq
− 1

.
Recall Heine’s first transformation [16, Eq. (17.6.6)]:

2φ1

a, b
c

; q, z
 = (b; q)∞(az; q)∞

(c; q)∞(z; q)∞ 2φ1

c/b, z
az

; q, b
 . (5.4.4)

Then

∑
π∈D

xσ(π)z](π)q|π| = z(q; q)∞
(xq; q)∞ 2φ1

−z, xq
0

; q, q
− z(−zq; q)∞

= z(q; q)∞
(xq; q)∞

∑
n≥0

(−z; q)n(xq; q)nqn
(q; q)n

− z(−zq; q)∞

= z(q; q)∞
∑
n≥0

(−z; q)nqn
(q; q)n(xqn+1; q)∞

− z(−zq; q)∞.

Applying the operator [∂/∂x]x=1 yields

∑
π∈D

σ(π)z](π)q|π| =
 ∂
∂x
z(q; q)∞

∑
n≥0

(−z; q)nqn
(q; q)n(xqn+1; q)∞


x=1

= z(q; q)∞
∑
n≥0

(−z; q)nqn
(q; q)n

[
∂

∂x

1
(xqn+1; q)∞

]
x=1

= z(q; q)∞
∑
n≥0

(−z; q)nqn
(q; q)n

 1
(xqn+1; q)∞

∑
t≥n+1

qt

1− xqt


x=1

= z(q; q)∞
∑
n≥0

(−z; q)nqn
(q; q)∞

∑
t≥n+1

qt

1− qt
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= z
∑
t≥1

qt

1− qt
t−1∑
n=0

(−z; q)nqn

= z
∑
t≥1

qt

1− qt
(−z; q)t − 1

z

=
∑
t≥1

qt

1− qt
(
(−z; q)t − 1

)
.

This is (5.4.3).

5.4.2 A Combinatorial Proof of (5.4.3)

It is notable that (5.4.3) looks quite similar to (5.2.6). Hence, it is natural to expect
a combinatorial proof analogous to that in §5.3.2.

Our starting point is the following double counting argument.
Let Λ(π) denote the largest part of a partition π. For a nonnegative integer t, we

define
Dt :=

{
π ∈ D : Λ(π) ≥ t+ 1 and Λ(π)− σ(π) ≤ t

}
.

Now given any π ∈ D , if π ∈ Dt, then Λ(π)− σ(π) ≤ t ≤ Λ(π)− 1 by the definition.
Hence, π is exactly contained in the following σ(π) partition sets: DΛ(π)−1, DΛ(π)−2, . . .,
DΛ(π)−σ(π). The following statement holds immediately.

Theorem 5.4.3. We have

∑
π∈D

σ(π)z](π)q|π| =
∑
t≥0

∑
π∈Dt

z](π)q|π|. (5.4.5)

One then sees that the remaining task is to study the generating function for Dt with
t ≥ 0. For convenience, we now consider the generating function for Dt−1 with t ≥ 1.

Let Bt be the set of partition pairs (µ, ν) where µ is nonempty and its parts all have
size t, and ν is a nonempty distinct partition with 0 being allowed as a part and the
largest part being at most t− 1. For example,

(
(5, 5, 5, 5, 5), (4, 2, 1, 0)

)
∈ B5.

For π = (π1, π2, . . . , π`) in Dt−1, we put s = bπ`/tc. We also let k be the positive
integer such that πk ≥ (s + 1)t and πk+1 < (s + 1)t. If there is no such k, then we let
k = 0.
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Now we construct a map φt : Dt−1 → Bt defined by

φt : (π1, π2, . . . , π`)

7→
(
(t, t, t, . . . , t︸ ︷︷ ︸

s(`−k)+(s+1)k

times

), (πk+1 − st, . . . , π` − st, π1 − (s+ 1)t, . . . , πk − (s+ 1)t)
)
.

Note that the second subpartition can be treated as (π1, π2, . . . , π`) reduced modulo t,
cyclically permuted such that they are weakly decreasing.

Similar to Theorem 5.3.3, we have

Lemma 5.4.4. φt is a weight preserving map from Dt−1 to Bt. Furthermore, the number
of parts is preserved by the second subpartition of the image.

Proof. Let (µ, ν) = φt(π). We first show that µ is nonempty. Since π ∈ Dt−1, we have
π1 ≥ (t− 1) + 1 = t. Hence we take out at least one t from π1 to form µ, which implies
that µ is not empty.

On the other hand, we know that π is a distinct partition. Since π1 − π` ≤ t− 1 < t,
s = bπ`/tc, and πk ≥ (s+ 1)t > πk+1, we have

t > πk+1 − st > · · · > π` − st > π1 − (s+ 1)t > · · · > πk − (s+ 1)t.

Note that πk − (s + 1)t could be 0 since πk could be (s + 1)t. Hence ν satisfies the
conditions. It follows that (µ, ν) ∈ Bt.

At last, it is obvious from the definition of φt that |φt(π)| = |π| and ](ν) = ](π).

The rest is different to the argument in §5.3.2. We shall show

Lemma 5.4.5. φt is invertible.

Proof. Let (µ, ν) ∈ Bt. Let the number of t in µ be r ≥ 1 and let ν = (ν1, ν2, . . . , ν`).
Now we write r = m`+ r∗ with m ≥ 0 and 0 ≤ r∗ ≤ `− 1 being integers. We construct
the inverse φ−1

t : Bt → Dt−1 as follows.

φ−1
t : (µ, ν) 7→ (ν`−r∗+1 + (m+ 1)t, . . . , ν` + (m+ 1)t, ν1 +mt, . . . , ν`−r∗ +mt).

We now show that the image is in Dt−1. Recall that 0 ≤ ν` < · · · < ν1 ≤ t − 1. If
r∗ 6= 0, since ν` + t > ν1, we have

ν`−r∗+1 + (m+ 1)t > · · · > ν` + (m+ 1)t > ν1 +mt > · · · > ν`−r∗ +mt.
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Notice that ν`−r∗+1 + (m + 1)t ≥ t. We further notice that ν`−r∗ is not the smallest
part of ν, and hence ν`−r∗ > 0. At last, we have (ν`−r∗+1 + (m+ 1)t)− (ν`−r∗ +mt) =
t− (ν`−r∗ − ν`−r∗+1) ≤ t− 1. Hence in this case the image is in Dt−1.

If r∗ = 0, then m ≥ 1 since r ≥ 1. We have ν1 + mt > · · · > ν` + mt > 0 and
ν1 +mt ≥ t. We also have (ν1 +mt)− (ν` +mt) = ν1 − ν` ≤ t− 1. Hence the image is
also in Dt−1.

From the definition of φt and φ−1
t , it is apparent that φ−1

t (φt(π)) = π. Hence φt is
invertible.

Example 5.4.1. For the partition sets D4 and B5, we have

(9, 7, 6, 5) φ5−−⇀↽−−
φ−1

5

(
(5, 5, 5, 5), (4, 2, 1, 0)

)

and
(10, 9, 7, 6) φ5−−⇀↽−−

φ−1
5

(
(5, 5, 5, 5, 5), (4, 2, 1, 0)

)
.

It follows from Lemmas 5.4.4 and 5.4.5 that φt is a bijection from Dt−1 to Bt. Hence,
for t ≥ 1, ∑

π∈Dt−1

z](π)q|π| =
∑

(µ,ν)∈Bt

z](ν)q|µ|+|ν|. (5.4.6)

The generating function for Bt is easy to get:

∑
(µ,ν)∈Bt

z](ν)q|µ|+|ν| = qt

1− qt
(
(−z; q)t − 1

)
, (5.4.7)

where qt/(1− qt) comes from the first subpartition whereas (−z; q)t − 1 comes from the
second subpartition. Consequently, we have

Theorem 5.4.6. For t ≥ 1,

∑
π∈Dt−1

z](π)q|π| = qt

1− qt
(
(−z; q)t − 1

)
. (5.4.8)

Together with (5.4.5), we have

∑
π∈D

σ(π)z](π)q|π| =
∑
t≥1

qt

1− qt
(
(−z)t − 1

)
,

which completes the proof of (5.4.3).
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5.5 Endnotes

Quite recently, Bernard Lin [125] refined (5.3.1) and therefore presented a new proof
of the general identity (5.2.2) in a combinatorial manner.
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Chapter 6 |

Span One Linked Partition Ideals:
Kanade–Russell Conjectures

This chapter comes from

• S. Chern, Linked partition ideals, directed graphs and q-multi-summations, Electron. J. Combin.
27 (2020), no. 3, Paper No. 3.33, 29 pp. (Ref. [54])

• S. Chern and Z. Li, Linked partition ideals and Kanade–Russell conjectures, Discrete Math. 343
(2020), no. 7, 111876, 24 pp. (Ref. [65])

In this series of three chapters, we will develop a theory on the Andrews–Gordon type
generating function of span one linked partition ideals and related Rogers–Ramanujan
type identities.

6.1 Introduction

6.1.1 Rogers–Ramanujan Type Identities and Kanade–Russell Conjectures

Let us warm up with the two Rogers–Ramanujan identities [145,156], which state as
follows.

Theorem 6.1.1 (Rogers–Ramanujan identities). (i). The number of partitions of a
non-negative integer n into parts congruent to ±1 modulo 5 is the same as the number of
partitions of n such that each two consecutive parts have difference at least 2.

(ii). The number of partitions of a non-negative integer n into parts congruent to ±2
modulo 5 is the same as the number of partitions of n such that each two consecutive
parts have difference at least 2 and such that the smallest part is at least 2.

There are a number of identities of the same flavor discovered by Schur [160], Gleißberg
[84], Gordon [86], Göllnitz [85] and so forth. Among these Rogers–Ramanujan type iden-
tities, two types of partition sets are considered. One partition set is consist of partitions
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under certain congruence condition. For example, in the first Rogers–Ramanujan identity,
we enumerate partitions into parts congruent to ±1 modulo 5. The other partition set
contains partitions under certain difference-at-a-distance theme. Let us first adopt a
definition in [108].

Definition 6.1.1. We say that a partition λ = λ1 + λ2 + · · ·+ λ` satisfies the difference
at least d at distance k condition if, for all j, λj − λj+k ≥ d.

In this setting, we may paraphrase the corresponding partition set in the first Rogers–
Ramanujan identity as the set of partitions with difference at least 2 at distance 1.

In 2014, Kanade and Russell [108] proposed six challenging conjectures on partition
identities of Rogers–Ramanujan type. For example, the first of their conjectures reads as
follows.

Conjecture 6.1.1 (Kanade–Russell conjecture I1). The number of partitions of a
nonnegative integer n into parts congruent to 1, 3, 6 or 8 modulo 9 is the same as
the number of partitions of n with difference at least 3 at distance 2 such that if two
consecutive parts differ by at most 1, then their sum is divisible by 3.

It should be remarked that these conjectures are intriguingly related to the represen-
tation theory of affine Lie algebra. For a detailed description of the idea behind them,
one may refer to Kanade’s Ph.D. Thesis [106].

On the other hand, in Russell’s Ph.D. Thesis [158], companions to the Kanade–
Russell conjectures I4–I6 were considered. Further, several more conjectures of the same
flavor were proposed in [109]. In particular, among these conjectures (including the six
conjectures in [108]), there are eleven of them involving the modulus 12. It is notable
that in a very recent paper of Bringmann, Jennings-Shaffer and Mahlburg [43], seven of
the modulo 12 conjectures were proved, while the rest were, although not completely
proved, simplified to a great extent.

One major difficulty of proving the Kanade–Russell conjectures is that it is not always
easy to find generating functions for partitions under certain difference-at-a-distance
themes. Fortunately, this problem was settled in two recent papers of Kanade and Russell
[109], and Kurşungöz [116], in which different sets of identities (but with some overlap)
were demonstrated, respectively. However, their proofs, although different, are both
purely combinatorial.

Hence, a natural question arises: Is it possible to obtain the Andrews–Gordon type
generating function for the partitions under certain difference-at-a-distance themes in a
more algebraic mannar?
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6.1.2 Span One Linked Partition Ideals

In the 1970s, George Andrews [8,10,11] have already started a systematic study of
Rogers–Ramanujan type identities and developed a general theory in which the concept
of linked partition ideals was introduced. However, in this series, we will not go into
details of this concept due to its lengthy definition. The interested readers may refer to
Chapter 8 of Andrews’ monograph: The theory of partitions [12].

What we are interested in this paper is a special case of linked partition ideals —
the span one linked partition ideals. In fact, this special case is enough to cover most
partition sets under difference-at-a-distance themes.

Let us first fix some notations.
Let P be the set of all partitions. We define a map φ : P → P by sending a

partition λ to another partition which is obtained by adding 1 to each part of λ. For
example, φ(5+3+3+2+1) = 6+4+4+3+2. Let φ0(λ) = λ and for n ≥ 1 we recursively
define φn(λ) = φ(φn−1(λ)). Hence, φn(λ) could be obtained by adding n to each part
of λ. Also, for two partitions λ and π, their sum λ⊕ π is constructed by collecting the
parts of λ and π in weakly decreasing order. For example, if λ = 3 + 2 + 1 + 1 and
π = 4 + 2 + 2 + 1 + 1, then λ⊕ π = 4 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1.

Let Π be a finite set of partitions containing the empty partition ∅. For each partition
π ∈ Π, we define its linking set L(π) by a subset of Π containing the empty partition.
Also, we require that the linking set of the empty partition, L(∅), equals Π. It is possible
to construct finite chains

λ0 → λ1 → λ2 → · · · → λK (6.1.1)

such that λ0 ∈ Π, λK 6= ∅ and for all 1 ≤ k ≤ K, λk ∈ L(λk−1). We may further extend
such a finite chain to an infinite chain ending with a series of empty partitions

C : λ0 → λ1 → λ2 → · · · → λK → ∅ → ∅ → · · · . (6.1.2)

Let S be a positive integer no smaller than the largest part among all partitions in Π.
The above infinite chain C uniquely determines a partition by

λ0 ⊕ φS(λ1)⊕ φ2S(λ2)⊕ · · · ⊕ φKS(λK)⊕ φ(K+1)S(∅)⊕ φ(K+2)S(∅)⊕ · · · , (6.1.3)
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which is equivalent to

λ0 ⊕ φS(λ1)⊕ φ2S(λ2)⊕ · · · ⊕ φKS(λK). (6.1.4)

Let us collect such partitions along with the empty partition λ = ∅ (which corresponds
to the infinite chain ∅ → ∅ → · · · ) and obtain a partition set I := I (〈Π,L〉, S). Then
I is called a span one linked partition ideal.

Example 6.1.1. In the first Rogers–Ramanujan identity, we consider partitions with
difference at least 2 at distance 1. It is not hard to verify that this partition set is a span
one linked partition ideal I (〈Π,L〉, S) where Π = {∅, 1, 2},1 the linking sets are

L(∅) = {∅, 1, 2}, L(1) = {∅, 1, 2}, L(2) = {∅, 2},

and S = 2.

Finally, we consider a bivariate generating function for any subset S of P:

GS (x) = GS (x, q) :=
∑
λ∈S

x](λ)q|λ|. (6.1.5)

Let I = I (〈Π,L〉, S) be a span one linked partition ideal. Let the S-tail of a
partition λ be the collection of parts ≤ S in λ. If we further define Iπ to be the set of
partitions in I whose S-tail is π ∈ Π, then (8.4.13) in [12] tells us that

∑
µ∈Iπ

x](µ)q|µ| = x](π)q|π|
∑

$∈L(π)

∑
ν∈I$

(xqS)](ν)q|ν|. (6.1.6)

In other words,
GIπ(x) = x](π)q|π|

∑
$∈L(π)

GI$(xqS). (6.1.7)

6.1.3 Andrews’ Guess

In a private communication between George Andrews, Zhitai Li and me, Andrews
provided a basis of “guessing” the generating function for a linked partition ideal:

1Here 1 denotes a partition containing one part of size 1 and likewise 2 denotes a partition containing
one part of size 2.
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Conjecture 6.1.2 (Andrews). Every linked partition ideal has a bivariate generating
function of the form

∑
n1,...,nr≥0

(−1)L1(n1,...,nr)qQ(n1,...,nr)+L2(n1,...,nr)xL3(n1,...,nr)

(qB1 ; qA1)n1 · · · (qBr ; qAr)nr
, (6.1.8)

in which L1, L2 and L3 are linear forms in n1, . . . , nr and Q is a quadratic form in
n1, . . . , nr. Here the coefficient of the xmqn term is the number of partitions of n in this
linked partition ideal with exactly m parts.

This conjecture has numerous pieces of empirical evidence:

1. Recall that in the first Rogers–Ramanujan identity, we consider partitions of n such
that each two consecutive parts have difference at least 2. We know that the generating
function for such partitions is ∑

n≥0

qn
2

(q; q)n
.

A generalization of the Rogers–Ramanujan identities is due to Gordon (cf. Theorem
7.5 in [12]). In a special case of Gordon’s generalization, we deal with partitions of
the form λ1 + λ2 + · · ·+ λ`, where for all j, λj − λj+k−1 ≥ 2 with k ≥ 2 fixed. It can
be shown that the generating function is

∑
n1,n2,...,nk−1≥0

qN
2
1 +N2

2 +···+N2
k−1

(q; q)n1(q; q)n2 · · · (q; q)nk−1

,

where Nj = nj + nj+1 + · · ·+ nk−1. Andrews showed that this partition set is a linked
partition ideal.

2. In the first Göllnitz–Gordon identity, one studies partitions of the form λ1+λ2+· · ·+λ`,
in which no odd part is repeated, λj − λj−1 ≥ 2 if λj odd and λj − λj−1 > 2 if λj even.
It can be shown that the generating function is

(−q; q2)∞
∑

n1,n2≥0

(−1)n2qn
2
1+2n1n2+n2

(q2; q2)n1(q2; q2)n2

.

This partition set is also a linked partition ideal as claimed by Andrews.

With the aid of the above conjecture and necessary computer algebra systems, if we
want to find a generating function identity for a linked partition ideal, we are able to
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single out the promising candidates by running through a number of functions in the
above fashion and comparing the series expansions.

6.2 Systems of q-Difference Equations

As we will see in the next section, a crucial point there can be summarized as the
following question: Suppose we have a system of q-difference equations, say,



F1(x) = p1,1(x)F1(xqS) + p1,2(x)F2(xqS) + · · ·+ p1,k(x)Fk(xqS)

F2(x) = p2,1(x)F1(xqS) + p2,2(x)F2(xqS) + · · ·+ p2,k(x)Fk(xqS)
...

Fk(x) = pk,1(x)F1(xqS) + pk,2(x)F2(xqS) + · · ·+ pk,k(x)Fk(xqS)

, (6.2.1)

where the F ’s and p’s are in x and q, is it possible to deduce a q-difference equation
merely involving F1? Fortunately, an affirmative algorithm is provided by Andrews in
the proof of [12, Lemma 8.10]. We would like to translate Andrews’ algorithm to the
matrix form to make it more transparent.

At first, the system (6.2.1) can be written in the matrix form

F1(x)
F2(x)

...
Fk(x)

 =


p1,1(x) p1,2(x) · · · p1,k(x)
p2,1(x) p2,2(x) · · · p2,k(x)

... ... . . . ...
pk,1(x) pk,2(x) · · · pk,k(x)




F1(xqm)
F2(xqm)

...
Fk(xqm)

 . (6.2.2)

Step (1). We put u1(x) = F1(x). Then (6.2.2) becomes

u1(x)
F2(x)

...
Fk(x)

 =


p1,1(x) p1,2(x) · · · p1,k(x)
p2,1(x) p2,2(x) · · · p2,k(x)

... ... . . . ...
pk,1(x) pk,2(x) · · · pk,k(x)




u1(xqm)
F2(xqm)

...
Fk(xqm)

 . (6.2.3)

If p1,2(x) = p1,3(x) = · · · = p1,k(x) = 0, then we shall terminate at this place by
noticing that

u1(x) = p1,1(x)u1(xqm).

For Steps (s) with 2 ≤ s ≤ k, we proceed iteratively as follows.
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Step (s). Supposing that in the (s− 1)-th Step, we obtain


u1(x)
...

us−1(x)
Fs(x)

...
Fk(x)


= P̃s−1



u1(xqm)
...

us−1(xqm)
Fs(xqm)

...
Fk(xqm)


, (6.2.4)

where P̃s−1 is a k × k matrix with the (i, j)-th entry being p̃i,j(x).
Since we have arrived at the sth Step, we know that at least one of the p̃s−1,s(x),

p̃s−1,s+1(x), . . . , p̃s−1,k(x) is not identically zero. Otherwise, the program should be
terminated at the (s−1)-th Step. Further, if p̃s−1,s(x) is identically zero and p̃s−1,t(x) (for
some t with s+ 1 ≤ t ≤ k) is not identically zero, (6.2.4) can be rewritten by swapping
Fs and Ft. In such a case, P̃s−1 should be rewritten by swapping p̃s,s(x) and p̃t,t(x),
swapping p̃s,t(x) and p̃t,s(x), swapping p̃i,s(x) and p̃i,t(x) for i 6= s, t, and swapping p̃s,j(x)
and p̃t,j(x) for j 6= s, t. For notational convenience, we simply rename Fs by Ft and Ft
by Fs so that the new relation is still of the form (6.2.4) while p̃s−1,s(x) is not identically
zero.

We then make the following substitution

us(xqm) = p̃s−1,s(x)Fs(xqm) + p̃s−1,s+1(x)Fs+1(xqm) + · · ·+ p̃s−1,k(x)Fk(xqm). (6.2.5)

Written in the matrix form, we have

u1(xqm)
u2(xqm)

...
us−1(xqm)
us(xqm)
Fs+1(xqm)

...
Fk(xqm)



= T (x)



u1(xqm)
u2(xqm)

...
us−1(xqm)
Fs(xqm)
Fs+1(xqm)

...
Fk(xqm)



, (6.2.6)
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where

T (x) =



1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
... ... . . . ... ... ... . . . ...
0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 p̃s−1,s(x) p̃s−1,s+1(x) · · · p̃s−1,k(x)
0 0 · · · 0 0 1 · · · 0
... ... . . . ... ... ... . . . ...
0 0 · · · 0 0 0 · · · 1



.

Here all diagonal entries in the k× k matrix T (x) are 1 except for the sth diagonal entry.
In the sth row of T (x), for s ≤ t ≤ k, the (s, t)-th entry is p̃s−1,t(x). All remaining entries
in T (x) are 0.

Since p̃s−1,s(x) is not identically zero, the matrix T (x) is invertible. In particular, we
have

T (x)−1 =



1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
... ... . . . ... ... ... . . . ...
0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 1

p̃s−1,s(x) −
p̃s−1,s+1(x)
p̃s−1,s(x) · · · − p̃s−1,k(x)

p̃s−1,s(x)

0 0 · · · 0 0 1 · · · 0
... ... . . . ... ... ... . . . ...
0 0 · · · 0 0 0 · · · 1



.

It follows from (6.2.4) and (6.2.6) that


u1(x)
...

us(x)
Fs+1(x)

...
Fk(x)


= P̃s



u1(xqm)
...

us(xqm)
Fs+1(xqm)

...
Fk(xqm)


, (6.2.7)

where
P̃s = T (xq−m)P̃s−1T (x)−1.
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Claim 6.2.1. The matrix P̃s obtained above is of the form

1 2 3 4 · · · s s+ 1 · · · k



1 ? 1 0 0 · · · 0 0 · · · 0
2 ? ? 1 0 · · · 0 0 · · · 0
... ... ... ... ... . . . ... ... . . . ...

s− 1 ? ? ? ? · · · 1 0 · · · 0
s ? ? ? ? · · · ? ? · · · ?
... ... ... ... ... . . . ... ... . . . ...
k ? ? ? ? · · · ? ? · · · ?

.

More precisely, in row r (1 ≤ r ≤ s− 1) of P̃s, the (r, r+ 1)-th entry is 1 and the (r, c)-th
entries are 0 for all c > r + 1.

Proof. We argue by induction on s. When s = 1, there is nothing to prove. Assuming
that the result is true for some s− 1 and noticing that P̃s−1 is such a matrix obtained in
the (s− 1)-th Step, we know that p̃r,r+1(x) = 1 for all r ≤ s− 2 and that p̃r,c(x) = 0 for
all r ≤ s− 2 and c > r + 1.

It is obvious that the first s− 1 rows of T (xq−m)P̃s−1 are identical to the first s− 1
rows of P̃s−1. Let the (j, c)-th entry of T (x)−1 be T (−1)

j,c (x).
For r ≤ s− 1, the (r, c)-th entry of P̃s = T (xq−m)P̃s−1T (x)−1 is given by

k∑
j=1

p̃r,j(x)T (−1)
j,c (x).

If c = r + 1, then the only non-zero contribution in the above summation is

p̃r,r+1(x)T (−1)
r+1,r+1(x) =

1 · 1 if r ≤ s− 2

p̃s−1,s(x) · 1
p̃s−1,s(x) if r = s− 1

= 1.

If c > r + 1, then we first treat the r = s− 1 case. One has

k∑
j=1

p̃s−1,j(x)T (−1)
j,c (x) = p̃s−1,s(x)T (−1)

s,c (x) + p̃s−1,c(x)T (−1)
c,c (x)
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= p̃s−1,s(x) ·
(
− p̃s−1,c(x)
p̃s−1,s(x)

)
+ p̃s−1,c(x) · 1

= 0.

For r ≤ s− 2, we simply notice that p̃r,j(x) = 0 for j > r + 1 from our assumption and
that T (−1)

j,c (x) = 0 for j ≤ r + 1 since j ≤ s− 1 and j 6= c.

Let p̃New
i,j (x) be the (i, j)-th entry of P̃s. If p̃New

s,t (x) = 0 for all t ≥ s+ 1, then we shall
stop at this place by noticing with the help of Claim 6.2.1 that

u1(x) = p̃New
1,1 (x)u1(xqm) + u2(xqm),

u2(x) = p̃New
2,1 (x)u1(xqm) + p̃New

2,2 (x)u2(xqm) + u3(xqm),

...

us−1(x) = p̃New
s−1,1(x)u1(xqm) + p̃New

s−1,2(x)u2(xqm) + · · ·+ us(xqm),

us(x) = p̃New
s,1 (x)u1(xqm) + p̃New

s,2 (x)u2(xqm) + · · ·+ p̃New
s,s (x)us(xqm).

Final setup. Assuming that the above program is terminated after ` (≤ k) steps,
we obtain a new system of q-difference equations

u1(x) = r1,1(x)u1(xqm) + u2(xqm),

u2(x) = r2,1(x)u1(xqm) + r2,2(x)u2(xqm) + u3(xqm),

...

u`−1(x) = r`−1,1(x)u1(xqm) + r`−1,2(x)u2(xqm) + · · ·+ r`−1,`−1(x)u`−1(x) + u`(xqm),

u`(x) = r`,1(x)u1(xqm) + r`,2(x)u2(xqm) + · · ·+ r`,`−1(x)u`−1(xqm) + r`,`(x)u`(xqm),

where the r’s are in x and q.
With this new system, a q-difference equation involving merely u1 can be obtained

by simple eliminations. Finally, we recall that F1(x) is set to be u1(x) in Step (1).

6.3 Kanade–Russell Conjectures

We may summarize the following four types of partition sets under difference-at-a-
distance themes from the Kanade–Russell conjectures.
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• Type I:
Partitions with difference at least 3 at distance 2 such that if two consecutive parts

differ by at most 1, then their sum is divisible by 3.

• Type II:
Partitions with difference at least 3 at distance 2 such that if two consecutive parts

differ by at most 1, then their sum is congruent to 2 modulo 3.

• Type III:
Partitions with difference at least 3 at distance 3 such that if parts at distance 2 differ

by at most 1, then the sum of the two parts and their intermediate part is congruent to
1 modulo 3.

• Type IV:
Partitions with difference at least 3 at distance 3 such that if parts at distance 2 differ

by at most 1, then the sum of the two parts and their intermediate part is congruent to
2 modulo 3.

In this section, we investigate partition sets of types I, II, III and IV under the setting
of linked partition ideals.

6.3.1 Partition Set of Type I

Recall that the partition set of type I is the set of partitions with difference at least 3
at distance 2 such that if two consecutive parts differ by at most 1, then their sum is
divisible by 3. In other words, if λ = λ1 + λ2 + · · ·+ λ` is in this partition set, then

(i) λi − λi+2 ≥ 3;

(ii) λi − λi+1 ≤ 1 implies λi + λi+1 ≡ 0 (mod 3).

Let ITI denote the partition set of type I.

Claim 6.3.1. ITI is a span one linked partition ideal I (〈Π,L〉, S) where S = 3, and
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Π = {π1, π2, . . . , π7} along with the linking sets given as follows.

Π linking set
π1 = ∅ {π1, π2, π3, π4, π5, π6, π7}
π2 = 1 {π1, π2, π3, π4, π5, π6, π7}

π3 = 2 + 1 {π1, π2, π3, π4, π5, π6, π7}
π4 = 3 + 1 {π1, π5, π6, π7}
π5 = 2 {π1, π2, π3, π4, π5, π6, π7}
π6 = 3 {π1, π5, π6, π7}

π7 = 3 + 3 {π1, π6, π7}

Proof. A straightforward verification tells us that any partition in I (〈Π,L〉, S) satisfies
distance conditions (i) and (ii) above and hence is in ITI .

On the other hand, given a partition λ ∈ ITI , we decompose it as

λ0 ⊕ φ3(λ1)⊕ φ3·2(λ2)⊕ · · · ⊕ φ3K(λK).

Note that for 0 ≤ k ≤ K, φ3k(λk) is simply the collection of parts in λ of size between
3k + 1 and 3k + 3. First, to ensure the distance conditions (i) and (ii), we must have
λk ∈ Π for all k. Now we only need to check case by case. For example, if λk = π6 = 3
for some k, then there is only one part of size 3k + 3 between 3k + 1 and 3k + 4. We
consider parts of size between 3k + 4 and 3k + 6. The distance conditions (i) and (ii)
sieve the following four choices: ∅, (3k + 5), (3k + 6) and (3k + 6) + (3k + 6). Hence, we
have four choices for λk+1: π1, π5, π6 and π7. For the remaining cases, we may carry out
the same argument. Hence, λ is in I (〈Π,L〉, S).

Consequently, ITI = I (〈Π,L〉, S).

Let us denote by Hi(x) = Hi(x, q) the generating function of partitions λ in ITI with
3-tail equal to πi for i = 1, 2, . . . , 7 where the πi’s are as defined in Lemma 6.3.1.

Following (6.1.7), we have

H1(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3) +H7(xq3),

(6.3.1)
x−1q−1H2(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3) +H7(xq3),

(6.3.2)
x−2q−3H3(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3) +H7(xq3),

(6.3.3)
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x−2q−4H4(x) = H1(xq3) +H5(xq3) +H6(xq3) +H7(xq3),

(6.3.4)
x−1q−2H5(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3) +H7(xq3),

(6.3.5)
x−1q−3H6(x) = H1(xq3) +H5(xq3) +H6(xq3) +H7(xq3),

(6.3.6)
x−2q−6H7(x) = H1(xq3) +H6(xq3) +H7(xq3).

(6.3.7)

Let GITI,1
(x) = GITI,1

(x, q) (resp. GITI,2
(x), GITI,3

(x)) denote the generating function
of partitions in ITI whose smallest part is at least 1 (resp. 2, 3).

It follows that

GITI,1
(x) = H1(x) +H2(x) +H3(x) +H4(x) +H5(x) +H6(x) +H7(x)

= H1(xq−3), (6.3.8)

GITI,2
(x) = H1(x) +H5(x) +H6(x) +H7(x)

= x−1H6(xq−3), (6.3.9)

GITI,3
(x) = H1(x) +H6(x) +H7(x)

= x−2H7(xq−3). (6.3.10)

Hence, to determine q-difference equations satisfied by GITI,1
(x), GITI,2

(x) and GITI,3
(x),

it suffices to find q-difference equations for H1(x), H6(x) and H7(x), respectively.

We now deduce from (6.3.1), (6.3.2), (6.3.3) and (6.3.5) that

H2(x) = xqH1(x), (6.3.11)

H3(x) = x2q3H1(x), (6.3.12)

H5(x) = xq2H1(x), (6.3.13)

and likewise from (6.3.4) and (6.3.6) that

H4(x) = xqH6(x). (6.3.14)

As a result, the system (6.3.1)–(6.3.7) can be rewritten as
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H1(x) = (1 + xq4 + x2q9 + xq5)H1(xq3) + (1 + xq4)H6(xq3) +H7(xq3), (6.3.15)
H6(x) = (xq3 + x2q8)H1(xq3) + xq3H6(xq3) + xq3H7(xq3), (6.3.16)
H7(x) = x2q6H1(xq3) + x2q6H6(xq3) + x2q6H7(xq3). (6.3.17)

We first use the algorithm in §6.2 to deduce the q-difference equation satisfied by
H1(x) and accordingly GITI,1

(x).

Step (1). We put u1(x) = H1(x). Then

u1(x)
H6(x)
H7(x)

 = P̃1


u1(xq3)
H6(xq3)
H7(xq3)

 , (6.3.18)

where

P̃1 =


1 + xq4 + x2q9 + xq5 1 + xq4 1

xq3 + x2q8 xq3 xq3

x2q6 x2q6 x2q6

 .

Step (2). We put u6(x) = (1 + xq4)H6(xq3) +H7(xq3). Then

u1(x)
u6(x)
H7(x)

 = P̃2


u1(xq3)
u6(xq3)
H7(xq3)

 , (6.3.19)

where

P̃2 =


1 + xq4 + xq5 + x2q9 1 0

xq3(1 + xq + xq3 + xq5 + x2q6) xq3(1+xq+xq3)
1+xq4

x2q7(1+xq+xq3)
1+xq4

x2q6 x2q6

1+xq4
x3q10

1+xq4

 .

Step (3). We put u7(x) = x2q7(1+xq+xq3)
1+xq4 H7(xq3). Then


u1(x)
u6(x)
u7(x)

 = P̃3


u1(xq3)
u6(xq3)
u7(xq3)

 , (6.3.20)
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where

P̃3 =


1 + xq4 + xq5 + x2q9 1 0

xq3(1 + xq + xq3 + xq5 + x2q6) xq3(1+xq+xq3)
1+xq4 1

x4q7(1+x+xq−2)
1+xq

x4q7(1+x+xq−2)
(1+xq)(1+xq4)

x3q4(1+x+xq−2)
(1+xq)(1+xq+xq3)

 .

For convenience, we write

u1(x) = r1,1(x)u1(xq3) + u6(xq3), (6.3.21)

u6(x) = r6,1(x)u1(xq3) + r6,6(x)u6(xq3) + u7(xq3), (6.3.22)

u7(x) = r7,1(x)u1(xq3) + r7,6(x)u5(xq3) + r7,7u6(xq3), (6.3.23)

where the coefficients are rational functions in x and q given by P̃3.
Noting from (6.3.8) that

GITI,1
(x) = H1(xq−3) = u1(xq−3), (6.3.24)

we may eliminate u6(x) by (6.3.21)

u6(x) = GITI,1
(x)− r1,1(xq−3)GITI,1

(xq3). (6.3.25)

Substituting (6.3.25) into (6.3.22), we may eliminate u7(x)

u7(x) = GITI,1
(xq−3)−

(
r1,1(xq−6) + r6,6(xq−3)

)
GITI,1

(x)

+
(
r1,1(xq−3)r6,6(xq−3)− r6,1(xq−3)

)
GITI,1

(xq3). (6.3.26)

Substituting (6.3.24), (6.3.25) and (6.3.26) into (6.3.23), we arrive at, after simplifi-
cation, the following q-difference equation for GITI,1

(x).

Theorem 6.3.2. It holds that

p0(x, q)GITI,1
(x) + p3(x, q)GITI,1

(xq3) + p6(x, q)GITI,1
(xq6)

+ p9(x, q)GITI,1
(xq9) = 0, (6.3.27)

where

p0(x, q) = 1 + x(q4 + q6),
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p3(x, q) = −1− x(q + q2 + q3 + q4 + q6)− x2(q3 + q4 + q5 + 2q6 + q7 + q8 + q9)

− x3(q7 + q9 + q10 + q12),

p6(x, q) = x3(q11 + q13) + x4(q14 + q15 + q16 + q17 + q18) + x5(q19 + q21),

and

p9(x, q) = x5q27 + x6(q28 + q30).

In the same manner, we may find the q-difference equations for H6(x) and H7(x),
and accordingly GITI,2

(x) and GITI,3
(x).

Theorem 6.3.3. It holds that

p0(x, q)GITI,2
(x) + p3(x, q)GITI,2

(xq3) + p6(x, q)GITI,2
(xq6)

+ p9(x, q)GITI,2
(xq9) = 0, (6.3.28)

where

p0(x, q) = 1 + x(q5 + q8),

p3(x, q) = −1− x(q2 + q3 + q4 + q5 + q8)

− x2(2q6 + q7 + q8 + q9 + q10 + q11 + q12)− x3(q11 + 2q14 + q17),

p6(x, q) = x3(q16 + q17) + x4(−q17 + q18 + q19 + q21 + q22 + q23 + q24)

+ x5(q26 + q29),

and

p9(x, q) = x5q33 + x6(q35 + q38).

Theorem 6.3.4. It holds that

p0(x, q)GITI,3
(x) + p3(x, q)GITI,3

(xq3) + p6(x, q)GITI,3
(xq6)

+ p9(x, q)GITI,3
(xq9) = 0, (6.3.29)

where

p0(x, q) = 1 + x(q6 + q7),
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p3(x, q) = −1− x(q3 + q4 + q5 + q6 + q7)

− x2(q6 + q8 + 2q9 + 2q10 + q11 + q12)− x3(q12 + q13 + q15 + q16),

p6(x, q) = x3(q16 + q17) + x4(q20 + q21 + q22 + q23 + q24) + x5(q27 + q28),

and

p9(x, q) = x5q36 + x6(q39 + q40).

6.3.2 Partition Set of Type II

Recall that the partition set of type II is the set of partitions with difference at least
3 at distance 2 such that if two consecutive parts differ by at most 1, then their sum is
congruent to 2 modulo 3. In other words, if λ = λ1 + λ2 + · · ·+ λ` is in this partition set,
then

(i) λi − λi+2 ≥ 3;

(ii) λi − λi+1 ≤ 1 implies λi + λi+1 ≡ 2 (mod 3).

Let ITII denote the partition set of type II.

Claim 6.3.5. ITII is a span one linked partition ideal I (〈Π,L〉, S) where S = 3, and
Π = {π1, π2, . . . , π7} along with the linking sets given as follows.

Π linking set
π1 = ∅ {π1, π2, π3, π4, π5, π6, π7}
π2 = 1 {π1, π2, π3, π4, π5, π6, π7}

π3 = 1 + 1 {π1, π2, π3, π4, π5, π6, π7}
π4 = 3 + 1 {π1, π5, π6, π7}
π5 = 2 {π1, π2, π4, π5, π6, π7}

π6 = 3 + 2 {π1, π5, π6, π7}
π7 = 3 {π1, π5, π6, π7}

Similarly, let us denote by Hi(x) = Hi(x, q) the generating function of partitions λ in
ITII with 3-tail equal to πi for i = 1, 2, . . . , 7 where the πi’s are as defined in Claim 6.3.5.

Following (6.1.7), we have

H1(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3) +H7(xq3),
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(6.3.30)
x−1q−1H2(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3) +H7(xq3),

(6.3.31)
x−2q−2H3(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3) +H7(xq3),

(6.3.32)
x−2q−4H4(x) = H1(xq3) +H5(xq3) +H6(xq3) +H7(xq3),

(6.3.33)
x−1q−2H5(x) = H1(xq3) +H2(xq3) +H4(xq3) +H5(xq3) +H6(xq3) +H7(xq3),

(6.3.34)
x−2q−5H6(x) = H1(xq3) +H5(xq3) +H6(xq3) +H7(xq3),

(6.3.35)
x−1q−3H7(x) = H1(xq3) +H5(xq3) +H6(xq3) +H7(xq3).

(6.3.36)

Let GITII,1
(x) = GITII,1

(x, q) (resp. GITII,2
(x)) denote the generating function of

partitions in ITII whose smallest part is at least 1 (resp. 2).
Let GITII,a

(x) denote the generating function of partitions in ITII where 1 appears at
most once.

It follows that

GITII,1
(x) = H1(x) +H2(x) +H3(x) +H4(x) +H5(x) +H6(x) +H7(x)

= H1(xq−3), (6.3.37)

GITII,2
(x) = H1(x) +H5(x) +H6(x) +H7(x)

= x−1H7(xq−3), (6.3.38)

GITII,a
(x) = H1(x) +H2(x) +H4(x) +H5(x) +H6(x) +H7(x)

= x−1qH5(xq−3). (6.3.39)

We may deduce from (6.3.30), (6.3.31) and (6.3.32) that

H2(x) = xqH1(x), (6.3.40)

H3(x) = x2q2H1(x), (6.3.41)

135



and likewise from (6.3.33), (6.3.35) and (6.3.36) that

H4(x) = xqH7(x), (6.3.42)

H6(x) = xq2H7(x). (6.3.43)

Hence, the system (6.3.30)–(6.3.36) can be rewritten as

H1(x) = (1 + xq4 + x2q8)H1(xq3) +H5(xq3) + (1 + xq4 + xq5)H7(xq3), (6.3.44)
H5(x) = (xq2 + x2q6)H1(xq3) + xq2H5(xq3) + (xq2 + x2q6 + x2q7)H7(xq3), (6.3.45)
H7(x) = xq3H1(xq3) + xq3H5(xq3) + (xq3 + x2q8)H7(xq3). (6.3.46)

Using the algorithm in §6.2, we are able to prove the following q-difference equations
for GITII,1

(x), GITII,2
(x) and GITII,a

(x), respectively.

Theorem 6.3.6. It holds that

p0(x, q)GITII,1
(x) + p3(x, q)GITII,1

(xq3) + p6(x, q)GITII,1
(xq6)

+ p9(x, q)GITII,1
(xq9) = 0, (6.3.47)

where

p0(x, q) = 1 + x(q4 + q5),

p3(x, q) = −1− x(q + q2 + q3 + q4 + q5)− x2(q2 + q4 + 2q5 + 2q6 + q7 + q8)

− x3(q6 + q7 + q9 + q10),

p6(x, q) = x3(q10 + q11) + x4(q12 + q13 + q14 + q15 + q16) + x5(q17 + q18),

and

p9(x, q) = x5q26 + x6(q27 + q28).

Theorem 6.3.7. It holds that

p0(x, q)GITII,2
(x) + p3(x, q)GITII,2

(xq3) + p6(x, q)GITII,2
(xq6)
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+ p9(x, q)GITII,2
(xq9) = 0, (6.3.48)

where

p0(x, q) = 1 + x(q5 + q7),

p3(x, q) = −1− x(q2 + q3 + q4 + q5 + q7)

− x2(q5 + q6 + q7 + 2q8 + q9 + q10 + q11)− x3(q10 + q12 + q13 + q15),

p6(x, q) = x3(q14 + q16) + x4(q18 + q19 + q20 + q21 + q22) + x5(q24 + q26),

and

p9(x, q) = x5q32 + x6(q34 + q36).

Theorem 6.3.8. It holds that

p0(x, q)GITII,a
(x) + p3(x, q)GITII,a

(xq3) + p6(x, q)GITII,a
(xq6)

+ p9(x, q)GITII,a
(xq9) = 0, (6.3.49)

where

p0(x, q) = 1 + x(q4 + q8),

p3(x, q) = −1− x(q + q2 + q3 + q4 + q8)

− x2(q4 + 2q5 + q6 + q8 + q9 + q10 + q11)− x3(q9 + q12 + q13 + q16),

p6(x, q) = x3(−q12 + q13 + q14 + q15)

+ x4(−q13 + q15 + q16 + q19 + q20 + q21 + q22) + x5(q23 + q27),

and

p9(x, q) = x5q29 + x6(q30 + q34).

6.3.3 Partition Set of Type III

Recall that the partition set of type III is the set of partitions with difference at least
3 at distance 3 such that if parts at distance 2 differ by at most 1, then the sum of the
two parts and their intermediate part is congruent to 1 modulo 3. In other words, if
λ = λ1 + λ2 + · · ·+ λ` is in this partition set, then
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(i) λi − λi+3 ≥ 3;

(ii) λi − λi+2 ≤ 1 implies λi + λi+1 + λi+2 ≡ 1 (mod 3).

Let ITIII denote the partition set of type III.

Claim 6.3.9. ITIII is a span one linked partition ideal I (〈Π,L〉, S) where S = 3, and
Π = {π1, π2, . . . , π15} along with the linking sets are given as follows.

Π linking set
π1 = ∅ {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11, π12, π13, π14, π15}
π2 = 1 {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11, π12, π13, π14, π15}

π3 = 1 + 1 {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11, π12, π13, π14, π15}
π4 = 2 {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11, π12, π13, π14, π15}

π5 = 2 + 1 {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11, π12, π13, π14, π15}
π6 = 2 + 1 + 1 {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11, π12, π13, π14, π15}
π7 = 2 + 2 {π1, π2, π4, π5, π7, π8, π9, π11, π12, π13, π14, π15}
π8 = 3 {π1, π2, π4, π5, π7, π8, π9, π11, π12, π13, π14, π15}

π9 = 3 + 1 {π1, π2, π4, π5, π7, π8, π9, π11, π12, π13, π14, π15}
π10 = 3 + 1 + 1 {π1, π2, π4, π5, π7, π8, π9, π11, π12, π13, π14, π15}
π11 = 3 + 2 {π1, π2, π4, π5, π7, π8, π9, π11, π12, π13, π14, π15}

π12 = 3 + 2 + 1 {π1, π2, π4, π5, π7, π8, π9, π11, π12, π13, π14, π15}
π13 = 3 + 2 + 2 {π1, π4, π7, π8, π11, π13, π14}
π14 = 3 + 3 {π1, π2, π4, π8, π9, π11, π14, π15}

π15 = 3 + 3 + 1 {π1, π2, π4, π8, π9, π11, π14, π15}

Let us denote by Hi(x) = Hi(x, q) the generating function of partitions λ in ITIII

with 3-tail equal to πi for i = 1, 2, . . . , 15 where the πi’s are as defined in Claim 6.3.9.
Following (6.1.7), we have

H1(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H7(xq3) +H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3)

+H12(xq3) +H13(xq3) +H14(xq3) +H15(xq3), (6.3.50)
x−1q−1H2(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H7(xq3) +H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3)

+H12(xq3) +H13(xq3) +H14(xq3) +H15(xq3), (6.3.51)
x−2q−2H3(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H7(xq3) +H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3)

+H12(xq3) +H13(xq3) +H14(xq3) +H15(xq3), (6.3.52)
x−1q−2H4(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H7(xq3) +H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3)
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+H12(xq3) +H13(xq3) +H14(xq3) +H15(xq3), (6.3.53)
x−2q−3H5(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H7(xq3) +H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3)

+H12(xq3) +H13(xq3) +H14(xq3) +H15(xq3), (6.3.54)
x−3q−4H6(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H7(xq3) +H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3)

+H12(xq3) +H13(xq3) +H14(xq3) +H15(xq3), (6.3.55)
x−2q−4H7(x) = H1(xq3) +H2(xq3) +H4(xq3) +H5(xq3) +H7(xq3) +H8(xq3)

+H9(xq3) +H11(xq3) +H12(xq3) +H13(xq3) +H14(xq3)

+H15(xq3), (6.3.56)
x−1q−3H8(x) = H1(xq3) +H2(xq3) +H4(xq3) +H5(xq3) +H7(xq3) +H8(xq3)

+H9(xq3) +H11(xq3) +H12(xq3) +H13(xq3) +H14(xq3)

+H15(xq3), (6.3.57)
x−2q−4H9(x) = H1(xq3) +H2(xq3) +H4(xq3) +H5(xq3) +H7(xq3) +H8(xq3)

+H9(xq3) +H11(xq3) +H12(xq3) +H13(xq3) +H14(xq3)

+H15(xq3), (6.3.58)
x−3q−5H10(x) = H1(xq3) +H2(xq3) +H4(xq3) +H5(xq3) +H7(xq3) +H8(xq3)

+H9(xq3) +H11(xq3) +H12(xq3) +H13(xq3) +H14(xq3)

+H15(xq3), (6.3.59)
x−2q−5H11(x) = H1(xq3) +H2(xq3) +H4(xq3) +H5(xq3) +H7(xq3) +H8(xq3)

+H9(xq3) +H11(xq3) +H12(xq3) +H13(xq3) +H14(xq3)

+H15(xq3), (6.3.60)
x−3q−6H12(x) = H1(xq3) +H2(xq3) +H4(xq3) +H5(xq3) +H7(xq3) +H8(xq3)

+H9(xq3) +H11(xq3) +H12(xq3) +H13(xq3) +H14(xq3)

+H15(xq3), (6.3.61)
x−3q−7H13(x) = H1(xq3) +H4(xq3) +H7(xq3) +H8(xq3) +H11(xq3) +H13(xq3)

+H14(xq3), (6.3.62)
x−2q−6H14(x) = H1(xq3) +H2(xq3) +H4(xq3) +H8(xq3) +H9(xq3) +H11(xq3)

+H14(xq3) +H15(xq3), (6.3.63)
x−3q−7H15(x) = H1(xq3) +H2(xq3) +H4(xq3) +H8(xq3) +H9(xq3) +H11(xq3)

+H14(xq3) +H15(xq3). (6.3.64)

This system may be simplified as
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H1(x) = (1 + xq4 + x2q8 + xq5 + x2q9 + x3q13)H1(xq3)

+ (xq4 + 1 + xq4 + x2q8 + xq5 + x2q9)H8(xq3)

+H13(xq3) + (1 + xq4)H14(xq3), (6.3.65)

H8(x) = (xq3 + x2q7 + x2q8 + x3q12)H1(xq3)

+ (x2q7 + xq3 + x2q7 + x2q8 + x3q12)H8(xq3)

+ xq3H13(xq3) + (xq3 + x2q7)H14(xq3), (6.3.66)

H13(x) = (x3q7 + x4q12)H1(xq3) + (x4q11 + x3q7 + x4q12)H8(xq3)

+ x3q7H13(xq3) + x3q7H14(xq3), (6.3.67)

H14(x) = (x2q6 + x3q10 + x3q11)H1(xq3) + (x2q6 + x3q10 + x3q11)H8(xq3)

+ (x2q6 + x3q10)H14(xq3). (6.3.68)

Let GITIII,1
(x) = GITIII,1

(x, q) (resp. GITIII,2
(x)) denote the generating function of

partitions in ITIII whose smallest part is at least 1 (resp. 2).
Let GITIII,a

(x) denote the generating function of partitions in ITIII where 1 appears
at most once.

It follows that

GITIII,1
(x) = H1(x) +H2(x) +H3(x) +H4(x) +H5(x) +H6(x)

+H7(x) +H8(x) +H9(x) +H10(x) +H11(x)

+H12(x) +H13(x) +H14(x) +H15(x)

= H1(xq−3), (6.3.69)

GITIII,2
(x) = H1(x) +H4(x) +H7(x) +H8(x) +H11(x) +H13(x)

+H14(x)

= x−3q2H13(xq−3), (6.3.70)

GITIII,a
(x) = H1(x) +H2(x) +H4(x) +H5(x) +H7(x) +H8(x)

+H9(x) +H11(x) +H12(x) +H13(x) +H14(x)

+H15(x)

= x−1H8(xq−3). (6.3.71)
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Likewise, we can use the algorithm in §6.2 to deduce the following q-difference
equations for GITIII,1

(x), GITIII,2
(x) and GITIII,a

(x), respectively.

Theorem 6.3.10. It holds that

p0(x, q)GITIII,1
(x) + p3(x, q)GITIII,1

(xq3) + p6(x, q)GITIII,1
(xq6)

+ p9(x, q)GITIII,1
(xq9) + p12(x, q)GITIII,1

(xq12) = 0, (6.3.72)

where

p0(x, q) = 1 + x(q4 + q5 + 2q7 + q9 + q10)

+ x2(q9 + 2q11 + q12 + q13 + 2q14 + q15 + q16 + 2q17 + q19)

+ x3(q16 + q18 + q19 + 2q21 + q23 + q24 + q26),

p3(x, q) = −1− x(q + q2 + q3 + q4 + q5 + 2q7 + q9 + q10)

− x2(q2 + q3 + 2q4 + 2q5 + 3q6 + 2q7 + 3q8 + 3q9 + 3q10 + 4q11 + 3q12 + 2q13

+ 2q14 + q15 + q16 + 2q17 + q19)

− x3(q4 + q5 + 2q6 + 4q7 + 3q8 + 5q9 + 5q10 + 6q11 + 7q12 + 8q13 + 7q14 + 6q15

+ 6q16 + 4q17 + 5q18 + 4q19 + 3q20 + 3q21 + q22 + q23 + q24 + q26)

− x4(q8 + 2q9 + 2q10 + 5q11 + 4q12 + 6q13 + 10q14 + 8q15 + 10q16 + 11q17 + 8q18

+ 10q19 + 9q20 + 8q21 + 7q22 + 6q23 + 4q24 + 3q25 + 2q26 + 2q27 + q28

+ q29)

− x5(q13 + 3q15 + 3q16 + 4q17 + 7q18 + 6q19 + 7q20 + 10q21 + 7q22 + 9q23 + 9q24

+ 6q25 + 7q26 + 5q27 + 4q28 + 3q29 + 3q30 + q31 + q32)

− x6(q20 + 2q22 + 2q23 + q24 + 4q25 + 2q26 + 3q27 + 4q28 + 2q29 + 3q30 + 3q31

+ q32 + 2q33 + q34 + q36),

p6(x, q) = x4(q12 + q14 + 2q16 + q18 + q20)

+ x5(q13 + 2q15 + q16 + 4q17 + 3q18 + 4q19 + 4q20 + 5q21 + 5q22 + 4q23 + 4q24

+ 3q25 + 4q26 + q27 + 2q28 + q30)

+ x6(q17 + 2q18 + 3q19 + 5q20 + 5q21 + 9q22 + 9q23 + 10q24 + 12q25 + 12q26

+ 14q27 + 12q28 + 12q29 + 10q30 + 9q31 + 9q32 + 5q33 + 5q34 + 3q35

+ 2q36 + q37)

+ x7(q22 + 3q23 + 4q24 + 6q25 + 7q26 + 12q27 + 12q28 + 16q29 + 18q30 + 16q31

+ 19q32 + 19q33 + 16q34 + 18q35 + 16q36 + 12q37 + 12q38 + 7q39 + 6q40

+ 4q41 + 3q42 + q43)

+ x8(q28 + 2q29 + 3q30 + 6q31 + 6q32 + 9q33 + 11q34 + 11q35 + 13q36 + 16q37

+ 12q38 + 16q39 + 13q40 + 11q41 + 11q42 + 9q43 + 6q44 + 6q45 + 3q46

+ 2q47 + q48)
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+ x9(q35 + q36 + q37 + 3q38 + 2q39 + 3q40 + 5q41 + 3q42 + 5q43 + 5q44 + 3q45

+ 5q46 + 3q47 + 2q48 + 3q49 + q50 + q51 + q52),

p9(x, q) = −x6q30 − x7(q31 + q32 + 2q34 + q36 + q37 + q38 + q39 + q40)

− x8(q33 + 2q35 + q36 + q37 + 2q38 + 2q39 + 3q40 + 4q41 + 3q42 + 3q43 + 3q44

+ 2q45 + 3q46 + 2q47 + 2q48 + q49 + q50)

− x9(q37 + q39 + q40 + q41 + 3q42 + 3q43 + 4q44 + 5q45 + 4q46 + 6q47 + 6q48

+ 7q49 + 8q50 + 7q51 + 6q52 + 5q53 + 5q54 + 3q55 + 4q56 + 2q57 + q58

+ q59)

− x10(q45 + q46 + 2q47 + 2q48 + 3q49 + 4q50 + 6q51 + 7q52 + 8q53 + 9q54 + 10q55

+ 8q56 + 11q57 + 10q58 + 8q59 + 10q60 + 6q61 + 4q62 + 5q63 + 2q64 + 2q65

+ q66)

− x11(q53 + q54 + 3q55 + 3q56 + 4q57 + 5q58 + 7q59 + 6q60 + 9q61 + 9q62 + 7q63

+ 10q64 + 7q65 + 6q66 + 7q67 + 4q68 + 3q69 + 3q70 + q72)

− x12(q60 + q62 + 2q63 + q64 + 3q65 + 3q66 + 2q67 + 4q68 + 3q69 + 2q70 + 4q71

+ q72 + 2q73 + 2q74 + q76),

and

p12(x, q) = x12q90 + x13(q91 + q92 + 2q94 + q96 + q97)

+ x14(q93 + 2q95 + q96 + q97 + 2q98 + q99 + q100 + 2q101 + q103)

+ x15(q97 + q99 + q100 + 2q102 + q104 + q105 + q107).

Theorem 6.3.11. It holds that

p0(x, q)GITIII,2
(x) + p3(x, q)GITIII,2

(xq3) + p6(x, q)GITIII,2
(xq6)

+ p9(x, q)GITIII,2
(xq9) + p12(x, q)GITIII,2

(xq12) = 0, (6.3.73)

where

p0(x, q) = 1 + x(q5 + q6 + 2q8 + q10 + q11)

+ x2(q11 + 2q13 + q14 + q15 + 2q16 + q17 + q18 + 2q19 + q21)

+ x3(q19 + q21 + q22 + 2q24 + q26 + q27 + q29),

p3(x, q) = −1− x(q2 + q3 + q4 + q5 + q6 + 2q8 + q10 + q11)

− x2(q4 + q5 + 2q6 + 2q7 + 3q8 + 2q9 + 3q10 + 3q11 + 3q12 + 4q13 + 3q14 + 2q15

+ 2q16 + q17 + q18 + 2q19 + q21)

− x3(q7 + q8 + 2q9 + 4q10 + 3q11 + 5q12 + 5q13 + 6q14 + 7q15 + 8q16 + 7q17 + 6q18

+ 6q19 + 4q20 + 5q21 + 4q22 + 3q23 + 3q24 + q25 + q26 + q27 + q29)
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− x4(q12 + 2q13 + 2q14 + 5q15 + 4q16 + 6q17 + 10q18 + 8q19 + 10q20 + 11q21 + 8q22

+ 10q23 + 9q24 + 8q25 + 7q26 + 6q27 + 4q28 + 3q29 + 2q30 + 2q31 + q32 + q33)

− x5(q18 + 3q20 + 3q21 + 4q22 + 7q23 + 6q24 + 7q25 + 10q26 + 7q27 + 9q28 + 9q29

+ 6q30 + 7q31 + 5q32 + 4q33 + 3q34 + 3q35 + q36 + q37)

− x6(q26 + 2q28 + 2q29 + q30 + 4q31 + 2q32 + 3q33 + 4q34 + 2q35 + 3q36 + 3q37

+ q38 + 2q39 + q40 + q42),

p6(x, q) = x4(q16 + q18 + 2q20 + q22 + q24)

+ x5(q18 + 2q20 + q21 + 4q22 + 3q23 + 4q24 + 4q25 + 5q26 + 5q27 + 4q28 + 4q29

+ 3q30 + 4q31 + q32 + 2q33 + q35)

+ x6(q23 + 2q24 + 3q25 + 5q26 + 5q27 + 9q28 + 9q29 + 10q30 + 12q31 + 12q32

+ 14q33 + 12q34 + 12q35 + 10q36 + 9q37 + 9q38 + 5q39 + 5q40 + 3q41

+ 2q42 + q43)

+ x7(q29 + 3q30 + 4q31 + 6q32 + 7q33 + 12q34 + 12q35 + 16q36 + 18q37 + 16q38

+ 19q39 + 19q40 + 16q41 + 18q42 + 16q43 + 12q44 + 12q45 + 7q46 + 6q47

+ 4q48 + 3q49 + q50)

+ x8(q36 + 2q37 + 3q38 + 6q39 + 6q40 + 9q41 + 11q42 + 11q43 + 13q44 + 16q45

+ 12q46 + 16q47 + 13q48 + 11q49 + 11q50 + 9q51 + 6q52 + 6q53 + 3q54

+ 2q55 + q56)

+ x9(q44 + q45 + q46 + 3q47 + 2q48 + 3q49 + 5q50 + 3q51 + 5q52 + 5q53 + 3q54

+ 5q55 + 3q56 + 2q57 + 3q58 + q59 + q60 + q61),

p9(x, q) = −x6q36 − x7(q38 + q39 + 2q41 + q43 + q44 + q45 + q46 + q47)

− x8(q41 + 2q43 + q44 + q45 + 2q46 + 2q47 + 3q48 + 4q49 + 3q50 + 3q51 + 3q52

+ 2q53 + 3q54 + 2q55 + 2q56 + q57 + q58)

− x9(q46 + q48 + q49 + q50 + 3q51 + 3q52 + 4q53 + 5q54 + 4q55 + 6q56 + 6q57

+ 7q58 + 8q59 + 7q60 + 6q61 + 5q62 + 5q63 + 3q64 + 4q65 + 2q66 + q67

+ q68)

− x10(q55 + q56 + 2q57 + 2q58 + 3q59 + 4q60 + 6q61 + 7q62 + 8q63 + 9q64 + 10q65

+ 8q66 + 11q67 + 10q68 + 8q69 + 10q70 + 6q71 + 4q72 + 5q73 + 2q74 + 2q75

+ q76)

− x11(q64 + q65 + 3q66 + 3q67 + 4q68 + 5q69 + 7q70 + 6q71 + 9q72 + 9q73 + 7q74

+ 10q75 + 7q76 + 6q77 + 7q78 + 4q79 + 3q80 + 3q81 + q83)

− x12(q72 + q74 + 2q75 + q76 + 3q77 + 3q78 + 2q79 + 4q80 + 3q81 + 2q82 + 4q83

+ q84 + 2q85 + 2q86 + q88),
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and

p12(x, q) = x12q102 + x13(q104 + q105 + 2q107 + q109 + q110)

+ x14(q107 + 2q109 + q110 + q111 + 2q112 + q113 + q114 + 2q115 + q117)

+ x15(q112 + q114 + q115 + 2q117 + q119 + q120 + q122).

Theorem 6.3.12. It holds that

p0(x, q)GITIII,a
(x) + p3(x, q)GITIII,a

(xq3) + p6(x, q)GITIII,a
(xq6)

+ p9(x, q)GITIII,a
(xq9) + p12(x, q)GITIII,a

(xq12) = 0, (6.3.74)

where

p0(x, q) = 1 + x(q4 + q5 + q7 + q8 + q10 + q11)

+ x2(q9 + q11 + 2q12 + q14 + 2q15 + q16 + 2q18 + q19 + q21)

+ x3(q16 + q19 + q20 + q22 + q23 + q25 + q26 + q29),

p3(x, q) = −1− x(q + q2 + q3 + q4 + q5 + q7 + q8 + q10 + q11)

− x2(q3 + 2q4 + 2q5 + 3q6 + 2q7 + 3q8 + 3q9 + 2q10 + 3q11 + 4q12 + 2q13 + 2q14

+ 2q15 + q16 + 2q18 + q19 + q21)

− x3(q6 + 3q7 + 3q8 + 4q9 + 5q10 + 5q11 + 5q12 + 7q13 + 7q14 + 7q15 + 7q16 + 5q17

+ 4q18 + 5q19 + 4q20 + 3q21 + 3q22 + 2q23 + q24 + q25 + q26 + q29)

− x4(q10 + 3q11 + 3q12 + 3q13 + 6q14 + 7q15 + 7q16 + 10q17 + 10q18 + 8q19 + 9q20

+ 9q21 + 8q22 + 8q23 + 7q24 + 5q25 + 5q26 + 4q27 + 2q28 + 2q29 + q30

+ q31 + q32)

− x5(q15 + q16 + q17 + 4q18 + 5q19 + 3q20 + 6q21 + 8q22 + 5q23 + 7q24 + 10q25

+ 6q26 + 6q27 + 9q28 + 5q29 + 4q30 + 5q31 + 3q32 + 2q33 + 3q34 + q35

+ q37)

− x6(q22 + q23 + q25 + 3q26 + q27 + q28 + 4q29 + 2q30 + q31 + 4q32 + 3q33 + 3q35

+ 3q36 + q38 + 2q39 + q42),

p6(x, q) = x4(q16 + q18 + q19 + q20 + q21 + q23)

+ x5(q17 + q19 + 3q20 + 3q21 + 3q22 + 4q23 + 5q24 + 4q25 + 4q26 + 5q27 + 4q28

+ 3q29 + 3q30 + 3q31 + q32 + q34)

+ x6(q21 + 2q22 + 2q23 + 4q24 + 6q25 + 8q26 + 8q27 + 10q28 + 10q29 + 11q30

+ 13q31 + 13q32 + 11q33 + 10q34 + 10q35 + 8q36 + 8q37 + 6q38

+ 4q39 + 2q40 + 2q41 + q42)

+ x7(q26 + 3q27 + 3q28 + 4q29 + 7q30 + 8q31 + 11q32 + 14q33 + 14q34 + 15q35
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+ 17q36 + 17q37 + 17q38 + 17q39 + 15q40 + 14q41 + 14q42 + 11q43

+ 8q44 + 7q45 + 4q46 + 3q47 + 3q48 + q49)

+ x8(q31 + q33 + 4q34 + 3q35 + 4q36 + 8q37 + 8q38 + 7q39 + 12q40 + 12q41 + 10q42

+ 14q43 + 14q44 + 10q45 + 12q46 + 12q47 + 7q48 + 8q49 + 8q50 + 4q51

+ 3q52 + 4q53 + q54 + q56)

+ x9(q38 + 2q41 + 2q42 + 3q44 + 4q45 + q46 + 3q47 + 6q48 + 2q49 + 2q50 + 6q51

+ 3q52 + q53 + 4q54 + 3q55 + 2q57 + 2q58 + q61),

p9(x, q) = −x6q36 − x7(q37 + q38 + q40 + q41 + q43 + q44 + q45 + q46 + q47)

− x8(q39 + q41 + 2q42 + q44 + 2q45 + 2q46 + 2q47 + 4q48 + 3q49 + 2q50 + 3q51

+ 3q52 + 2q53 + 3q54 + 2q55 + 2q56 + q57)

− x9(q43 + q46 + q47 + q48 + 2q49 + 3q50 + 3q51 + 4q52 + 5q53 + 4q54 + 5q55

+ 7q56 + 7q57 + 7q58 + 7q59 + 5q60 + 5q61 + 5q62 + 4q63 + 3q64

+ 3q65 + q66)

− x10(q52 + q53 + q54 + 2q55 + 2q56 + 4q57 + 5q58 + 5q59 + 7q60 + 8q61 + 8q62

+ 9q63 + 9q64 + 8q65 + 10q66 + 10q67 + 7q68 + 7q69 + 6q70 + 3q71

+ 3q72 + 3q73 + q74)

− x11(q59 + q61 + 3q62 + 2q63 + 3q64 + 5q65 + 4q66 + 5q67 + 9q68 + 6q69 + 6q70

+ 10q71 + 7q72 + 5q73 + 8q74 + 6q75 + 3q76 + 5q77 + 4q78 + q79 + q80

+ q81)

− x12(q66 + 2q69 + q70 + 3q72 + 3q73 + 3q75 + 4q76 + q77 + 2q78 + 4q79 + q80

+ q81 + 3q82 + q83 + q85 + q86),

and

p12(x, q) = x12q99 + x13(q100 + q101 + q103 + q104 + q106 + q107)

+ x14(q102 + q104 + 2q105 + q107 + 2q108 + q109 + 2q111 + q112 + q114)

+ x15(q106 + q109 + q110 + q112 + q113 + q115 + q116 + q119).

6.3.4 Partition Set of Type IV

Recall that the partition set of type IV is the set of partitions with difference at least
3 at distance 3 such that if parts at distance 2 differ by at most 1, then the sum of the
two parts and their intermediate part is congruent to 2 modulo 3. In other words, if
λ = λ1 + λ2 + · · ·+ λ` is in this partition set, then

(i) λi − λi+3 ≥ 3;
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(ii) λi − λi+2 ≤ 1 implies λi + λi+1 + λi+2 ≡ 2 (mod 3).

Let ITIV denote the partition set of type IV.

Claim 6.3.13. ITIV is a span one linked partition ideal I (〈Π,L〉, S) where S = 3, and
Π = {π1, π2, . . . , π15} along with the linking sets are given as follows.

Π linking set
π1 = ∅ {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11, π12, π13, π14, π15}
π2 = 1 {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11, π12, π13, π14, π15}

π3 = 1 + 1 {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11, π12, π13, π14, π15}
π4 = 2 {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11, π12, π13, π14, π15}

π5 = 2 + 1 {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11, π12, π13, π14, π15}
π6 = 2 + 2 {π1, π2, π4, π5, π6, π7, π8, π9, π11, π12, π13, π14, π15}

π7 = 2 + 2 + 1 {π1, π2, π4, π5, π6, π7, π8, π9, π11, π12, π13, π14, π15}
π8 = 3 {π1, π2, π3, π4, π5, π6, π8, π9, π10, π11, π12, π13, π14, π15}

π9 = 3 + 1 {π1, π2, π3, π4, π5, π6, π8, π9, π10, π11, π12, π13, π14, π15}
π10 = 3 + 1 + 1 {π1, π2, π3, π4, π5, π6, π8, π9, π10, π11, π12, π13, π14, π15}
π11 = 3 + 2 {π1, π2, π4, π5, π6, π8, π9, π11, π12, π13, π14, π15}

π12 = 3 + 2 + 1 {π1, π2, π4, π5, π6, π8, π9, π11, π12, π13, π14, π15}
π13 = 3 + 3 {π1, π4, π8, π11, π13, π15}

π14 = 3 + 3 + 1 {π1, π4, π8, π11, π13, π15}
π15 = 3 + 3 + 2 {π1, π4, π8, π11, π13, π15}

Let us denote by Hi(x) = Hi(x, q) the generating function of partitions λ in ITIV

with 3-tail equal to πi for i = 1, 2, . . . , 15 where the πi’s are as defined in Claim 6.3.13.
Following (6.1.7), we have

H1(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H7(xq3) +H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3)

+H12(xq3) +H13(xq3) +H14(xq3) +H15(xq3), (6.3.75)
x−1q−1H2(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H7(xq3) +H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3)

+H12(xq3) +H13(xq3) +H14(xq3) +H15(xq3), (6.3.76)
x−2q−2H3(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H7(xq3) +H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3)

+H12(xq3) +H13(xq3) +H14(xq3) +H15(xq3), (6.3.77)
x−1q−2H4(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H7(xq3) +H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3)

+H12(xq3) +H13(xq3) +H14(xq3) +H15(xq3), (6.3.78)
x−2q−3H5(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)
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+H7(xq3) +H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3)

+H12(xq3) +H13(xq3) +H14(xq3) +H15(xq3), (6.3.79)
x−2q−4H6(x) = H1(xq3) +H2(xq3) +H4(xq3) +H5(xq3) +H6(xq3) +H7(xq3)

+H8(xq3) +H9(xq3) +H11(xq3) +H12(xq3) +H13(xq3)

+H14(xq3) +H15(xq3), (6.3.80)
x−3q−5H7(x) = H1(xq3) +H2(xq3) +H4(xq3) +H5(xq3) +H6(xq3) +H7(xq3)

+H8(xq3) +H9(xq3) +H11(xq3) +H12(xq3) +H13(xq3)

+H14(xq3) +H15(xq3), (6.3.81)
x−1q−3H8(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3) +H12(xq3)

+H13(xq3) +H14(xq3) +H15(xq3), (6.3.82)
x−2q−4H9(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3) +H12(xq3)

+H13(xq3) +H14(xq3) +H15(xq3), (6.3.83)
x−3q−5H10(x) = H1(xq3) +H2(xq3) +H3(xq3) +H4(xq3) +H5(xq3) +H6(xq3)

+H8(xq3) +H9(xq3) +H10(xq3) +H11(xq3) +H12(xq3)

+H13(xq3) +H14(xq3) +H15(xq3), (6.3.84)
x−2q−5H11(x) = H1(xq3) +H2(xq3) +H4(xq3) +H5(xq3) +H6(xq3) +H8(xq3)

+H9(xq3) +H11(xq3) +H12(xq3) +H13(xq3) +H14(xq3)

+H15(xq3), (6.3.85)
x−3q−6H12(x) = H1(xq3) +H2(xq3) +H4(xq3) +H5(xq3) +H6(xq3) +H8(xq3)

+H9(xq3) +H11(xq3) +H12(xq3) +H13(xq3) +H14(xq3)

+H15(xq3), (6.3.86)
x−2q−6H13(x) = H1(xq3) +H4(xq3) +H8(xq3) +H11(xq3) +H13(xq3) +H15(xq3), (6.3.87)
x−3q−7H14(x) = H1(xq3) +H4(xq3) +H8(xq3) +H11(xq3) +H13(xq3) +H15(xq3), (6.3.88)
x−3q−8H15(x) = H1(xq3) +H4(xq3) +H8(xq3) +H11(xq3) +H13(xq3) +H15(xq3). (6.3.89)

This system may be simplified as

H1(x) = (1 + xq4 + x2q8 + xq5 + x2q9)H1(xq3) + (1 + xq4)H6(xq3)

+ (1 + xq4 + x2q8)H8(xq3) + (1 + xq4)H11(xq3)

+ (1 + xq4 + xq5)H13(xq3), (6.3.90)
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H6(x) = (x2q4 + x3q8 + x3q9 + x4q13)H1(xq3) + (x2q4 + x3q8)H6(xq3)

+ (x2q4 + x3q8)H8(xq3) + (x2q4 + x3q8)H11(xq3)

+ (x2q4 + x3q8 + x3q9)H13(xq3), (6.3.91)

H8(x) = (xq3 + x2q7 + x3q11 + x2q8 + x3q12)H1(xq3) + xq3H6(xq3)

+ (xq3 + x2q7 + x3q11)H8(xq3) + (xq3 + x2q7)H11(xq3)

+ (xq3 + x2q7 + x2q8)H13(xq3), (6.3.92)

H11(x) = (x2q5 + x3q9 + x3q10 + x4q14)H1(xq3) + x2q5H6(xq3)

+ (x2q5 + x3q9)H8(xq3) + (x2q5 + x3q9)H11(xq3)

+ (x2q5 + x3q9 + x3q10)H13(xq3), (6.3.93)

H13(x) = (x2q6 + x3q11)H1(xq3) + x2q6H8(xq3) + x2q6H11(xq3)

+ (x2q6 + x3q11)H13(xq3). (6.3.94)

Let GITIV,1
(x) = GITII,1

(x, q) denote the generating function of partitions in ITIV

whose smallest part is at least 1.
Let GITIV,a

(x) denote the generating function of partitions in ITIV where 1 appears
at most once.

Let GITIV,b
(x) denote the generating function of partitions in ITIV where the smallest

part is at least 2 with 2 appearing at most once.
It follows that

GITIV,1
(x) = H1(x) +H2(x) +H3(x) +H4(x) +H5(x) +H6(x)

+H7(x) +H8(x) +H9(x) +H10(x) +H11(x)

+H12(x) +H13(x) +H14(x) +H15(x)

= H1(xq−3), (6.3.95)

GITIV,a
(x) = H1(x) +H2(x) +H4(x) +H5(x) +H6(x) +H7(x)

+H8(x) +H9(x) +H11(x) +H12(x) +H13(x)

+H14(x) +H15(x)

= x−2q2H6(xq−3), (6.3.96)

GITIV,b
(x) = H1(x) +H4(x) +H8(x) +H11(x) +H13(x) +H15(x)
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= x−2H13(xq−3). (6.3.97)

Likewise, we can use the algorithm in §6.2 to deduce the following q-difference
equations for GITIV,1

(x), GITIV,a
(x) and GITIV,b

(x), respectively.

Theorem 6.3.14. It holds that

p0(x, q)GITIV,1
(x) + p3(x, q)GITIV,1

(xq3) + p6(x, q)GITIV,1
(xq6)

+ p9(x, q)GITIV,1
(xq9) + p12(x, q)GITIV,1

(xq12) = 0, (6.3.98)

where

p0(x, q) = 1 + x(q4 + q5 + q7 + q8 + q10 + q11)

+ x2(q9 + q11 + 2q12 + q14 + 2q15 + q16 + 2q18 + q19 + q21)

+ x3(q16 + q19 + q20 + q22 + q23 + q25 + q26 + q29),

p3(x, q) = −1− x(q + q2 + q3 + q4 + q5 + q7 + q8 + q10 + q11)

− x2(q2 + q3 + 2q4 + 2q5 + 3q6 + 2q7 + 2q8 + 3q9 + 2q10 + 3q11 + 4q12 + 2q13

+ 2q14 + 2q15 + q16 + 2q18 + q19 + q21)

− x3(2q5 + 2q6 + 3q7 + 4q8 + 4q9 + 4q10 + 5q11 + 6q12 + 7q13 + 7q14 + 6q15

+ 6q16 + 5q17 + 3q18 + 4q19 + 4q20 + 3q21 + 3q22 + 2q23 + q24 + q25

+ q26 + q29)

− x4(2q9 + 3q10 + 2q11 + 4q12 + 6q13 + 6q14 + 8q15 + 10q16 + 8q17 + 9q18 + 9q19

+ 7q20 + 8q21 + 8q22 + 7q23 + 6q24 + 5q25 + 3q26 + 3q27 + 2q28 + q29

+ q30 + q31 + q32)

− x5(q14 + q15 + 2q16 + 5q17 + 3q18 + 4q19 + 8q20 + 6q21 + 5q22 + 9q23 + 8q24

+ 6q25 + 9q26 + 6q27 + 4q28 + 6q29 + 4q30 + 2q31 + 3q32 + 2q33 + q34

+ q35)

− x6(q21 + q22 + 2q24 + 2q25 + q26 + 3q27 + 3q28 + q29 + 3q30 + 4q31 + q32 + 2q33

+ 3q34 + q35 + q36 + 2q37 + q40),

p6(x, q) = x4(q12 + q14 + q16 + q17 + q19 + q21)

+ x5(q13 + q15 + 2q16 + 2q17 + 3q18 + 3q19 + 4q20 + 4q21 + 4q22 + 4q23 + 4q24

+ 4q25 + 3q26 + 3q27 + 2q28 + 2q29 + q30 + q32)

+ x6(q17 + q18 + 2q19 + 3q20 + 4q21 + 7q22 + 7q23 + 8q24 + 8q25 + 11q26 + 11q27

+ 12q28 + 12q29 + 11q30 + 11q31 + 8q32 + 8q33 + 7q34 + 7q35 + 4q36

+ 3q37 + 2q38 + q39 + q40)

+ x7(2q23 + 3q24 + 3q25 + 4q26 + 7q27 + 9q28 + 10q29 + 14q30 + 14q31 + 16q32
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+ 17q33 + 15q34 + 15q35 + 17q36 + 16q37 + 14q38 + 14q39 + 10q40 + 9q41

+ 7q42 + 4q43 + 3q44 + 3q45 + 2q46)

+ x8(q29 + q30 + 3q31 + 4q32 + 4q33 + 8q34 + 8q35 + 7q36 + 11q37 + 13q38 + 10q39

+ 14q40 + 14q41 + 10q42 + 13q43 + 11q44 + 7q45 + 8q46 + 8q47 + 4q48

+ 4q49 + 3q50 + q51 + q52)

+ x9(q36 + q38 + 2q39 + q40 + 2q41 + 4q42 + 2q43 + 3q44 + 5q45 + 3q46 + 3q47

+ 5q48 + 3q49 + 2q50 + 4q51 + 2q52 + q53 + 2q54 + q55 + q57),

p9(x, q) = −x6q30 − x7(q31 + q32 + q34 + q35 + q37 + q38 + q39 + q40 + q41)

− x8(q33 + q35 + 2q36 + q38 + 2q39 + 2q40 + 2q41 + 4q42 + 3q43 + 2q44 + 3q45

+ 2q46 + 2q47 + 3q48 + 2q49 + 2q50 + q51 + q52)

− x9(q37 + q40 + q41 + q42 + 2q43 + 3q44 + 3q45 + 4q46 + 4q47 + 3q48 + 5q49

+ 6q50 + 6q51 + 7q52 + 7q53 + 6q54 + 5q55 + 4q56 + 4q57 + 4q58 + 3q59

+ 2q60 + 2q61)

− x10(q46 + q47 + q48 + q49 + 2q50 + 3q51 + 3q52 + 5q53 + 6q54 + 7q55 + 8q56

+ 8q57 + 7q58 + 9q59 + 9q60 + 8q61 + 10q62 + 8q63 + 6q64 + 6q65 + 4q66

+ 2q67 + 3q68 + 2q69)

− x11(q55 + q56 + 2q57 + 3q58 + 2q59 + 4q60 + 6q61 + 4q62 + 6q63 + 9q64 + 6q65

+ 8q66 + 9q67 + 5q68 + 6q69 + 8q70 + 4q71 + 3q72 + 5q73 + 2q74 + q75 + q76)

− x12(q62 + 2q65 + q66 + q67 + 3q68 + 2q69 + q70 + 4q71 + 3q72 + q73 + 3q74 + 3q75

+ q76 + 2q77 + 2q78 + q80 + q81),

and

p12(x, q) = x12q93 + x13(q94 + q95 + q97 + q98 + q100 + q101)

+ x14(q96 + q98 + 2q99 + q101 + 2q102 + q103 + 2q105 + q106 + q108)

+ x15(q100 + q103 + q104 + q106 + q107 + q109 + q110 + q113).

Theorem 6.3.15. It holds that

p0(x, q)GITIV,a
(x) + p3(x, q)GITIV,a

(xq3) + p6(x, q)GITIV,a
(xq6)

+ p9(x, q)GITIV,a
(xq9) + p12(x, q)GITIV,a

(xq12) = 0, (6.3.99)

where

p0(x, q) = 1 + x(q4 + q5 + q6 + q7 + q8 + q9)

+ x2(q9 + q10 + q11 + 2q12 + 2q13 + 2q14 + q15 + q16 + q17)

+ x3(q16 + q17 + q18 + q19 + q20 + q21 + q22 + q23),
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p3(x, q) = −1− x(q + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9)

− x2(q3 + 2q4 + 2q5 + 3q6 + 3q7 + 4q8 + 4q9 + 4q10 + 3q11 + 3q12 + 2q13 + 2q14

+ q15 + q16 + q17)

− x3(q5 + q6 + 2q7 + 4q8 + 5q9 + 6q10 + 8q11 + 8q12 + 8q13 + 8q14 + 8q15 + 7q16

+ 6q17 + 4q18 + 3q19 + 2q20 + q21 + q22 + q23)

− x4(q9 + 2q10 + 3q11 + 5q12 + 7q13 + 8q14 + 9q15 + 11q16 + 13q17 + 13q18

+ 11q19 + 10q20 + 8q21 + 6q22 + 5q23 + 4q24 + 3q25 + q26)

− x5(q14 + 2q15 + 2q16 + 4q17 + 6q18 + 8q19 + 10q20 + 10q21 + 10q22 + 9q23

+ 8q24 + 8q25 + 7q26 + 5q27 + 3q28 + q29 + q30 + q31)

− x6(q21 + 2q22 + 2q23 + 3q24 + 3q25 + 3q26 + 4q27 + 4q28 + 3q29 + 2q30 + 2q31

+ q32 + q33 + q34),

p6(x, q) = x4(q16 + q17 + q18 + q19 + q20 + q21)

+ x5(q17 + 2q18 + 2q19 + 3q20 + 5q21 + 6q22 + 5q23 + 5q24 + 6q25 + 5q26 + 3q27

+ 2q28 + 2q29 + q30)

+ x6(q20 + 2q21 + 5q22 + 7q23 + 8q24 + 10q25 + 13q26 + 14q27 + 15q28 + 15q29

+ 14q30 + 13q31 + 10q32 + 8q33 + 7q34 + 5q35 + 2q36 + q37)

+ x7(q24 + 2q25 + 4q26 + 7q27 + 10q28 + 13q29 + 16q30 + 19q31 + 21q32 + 21q33

+ 21q34 + 21q35 + 19q36 + 16q37 + 13q38 + 10q39 + 7q40 + 4q41 + 2q42

+ q43)

+ x8(q29 + q30 + 2q31 + 5q32 + 7q33 + 10q34 + 12q35 + 14q36 + 16q37 + 16q38

+ 16q39 + 16q40 + 14q41 + 12q42 + 10q43 + 7q44 + 5q45 + 2q46 + q47

+ q48)

+ x9(q36 + q37 + 2q38 + 3q39 + 3q40 + 4q41 + 5q42 + 5q43 + 5q44 + 5q45 + 4q46

+ 3q47 + 3q48 + 2q49 + q50 + q51),

p9(x, q) = −x6q36 − x7(q37 + q38 + q39 + q40 + q41 + q42 + q43 + q44 + q45)

− x8(q39 + q40 + q41 + 2q42 + 2q43 + 3q44 + 3q45 + 4q46 + 4q47 + 4q48 + 3q49

+ 3q50 + 2q51 + 2q52 + q53)

− x9(q43 + q44 + q45 + 2q46 + 3q47 + 4q48 + 6q49 + 7q50 + 8q51 + 8q52 + 8q53

+ 8q54 + 8q55 + 6q56 + 5q57 + 4q58 + 2q59 + q60 + q61)

− x10(q50 + 3q51 + 4q52 + 5q53 + 6q54 + 8q55 + 10q56 + 11q57 + 13q58 + 13q59

+ 11q60 + 9q61 + 8q62 + 7q63 + 5q64 + 3q65 + 2q66 + q67)

− x11(q55 + q56 + q57 + 3q58 + 5q59 + 7q60 + 8q61 + 8q62 + 9q63 + 10q64 + 10q65

+ 10q66 + 8q67 + 6q68 + 4q69 + 2q70 + 2q71 + q72)

− x12(q62 + q63 + q64 + 2q65 + 2q66 + 3q67 + 4q68 + 4q69 + 3q70 + 3q71 + 3q72

+ 2q73 + 2q74 + q75),
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and

p12(x, q) = x12q93 + x13(q94 + q95 + q96 + q97 + q98 + q99)

+ x14(q96 + q97 + q98 + 2q99 + 2q100 + 2q101 + q102 + q103 + q104)

+ x15(q100 + q101 + q102 + q103 + q104 + q105 + q106 + q107).

Theorem 6.3.16. It holds that

p0(x, q)GITIV,b
(x) + p3(x, q)GITIV,b

(xq3) + p6(x, q)GITIV,b
(xq6)

+ p9(x, q)GITIV,b
(xq9) + p12(x, q)GITIV,b

(xq12) = 0, (6.3.100)

where

p0(x, q) = 1 + x(q5 + q6 + q7 + q8 + q9 + q10)

+ x2(q11 + q12 + q13 + 2q14 + 2q15 + 2q16 + q17 + q18 + q19)

+ x3(q19 + q20 + q21 + q22 + q23 + q24 + q25 + q26),

p3(x, q) = −1− x(q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + q10)

− x2(q5 + 2q6 + 2q7 + 3q8 + 3q9 + 4q10 + 4q11 + 4q12 + 3q13 + 3q14 + 2q15 + 2q16

+ q17 + q18 + q19)

− x3(q8 + q9 + 2q10 + 4q11 + 5q12 + 6q13 + 8q14 + 8q15 + 8q16 + 8q17 + 8q18

+ 7q19 + 6q20 + 4q21 + 3q22 + 2q23 + q24 + q25 + q26)

− x4(q13 + 2q14 + 3q15 + 5q16 + 7q17 + 8q18 + 9q19 + 11q20 + 13q21 + 13q22

+ 11q23 + 10q24 + 8q25 + 6q26 + 5q27 + 4q28 + 3q29 + q30)

− x5(q19 + 2q20 + 2q21 + 4q22 + 6q23 + 8q24 + 10q25 + 10q26 + 10q27 + 9q28

+ 8q29 + 8q30 + 7q31 + 5q32 + 3q33 + q34 + q35 + q36)

− x6(q27 + 2q28 + 2q29 + 3q30 + 3q31 + 3q32 + 4q33 + 4q34 + 3q35 + 2q36 + 2q37

+ q38 + q39 + q40),

p6(x, q) = x4(q20 + q21 + q22 + q23 + q24 + q25)

+ x5(q22 + 2q23 + 2q24 + 3q25 + 5q26 + 6q27 + 5q28 + 5q29 + 6q30 + 5q31 + 3q32

+ 2q33 + 2q34 + q35)

+ x6(q26 + 2q27 + 5q28 + 7q29 + 8q30 + 10q31 + 13q32 + 14q33 + 15q34 + 15q35

+ 14q36 + 13q37 + 10q38 + 8q39 + 7q40 + 5q41 + 2q42 + q43)

+ x7(q31 + 2q32 + 4q33 + 7q34 + 10q35 + 13q36 + 16q37 + 19q38 + 21q39 + 21q40

+ 21q41 + 21q42 + 19q43 + 16q44 + 13q45 + 10q46 + 7q47 + 4q48 + 2q49

+ q50)

+ x8(q37 + q38 + 2q39 + 5q40 + 7q41 + 10q42 + 12q43 + 14q44 + 16q45 + 16q46
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+ 16q47 + 16q48 + 14q49 + 12q50 + 10q51 + 7q52 + 5q53 + 2q54 + q55

+ q56)

+ x9(q45 + q46 + 2q47 + 3q48 + 3q49 + 4q50 + 5q51 + 5q52 + 5q53 + 5q54 + 4q55

+ 3q56 + 3q57 + 2q58 + q59 + q60),

p9(x, q) = −x6q42 − x7(q44 + q45 + q46 + q47 + q48 + q49 + q50 + q51 + q52)

− x8(q47 + q48 + q49 + 2q50 + 2q51 + 3q52 + 3q53 + 4q54 + 4q55 + 4q56 + 3q57

+ 3q58 + 2q59 + 2q60 + q61)

− x9(q52 + q53 + q54 + 2q55 + 3q56 + 4q57 + 6q58 + 7q59 + 8q60 + 8q61 + 8q62

+ 8q63 + 8q64 + 6q65 + 5q66 + 4q67 + 2q68 + q69 + q70)

− x10(q60 + 3q61 + 4q62 + 5q63 + 6q64 + 8q65 + 10q66 + 11q67 + 13q68 + 13q69

+ 11q70 + 9q71 + 8q72 + 7q73 + 5q74 + 3q75 + 2q76 + q77)

− x11(q66 + q67 + q68 + 3q69 + 5q70 + 7q71 + 8q72 + 8q73 + 9q74 + 10q75 + 10q76

+ 10q77 + 8q78 + 6q79 + 4q80 + 2q81 + 2q82 + q83)

− x12(q74 + q75 + q76 + 2q77 + 2q78 + 3q79 + 4q80 + 4q81 + 3q82 + 3q83 + 3q84

+ 2q85 + 2q86 + q87),

and

p12(x, q) = x12q105 + x13(q107 + q108 + q109 + q110 + q111 + q112)

+ x14(q110 + q111 + q112 + 2q113 + 2q114 + 2q115 + q116 + q117 + q118)

+ x15(q115 + q116 + q117 + q118 + q119 + q120 + q121 + q122).

6.4 “Guessing” the Generating Functions

It is, of course, not easy to discover a closed form for each generating function
directly from q-difference equations obtained in the previous section. However, Andrews’
conjecture presented in the introduction shall give us enough clues.

Recall that Andrews’ conjecture states as follows.

Conjecture 6.4.1. Every linked partition ideal I has a bivariate generating function
GI (x, q) of the form

∑
n1,...,nr≥0

(−1)L1(n1,...,nr)qQ(n1,...,nr)+L2(n1,...,nr)xL3(n1,...,nr)

(qB1 ; qA1)n1 · · · (qBr ; qAr)nr
, (6.4.1)

where L1, L2 and L3 are linear forms in n1, . . . , nr and Q is a quadratic form in n1, . . . , nr.

It also appears to be true that some “nice” subsets of a linked partition ideal enjoy
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a generating function of the form (6.4.1). One may investigate the second Rogers–
Ramanujan identity as an example.

Hence, we may search from a number of multi-summations of the form (6.4.1) and
compare the series expansions to find suitable candidates.

Theorem 6.4.1. Let GITI,1
(x, q) (resp. GITI,2

(x, q), GITI,3
(x, q)) denote the generating

function of partitions of type I whose smallest part is at least 1 (resp. 2, 3). We have

GITI,1
(x, q) =

∑
n1,n2≥0

qn
2
1+3n2

2+3n1n2xn1+2n2

(q; q)n1(q3; q3)n2

, (6.4.2)

GITI,2
(x, q) =

∑
n1,n2≥0

qn
2
1+3n2

2+3n1n2+n1+3n2xn1+2n2

(q; q)n1(q3; q3)n2

, (6.4.3)

GITI,3
(x, q) =

∑
n1,n2≥0

qn
2
1+3n2

2+3n1n2+2n1+3n2xn1+2n2

(q; q)n1(q3; q3)n2

. (6.4.4)

Remark 6.4.1. Here (6.4.2), (6.4.3) and (6.4.4) are (3.1), (3.10) and (3.14) in [116]. They
correspond to the Kanade–Russell conjectures I1, I2 and I3, respectively.

Theorem 6.4.2. Let GITII,1
(x, q) (resp. GITII,2

(x, q)) denote the generating function of
partitions of type II whose smallest part is at least 1 (resp. 2) and let GITII,a

(x, q) denote
the generating function of partitions of type II where 1 appears at most once. We have

GITII,1
(x, q) =

∑
n1,n2≥0

qn
2
1+3n2

2+3n1n2−n2xn1+2n2

(q; q)n1(q3; q3)n2

, (6.4.5)

GITII,2
(x, q) =

∑
n1,n2≥0

qn
2
1+3n2

2+3n1n2+n1+2n2xn1+2n2

(q; q)n1(q3; q3)n2

, (6.4.6)

GITII,a
(x, q) =

∑
n1,n2≥0

qn
2
1+3n2

2+3n1n2+2n2xn1+2n2

(q; q)n1(q3; q3)n2

. (6.4.7)

Remark 6.4.2. Here (6.4.6) is (3.15) in [116]. It corresponds to the Kanade–Russell
conjecture I4.

Theorem 6.4.3. Let GITIII,1
(x, q) (resp. GITIII,2

(x, q)) denote the generating function
of partitions of type III whose smallest part is at least 1 (resp. 2) and let GITIII,a

(x, q)
denote the generating function of partitions of type III where 1 appears at most once. We
have

GITIII,1
(x, q)
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=
∑

n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+n1

2 −n2−
n3
2 xn1+2n2+3n3

(q; q)n1(q2; q2)n2(q3; q3)n3

, (6.4.8)

GITIII,2
(x, q)

=
∑

n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+ 3n1

2 +n2+ 5n3
2 xn1+2n2+3n3

(q; q)n1(q2; q2)n2(q3; q3)n3

, (6.4.9)

GITIII,a
(x, q)

=
∑

n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+n1

2 +n2+ 5n3
2 xn1+2n2+3n3

(q; q)n1(q2; q2)n2(q3; q3)n3

. (6.4.10)

Remark 6.4.3. Here (6.4.10) is (47) (corrected: in the numerator of which the last term
of the exponent of q should read 4k instead of 3k) in [109]. It corresponds to the
Kanade–Russell conjecture I5.

Theorem 6.4.4. Let GITIV,1
(x, q) denote the generating function of partitions of type

IV whose smallest part is at least 1, let GITIV,a
(x, q) denote the generating function

of partitions of type IV where 1 appears at most once and let GITIV,b
(x, q) denote the

generating function of partitions of type IV where the smallest part is at least 2 with 2
appearing at most once. We have

GITIV,1
(x, q)

=
∑

n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+n1

2 −n2+n3
2 xn1+2n2+3n3

(q; q)n1(q2; q2)n2(q3; q3)n3

, (6.4.11)

GITIV,a
(x, q)

=
∑

n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+n1

2 +n2+n3
2 xn1+2n2+3n3

(q; q)n1(q2; q2)n2(q3; q3)n3

, (6.4.12)

GITIV,b
(x, q)

=
∑

n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+ 3n1

2 +3n2+ 7n3
2 xn1+2n2+3n3

(q; q)n1(q2; q2)n2(q3; q3)n3

. (6.4.13)

Remark 6.4.4. Here (6.4.13) is (51) in [109]. It corresponds to the Kanade–Russell
conjecture I6.

In the above theorems, we rediscover six generating function identities proved in [109]
and [116] and obtain six new identities. We will provide an approach to prove these
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identities in the next section with the help of computer algebra.

Remark 6.4.5. It is, of course, fine to discover the above sum-like generating functions
by trial and error with this tedious work left to a computer. But sometimes human
observation might reduce the workload. Let us use (6.4.2) as an example. If we write

GITI,1
(x, q) =

∑
M≥0

gITI,1
(M)xM ,

then the q-difference equation in Theorem 6.3.2 gives the first several expressions of
gITI,1

(M):

gITI,1
(0) = 1,

gITI,1
(1) = q

1− q ,

gITI,1
(2) = q3 + q4 + q6

(1− q2)(1− q3) ,

gITI,1
(3) = q7

(1− q)(1− q2)(1− q3) ,

gITI,1
(4) = q12 + q15 + q17 + q18 − q19 + q20 − q21

(1− q)(1− q3)(1− q4)(1− q6) .

Recall that the sum-like generating function is

∑
n1,...,nr≥0

(−1)L1(n1,...,nr)qQ(n1,...,nr)+L2(n1,...,nr)xL3(n1,...,nr)

(qB1 ; qA1)n1 · · · (qBr ; qAr)nr
. (6.4.14)

We observe that the numerator of gITI,1
(2) has more than one term. Hence, the linear

equation L3(n1, . . . , nr) = 2 might have multiple nonnegative solutions (n1, . . . , nr). It is
fair to guess that L3 looks like n1 +n2 + · · · or n1 + 2n2 + · · · . Also, the denominators of
gITI,1

(M) indicate that there might be terms like (q; q)n and (q3; q3)n in the denominator
of the summand in (6.4.14). Hence, one may first try multi-summations like

∑
n1,n2≥0

(−1)L1(n1,n2)qQ(n1,n2)+L2(n1,n2)xn1+n2

(q; q)n1(q3; q3)n2

or ∑
n1,n2≥0

(−1)L1(n1,n2)qQ(n1,n2)+L2(n1,n2)xn1+2n2

(q; q)n1(q3; q3)n2

.

If these expressions fail to be a candidate, then one could continue to modify them and
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carry on the searching procedure. However, it should be emphasized that in this remark
we do not intend to assert that the sum-like generating function must contain some
particular “magical” exponents and bases.

6.5 Computer Algebra Assistance

Proofs of the generating function identities in the previous section can be carried out
by the same procedure. We only demonstrate (6.4.2) as an instance.

6.5.1 The Main Idea

If we write
GITI,1

(x, q) =
∑
M≥0

gITI,1
(M)xM , (6.5.1)

where gITI,1
(M) ∈ Q(q), then we can translate the q-difference equation in Theorem 6.3.2

to a recurrence of gITI,1
(M).

Definition 6.5.1. Let K = Q(q) with q transcendental. A sequence (an) in K is called
q-holonomic if there exist p, p0, . . . , pr ∈ K[x], not all zero, such that

p0(qn)an + p1(qn)an+1 + · · ·+ pr(qn)an+r = p(qn).

Hence, the sequence gITI,1
(M) is q-holonomic.

On the other hand, if we write

∑
n1,n2≥0

qn
2
1+3n2

2+3n1n2xn1+2n2

(q; q)n1(q3; q3)n2

=
∑
M≥0

g̃ITI,1
(M)xM , (6.5.2)

we may also find a recurrence relation satisfied by g̃ITI,1
(M). Hence, g̃ITI,1

(M) is also
q-holonomic.

A result of Kauers and Koutschan [110] states that if two sequences (an) and (bn) are
q-holonomic, so is their linear combination (αan + βbn). Hence, we may find a recurrence
relation satisfied by gITI,1

(M) − g̃ITI,1
(M). As long as gITI,1

(M) − g̃ITI,1
(M) = 0 for

enough initial cases, we are safe to say that this difference is identical to 0 for all M and
hence arrive at the desired generating function identity.
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6.5.2 Two Mathematica Packages

To proceed with our proof, we require two Mathematica packages: qMultiSum [153]
and qGeneratingFunctions [110]. These packages along with their instructions can
be found on the webpage of Research Institute for Symbolic Computation (RISC) of
Johannes Kepler University2.

To begin with, we load the two packages after installing them.

<<RISC ‘qMultiSum ‘
<<RISC ‘ qGeneratingFunctions ‘

6.5.3 Recurrence for gITI,1
(M)

For the polynomials p3i(x, q) (i = 0, . . . , 3) defined in Theorem 6.3.2, we write

p3i(x, q) =
J3i∑
j=0

p3i,j(q)xj.

Then with (6.5.1), one may rewrite (6.3.27) as

0 =
3∑
i=0

p3i(x, q)GITI,1
(xq3i)

=
3∑
i=0

J3i∑
j=0

∑
m≥0

p3i,j(q)gITI,1
(m)q3imxm+j

=
∑
M≥0

3∑
i=0

M∑
m=max(0,M−J3i)

q3imp3i,M−m(x, q)gITI,1
(m)xM .

Hence, for all M ≥ 0,

3∑
i=0

M∑
m=max(0,M−J3i)

q3imp3i,M−m(x, q)gITI,1
(m) = 0, (6.5.3)

from which we see that gITI,1
(M) (M ≥ 1) is uniquely determined by gITI,1

(0). It is also
trivial that gITI,1

(0) = 1.

In particular, for M ≥ 0, we have the following recurrence

0 = gITI,1
(M)

(
(q28 + q30)q9M

)
2See https://www3.risc.jku.at/research/combinat/software/ergosum/index.html
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+ gITI,1
(M + 1)

(
(q19 + q21)q6(M+1) + q27q9(M+1)

)
+ gITI,1

(M + 2)
(
(q14 + q15 + q16 + q17 + q18)q6(M+2)

)
+ gITI,1

(M + 3)
(
−(q7 + q9 + q10 + q12)q3(M+3) + (q11 + q13)q6(M+3)

)
+ gITI,1

(M + 4)
(
−(q3 + q4 + q5 + 2q6 + q7 + q8 + q9)q3(M+4)

)
+ gITI,1

(M + 5)
(
(q4 + q6)− (q + q2 + q3 + q4 + q6)q3(M+5)

)
+ gITI,1

(M + 6)
(
1− q3(M+6)

)
. (6.5.4)

6.5.4 Recurrence for g̃ITI,1
(M)

Notice that for M ≥ 0

g̃ITI,1
(M) =

∑
n≤M2

q(M−2n)2+3n2+3n(M−2n)

(q; q)M−2n(q3; q3)n
.

The recurrence satisfied by g̃ITI,1
(M) can be computed automatically by the qMultiSum

package with the following codes:

ClearAll[M];
summand = q^(3n^2+(M-2n)^2+3n(M-2 n))/( qPochhammer [q,q,

M-2n] qPochhammer [q^3,q^3,n]);
stru = qFindStructureSet [summand , {M}, {n}, {1}, {2},

{2}, qProtocol -> True]
rec = qFindRecurrence [summand , {M}, {n}, {1}, {2}, {2},

qProtocol -> True , StructSet -> stru [[1]]]
sumrec = qSumRecurrence [rec]

This gives us, for M ≥ 0,

0 = g̃ITI,1
(M)q9M+24(1 + 2q2 + q4 + q3M+14)

+ g̃ITI,1
(M + 1)q6M+21(1 + 2q2 + q4 − q3M+8 − q3M+10 + q3M+11 + q3M+13 + q3M+14)

+ g̃ITI,1
(M + 2)q6M+22(1 + q2)(1 + q2 + q3 + q4 + q3M+12)

− g̃ITI,1
(M + 3)q3M+12(1 + q2)(1− q + q2)(1 + q + q2 + q3 + q3M+12)

− g̃ITI,1
(M + 4)q3M+12(1− q + q2)(1 + q + q2)(1 + q + q2 + q3 + q3M+13)

+ g̃ITI,1
(M + 5)(1− q3M+15)(1 + 2q2 + q4 + q3M+11). (6.5.5)
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6.5.5 Recurrence for gITI,1
(M)− g̃ITI,1

(M)

Finally, we deduce the recurrence for gITI,1
(M)− g̃ITI,1

(M) from (6.5.4) and (6.5.5).
This can be accomplished by the QREPlus function of the qGeneratingFunctions pack-
age.

We need the following codes, in which sumrec1 records the recurrence relation for
gITI,1

(M) and sumrec2 records the recurrence relation for g̃ITI,1
(M).

ClearAll[M];
sumrec1 = {SUM[M] ((q^(28)+q^(30))q^(9M))
+ SUM[M+1] ((q^(19)+q^(21))q^(6(M+1))+q^(27)q^(9(M+1)))
+ SUM[M+2] ((q^(14)+q^(15)+q^(16)+q^(17)+q^(18))q^(6(M

+2)))
+ SUM[M+3] (-(q^7+q^9+q^(10)+q^(12))q^(3(M+3))+(q^(11)+

q^(13))q^(6(M+3)))
+ SUM[M+4] (-(q^3+q^4+q^5+2q^6+q^7+q^8+q^9)q^(3(M+4)))
+ SUM[M+5] ((q^4+q^6) -(q+q^2+q^3+q^4+q^6)q^(3(M+5)))
+ SUM[M+6] (1-q^(3(M+6)))
== 0};
sumrec2 = {SUM[M] q^(9M+24) (1+2q^2+q^4+q^(3M+14))
+ SUM[M+1] q^(6M+21) (1+2q^2+q^4-q^(3M+8) -q^(3M+10)+q

^(3M+11)+q^(3M+13)+q^(3M+14))
+ SUM[M+2] q^(6M+22) (1+q^2) (1+q^2+q^3+q^4+q^(3M+12))
- SUM[M+3] q^(3M+12) (1+q^2) (1-q+q^2) (1+q+q^2+q^3+q

^(3M+12))
- SUM[M+4] q^(3M+12) (1-q+q^2) (1+q+q^2) (1+q+q^2+q^3+q

^(3M+13))
+ SUM[M+5] (1-q^(3M+15)) (1+2q^2+q^4+q^(3M+11))
== 0};
QREPlus [sumrec1 , sumrec2 , SUM[M]]

The output gives us an order six recurrence. Hence, to show

gITI,1
(M) = g̃ITI,1

(M)

for all M ≥ 0, it suffices to show that the equality holds for M = 0, . . . , 5. This can be
checked easily.
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We therefore arrive at

GITI,1
(x, q) =

∑
n1,n2≥0

qn
2
1+3n2

2+3n1n2xn1+2n2

(q; q)n1(q3; q3)n2

.

6.5.6 Other Identities

Similar to (6.5.1) and (6.5.2), let us write

GIT∗
(x, q) =

∑
M≥0

gIT∗
(M)xM

and the multiple summations on the right hand sides of (6.4.3)–(6.4.13) as

∑
M≥0

g̃IT∗
(M)xM ,

where “∗” may be “I, 2”, “I, 3”, etc. We list the orders of recurrences satisfied by gIT∗
(M),

g̃IT∗
(M) and gIT∗

(M)− g̃IT∗
(M) in Table 6.1 for the reader’s convenience.

Table 6.1. Orders of recurrences satisfied by gIT∗
(M), g̃IT∗

(M) and gIT∗
(M)− g̃IT∗

(M)

∗ I, 2 I, 3 II, 1 II, 2 II, a III, 1 III, 2 III, a IV, 1 IV, a IV, b
gIT∗

6 6 6 6 6 15 15 15 15 15 15
g̃IT∗

5 5 5 5 5 4 4 4 4 4 4
gIT∗

− g̃IT∗
6 6 6 6 6 15 15 15 15 15 15

6.6 Endnotes

In a very recent paper of Bringmann, Jennings-Shaffer and Mahlburg [43], the Kanade–
Russell conjectures I5 and I6 were proved. Here the analytic forms of I5 and I6 read
respectively as

GITIII,a
(1, q) =

∑
n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+n1

2 +n2+ 5n3
2

(q; q)n1(q2; q2)n2(q3; q3)n3

= 1
(q, q3, q4, q6, q7, q10, q11; q12)∞

, (6.6.1)

GITIV,b
(1, q) =

∑
n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+ 3n1

2 +3n2+ 7n3
2

(q; q)n1(q2; q2)n2(q3; q3)n3
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= 1
(q2, q3, q5, q6, q7, q8, q11; q12)∞

. (6.6.2)

The authors of [43] cleverly reformulated GITIII,a
(1, q) and GITIV,b

(1, q) and then
added a new parameter so that the new bivariate generating functions satisfy simpler
q-difference equations, from which the authors deduced the above identities.

Following the proofs of (1.15) and (1.16) in [43], one may prove the following identities
with no difficulty.

Theorem 6.6.1. We have

GITIII,1
(1, q) =

∑
n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+n1

2 −n2−
n3
2

(q; q)n1(q2; q2)n2(q3; q3)n3

= (−q; q)∞(−q3; q6)∞ 2φ1

q−1, q

q2 ; q6,−q3

 , (6.6.3)

GITIII,2
(1, q) =

∑
n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+ 3n1

2 +n2+ 5n3
2

(q; q)n1(q2; q2)n2(q3; q3)n3

= (−q2; q)∞(−q3; q6)∞ 2φ1

q, q5

q8 ; q6,−q3

 , (6.6.4)

GITIV,1
(1, q) =

∑
n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+n1

2 −n2+n3
2

(q; q)n1(q2; q2)n2(q3; q3)n3

= (−q; q)∞(−q3; q6)∞ 2φ1

q−1, q

q4 ; q6,−q3

 , (6.6.5)

GITIV,a
(1, q) =

∑
n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+n1

2 +n2+n3
2

(q; q)n1(q2; q2)n2(q3; q3)n3

= (−q; q)∞(−q3; q6)∞ 2φ1

q, q5

q4 ; q6,−q3

 . (6.6.6)

Note that we shall use a refinement of Proposition 2.3 in [43], the proof of which
comes from a slight modification of the original proof of Bringmann, Jennings-Shaffer
and Mahlburg.

Proposition 6.6.2. Suppose that A(x) =
∑
n≥0

αnx
n has positive radius of convergence
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and A(x) satisfies

A(x) = (1 + qa + x2qb + x2qc)A(xq3)

− qa(1 + x2qb+c−a−d+6)(1 + x2qd)A(xq6), (6.6.7)

where a 6∈ 3Z if a ≤ −6. Then

A(x) = α0(−x2qd−6; q6)∞
∑
n≥0

(qb−d+6, qc−d+6; q6)n(−1)nq(d−6)n

(q6, qa+6; q6)n
x2n

+ α1(−x2qd−6; q6)∞
∑
n≥0

(qb−d+9, qc−d+9; q6)n(−1)nq(d−6)n

(q9, qa+9; q6)n
x2n+1. (6.6.8)

Proof. We divide by (−x2qd; q6)∞ on both sides of (6.6.7) and put

B(x) := A(x)
(−x2qd−6; q6)∞

,

then

(1 + x2qd−6)B(x) = (1 + qa + x2qb + x2qc)B(xq3)

− qa(1 + x2qb+c−a−d+6)B(xq6).

Writing B(x) =
∑
n≥0

βnx
n, one has, after simplification,

βn = −q
d−6(1− q3n+b−d)(1− q3n+c−d)

(1− q3n)(1− q3n+a) βn−2.

Finally, noting that β0 = α0 and β1 = α1 yields the desired result.

Now we prove (6.6.3) as an example.

Proof of (6.6.3). We first rewrite GITIII,1
(1, q) as follows:

GITIII,1
(1, q) =

∑
n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+n1

2 −n2−
n3
2

(q; q)n1(q2; q2)n2(q3; q3)n3

=
∑

n2,n3≥0

q3n2
2+

9n2
3

2 +6n2n3−n2−
n3
2

(q2; q2)n2(q3; q3)n3

∑
n1≥0

q
n2

1
2 +2n1n2+3n3n1+n1

2

(q; q)n1

.
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For the inner summation, we apply the identity

(x; q)∞ =
∑
n≥0

(−1)nq
n(n−1)

2

(q; q)n
.

It follows that

GITIII,1
(1, q) =

∑
n2,n3≥0

q3n2
2+

9n2
3

2 +6n2n3−n2−
n3
2 (−q2n2+3n3+1; q)∞

(q2; q2)n2(q3; q3)n3

= (−q; q)∞
∑

n2,n3≥0

q3n2
2+

9n2
3

2 +6n2n3−n2−
n3
2

(−q; q)2n2+3n3(q2; q2)n2(q3; q3)n3

.

Let us define an auxiliary function

H(x) :=
∑

n2,n3≥0

q3n2
2+

9n2
3

2 +6n2n3−n2−
n3
2 x2n2+2n3

(−q; q)2n2+3n3(q2; q2)n2(q3; q3)n3

.

We also assume that H(x) =
∑
n≥0

hnx
2n.

One may use the Mathematica package qZeil [138] to find a recurrence satisfied by
hn through the following codes.

<< RISC ‘qZeil ‘
ClearAll[n2 , n3 , M]
n3 = M - n2;
summand =
q^(3 n2^2 + (9 n3 ^2) /2 + 6 n2*n3 - n2 - n3/
2)/( qPochhammer [-q, q, 2 n2 + 3 n3] qPochhammer

[q^2, q^2,
n2] qPochhammer [q^3, q^3, n3]);
qZeil[summand , {n2 , 0, Infinity}, M, 2]

The resulting recurrence is

(1− q6n−4 − q6n + q12n−4)hn − (q6n−4 + q6n−2 − q12n−9 − q12n−7)hn−1 + q12n−12hn−2 = 0.

This recurrence then leads to

H(x) = (1 + q−4 + x2q2 + x2q4)H(xq3)− q−4(1 + x2q7)(1 + x2q9)H(xq6).
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Finally, we use Proposition 6.6.2 with a = −4, b = 2, c = 4 and d = 9. Then,

H(x) = (−x2q3; q6)∞
∑
n≥0

(q−1, q; q6)n(−q3)n
(q6, q2; q6)m

x2n

= (−x2q3; q6)∞ 2φ1

q−1, q

q2 ; q6,−x2q3

 .
It follows that

GITIII,1
(1, q) = (−q; q)∞H(1) = (−q; q)∞(−q3; q6)∞ 2φ1

q−1, q

q2 ; q6,−q3

 ,
which is our desired identity.
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Chapter 7 |

Span One Linked Partition Ideals:
Directed Graphs and q-Multi-summations

This chapter comes from

• S. Chern, Linked partition ideals, directed graphs and q-multi-summations, Electron. J. Combin.
27 (2020), no. 3, Paper No. 3.33, 29 pp. (Ref. [54])

In the previous chapter, we have explained the definition of span one linked partition
ideals. Given a span one linked partition ideal I = I (〈Π,L〉, S), one crucial problem
discussed is how to determine its generating function

G (x) = G (x, q) :=
∑
λ∈I

x](λ)q|λ|.

It should be admitted that to derive an Andrews–Gordon type generating function
identity, one has to obtain first a conjectural (x, q) sum-side. This then requires an
extensive search using the general shape given by Andrews’ Conjecture 6.1.2.

However, we could also start in the opposite direction. That is, if we are given a
family of nice q-multi-summations, then we may try to use the approach in Section 7.4
to construct identities like (7.4.5) and (7.4.13), from which we may further construct
some combinatorial objects, or even more luckily, a span one linked partition ideal and
its subsets, such that the q-multi-summations correspond to their generating functions.
One such instance is given in Theorem 7.4.4 and Corollary 7.4.5. This is indeed what we
hope the framework in this chapter could provide.
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7.1 Main Result

Assume that in I = I (〈Π,L〉, S), Π is given by {π1, π2, . . . , πK} where π1 = ∅, the
empty partition. We define a (0, 1)-matrix A = A (〈Π,L〉) by

Ai,j =

1 if πj ∈ L(πi),

0 if πj 6∈ L(πi),
(7.1.1)

and a diagonal matrix W (x) = W (〈Π,L〉 |x, q) by

W (x) =


x](π1)q|π1|

x](π2)q|π2|

. . .
x](πK)q|πK |

 . (7.1.2)

Theorem 7.1.1. For each 1 ≤ k ≤ K, we denote by Ik the subset of partitions λ in
I (〈Π,L〉, S) whose S-tail is πk ∈ Π. We further write

Gk(x) = Gk(x, q) :=
∑
λ∈Ik

x](λ)q|λ|.

Let A and W (x) be defined as in (7.1.1) and (7.1.2), respectively. Then, for |q| < 1 and
|x| < |q|−1, 

G1(x)
G2(x)

...
GK(x)

 = W (x).
(

lim
M→∞

M∏
m=1

(A .W (xqmS))
)
.


1
0
...
0

 . (7.1.3)

Remark 7.1.1. Recall that π1 = ∅ (so that π1 ∈ L(π) for all π ∈ Π) and L(∅) = Π. It
follows that all entries in the first row and column of A are 1. Further, the first entry in
W (x) is also x0q0 = 1. When |q| < 1 and |x| < |q|−1, we have

lim
M→∞

A .W (xqMS) =


1 0 0 · · · 0
1 0 0 · · · 0
... ... ... . . . ...
1 0 0 · · · 0

 .
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Throughout, ∏M
m=1(A .W (xqmS)) means

A .W (xqS).A .W (xq2S). · · · .A .W (xqMS). (7.1.4)

Remark 7.1.2. We have
G (x) =

K∑
k=1

Gk(x),

but since L(∅) = Π, it is not hard to see that

G1(x) =
K∑
k=1

Gk(xqS).

Hence,
G (x) = G1(xq−S). (7.1.5)

In the next section, we will consider our main result in a more general setting of
graph-theoretic flavor.

7.2 Directed Graphs

Let G = (V,E) be a directed graph where V is the set of vertices and E is the set of
directed edges. Throughout, we allow loops (that is, directed edges connecting vertices
with themselves) in G but for any two vertices u and v, not necessarily distinct, we allow
at most one directed edge connecting u with v. Let V = {v1, v2, . . . , vK}. Let A = A (G)
be the adjacency matrix of G, that is,

Ai,j =

1 if there is a directed edge from vi with vj,

0 if there are no directed edges from vi with vj.
(7.2.1)

We say that w is a walk of step M in G if w is a chain of M + 1 vertices

$0 → $1 → · · · → $M

such that for each 1 ≤ m ≤M , there is an edge from $m−1 to $m. Let WM be the set
of walks of step M in G.
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7.2.1 Generating Function for Walks in a Directed Graph

To define the generating function for step M walks in a directed graph G = (V,E),
we assign two weights to each vertex v: one is called length, denoted by ](v) ∈ N, and
the other is called size, denoted by |v| ∈ N.

Let the shift S be a non-negative integer.

For any walk w ∈ WM ,

w = $0 → $1 → · · · → $M , (7.2.2)

we define its generating function by

G (w |x, q) := x]($0)q|$0| × (xqS)]($1)q|$1| × · · · × (xqMS)]($M )q|$M |. (7.2.3)

Now we are able to define the generating function for step M walks from vi to vj for any
1 ≤ i, j ≤ K:

Gi,j(WM |x) = Gi,j(WM |x, q) :=
∑

w∈WM
$0=vi
$M=vj

G (w |x, q). (7.2.4)

Let us define a diagonal matrix W (x) = W (x, q) by

W (x) =


x](v1)q|v1|

x](v2)q|v2|

. . .
x](vK)q|vK |

 . (7.2.5)

Theorem 7.2.1. Let A be the adjacency matrix of G and let W (x) be as in (7.2.5).
Then Gi,j(WM |x) is the (i, j)-th entry of

W (x).A .W (xqS).A .W (xq2S). · · · .A .W (xqMS). (7.2.6)

Remark 7.2.1. Let us set x = q = 1. Then W (1, 1) is a K ×K identity matrix and hence
(7.2.6) becomes A M . Since Gi,j(WM | 1, 1) equals the number of walks of step M from
vertex vi to vertex vj, Theorem 7.2.1 immediately leads to a well-known result in graph
theory:

Corollary 7.2.2. The number of walks of step M from vertex vi to vertex vj is the
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(i, j)-th entry of A M .

Proof of Theorem 7.2.1. We induct on M . When M = 0, that is, the chain w of vertices
in (7.2.2) contains only one vertex $0, it follows that

Gi,j(W0 |x) =

x
](vi)q|vi| if i = j,

0 if i 6= j,

which is identical to the (i, j)-th entry of W (x).
Now let us assume that the theorem is true for some M ≥ 0. We also write for

convenience

M (M) = W (x).A .W (xqS).A .W (xq2S). · · · .A .W (xqMS).

Then Gi,j(WM |x) = M (M)i,j. Further,

M (M + 1)i,j =
K∑
k=1

M (M)i,kAk,j(xq(M+1)S)](vj)q|vj |

=
K∑
k=1

Gi,k(WM |x)Ak,j(xq(M+1)S)](vj)q|vj |.

On the other hand,

Gi,j(WM+1 |x) =
∑

w∈WM+1
$0=vi
$M=vj

G (w |x, q)

=
K∑
k=1


∑

w∈WM
$0=vi
$M=vk

G (w |x, q)

Ak,j(xq(M+1)S)](vj)q|vj |

=
K∑
k=1

Gi,k(WM |x)Ak,j(xq(M+1)S)](vj)q|vj |.

Hence, Gi,j(WM+1 |x) = M (M + 1)i,j, which is our desired result.

7.2.2 Assigning an Empty Vertex

Let us assume that v1 ∈ V is an empty vertex, that is, its length and size are both 0:

](v1) = 0 and |v1| = 0. (7.2.7)
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We also assume that, for 2 ≤ k ≤ K, ](vk) and |vk| are both positive integers.
We require that, for each 1 ≤ k ≤ K, there is an edge from vertex vk to the empty

vertex v1. Hence, the entries in the first column of the adjacency matrix A are all 1.
We call such a modified directed graph G! = (V !, E!).

For any finite walk in G!,

w = $0 → $1 → · · · → $M ,

with $M 6= v1, we may extend it to an infinite walk

w? = $0 → $1 → · · · → $M → v1 → v1 → · · · .

Conversely, for any infinite walk w? in G! ending with v1 → v1 → · · · , a series of empty
vertex, we may find the last vertex, say $M , which is not empty, and reduce w? to a
finite walk w = $0 → $1 → · · · → $M . If there is no such $M , that is, if the infinite
walk is v1 → v1 → · · · , we reduce it to v1.

It follows from the assumptions ](v1) = 0 and |v1| = 0 that

G (w? |x, q) = G (w |x, q). (7.2.8)

Also, for the infinite walk v1 → v1 → · · · , we have

G (v1 → v1 → · · · | x, q) = G (v1 |x, q) = x0q0 = 1.

Let W? denote the set of infinite walks in G! ending with v1 → v1 → · · · , a series of
empty vertex.

We are now in the position to define the generating function of G!, by

G (G! |x, q) :=
∑

w?∈W?

G (w? |x, q) (7.2.9)

=
∑
M≥0

∑
w∈WM
wM 6=v1

G (w |x, q). (7.2.10)

Theorem 7.2.3. For each 1 ≤ k ≤ K, let Gk(G! |x) = Gk(G! |x, q) denote the generating
function for infinite walks in W? starting at vk. Let the shift S be a positive integer. Let
A and W (x) be defined as in (7.2.1) and (7.2.5), respectively. Then, for |q| < 1 and
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|x| < |q|−1,


G1(G! |x)
G2(G! |x)

...
GK(G! |x)

 = W (x).
(

lim
M→∞

M∏
m=1

(A .W (xqmS))
)
.


1
0
...
0

 . (7.2.11)

Proof. We simply observe that, for each 1 ≤ k ≤ K,

Gk(G! |x) = lim
M→∞

∑
w∈WM
$0=vk
$M=v1

G (w |x, q).

By Theorem 7.2.1, this is the (k, 1)-th entry of

W (x).A .W (xqS).A .W (xq2S). · · · = W (x).
(

lim
M→∞

M∏
m=1

(A .W (xqmS))
)
.

The desired result therefore follows.

Remark 7.2.2. Results of the same flavor as Theorem 7.2.3 are available in literature for
some other concrete identities; see [124, Section 3] for Gordon’s identities, [74, Section
5] for the Andrews–Göllnitz–Gordon identities, and [107, Section 6] for the Andrews–
Bressoud identities.

7.2.3 Proof of Theorem 7.1.1

To prove Theorem 7.1.1, let us define the associated directed graph of a span one
linked partition ideal I = I (〈Π,L〉, S).

We first define the set of vertices. Since Π = {π1, π2, . . . , πK} is a finite set of
partitions, we may treat each πk as a vertex. We also define the length of πk as the
number of parts in πk and the size of πk as the sum of all parts in πk. In particular, since
π1 is an empty partition so that ](π1) = 0 and |π1| = 0, we may treat π1 as an empty
vertex.

We next define the directed edges in a natural way. For 1 ≤ i, j ≤ K, if πj ∈ L(πi),
then we say that there is an edge from vertex πi to vertex πj . Recall that for any π ∈ Π,
its linking set L(π) is defined to contain the empty partition π1 = ∅. Hence, for each
1 ≤ k ≤ K, there is an edge from vertex πk to vertex π1.
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We call this graph the associated directed graph of I , denoted by G!(I ) =
(V !(I ), E!(I )). In fact, G!(I ) is a modified directed graph described in §7.2.2.

Recall from (6.1.3) that each partition λ in I can be uniquely decomposed as

λ = λ0 ⊕ φS(λ1)⊕ φ2S(λ2)⊕ · · · ⊕ φKS(λK)⊕ φ(K+1)S(∅)⊕ φ(K+2)S(∅)⊕ · · ·

so that λK 6= ∅ as long as λ 6= ∅. Hence, we have a natural bijection to infinite walks in
G!(I ) ending with π1 → π1 → · · · :

w?(λ) = λ0 → λ1 → λ2 → · · · → λK → π1 → π1 → · · · .

Further, if λ is an empty partition, then the resulted infinite walk is simply π1 → π1 → · · · .
Now let us define S to be the shift. Then

x](λ)q|λ| = G (w?(λ) |x, q). (7.2.12)

Hence,
G (x) =

∑
λ∈I

x](λ)q|λ| =
∑

w?∈W?

G (w? |x, q).

The rest follows directly from Theorem 7.2.3.

Example 7.2.1. It is shown in Example 6.1.1 that partitions with difference at least 2
at distance 1 form a span one linked partition ideal I (〈Π,L〉, S) where Π = {∅, 1, 2},
the linking sets are

L(∅) = {∅, 1, 2}, L(1) = {∅, 1, 2}, L(2) = {∅, 2},

and S = 2. We represent its associated directed graph in Figure 7.1.
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Figure 7.1. The associated directed graph in Example 7.2.1

π1

π2 π3

](π1) = 0
|π1| = 0

](π2) = 1
|π2| = 1

](π3) = 1
|π3| = 2

π1 = ∅
π2 = 1
π3 = 2

7.3 q-Multi-summations

7.3.1 A q-Difference System and the Uniqueness of Solutions

Recall that in Theorem 7.1.1 we have shown that
G1(x)
G2(x)

...
GK(x)

 = W (x).
(

lim
M→∞

M∏
m=1

(A .W (xqmS))
)
.


1
0
...
0

 . (7.3.1)

Let us focus on 
F ?

1 (x)
F ?

2 (x)
...

F ?
K(x)

 :=
(

lim
M→∞

M∏
m=1

(A .W (xqmS))
)
.


1
0
...
0

 . (7.3.2)

Notice that 
F ?

1 (x)
F ?

2 (x)
...

F ?
K(x)

 =
(

lim
M→∞

M∏
m=1

(A .W (xqmS))
)
.


1
0
...
0
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= A .W (xqS).
(

lim
M→∞

M∏
m=1

(A .W (xqSqmS))
)
.


1
0
...
0



= A .W (xqS).


F ?

1 (xqS)
F ?

2 (xqS)
...

F ?
K(xqS)

 .

If we further write Fk(x) := F ?
k (xq−S) for each k, then the column vector

F(x) :=


F1(x)
F2(x)

...
FK(x)


satisfies the q-difference system

F(x) = A .W (x).F(xqS). (7.3.3)

Remark 7.3.1. It follows from (7.3.3) that

F(x) = A .W (x).


F ?

1 (x)
F ?

2 (x)
...

F ?
K(x)

 = A .


G1(x)
G2(x)

...
GK(x)

 . (7.3.4)

Recall that, we have defined in Theorem 7.1.1 that, for each 1 ≤ k ≤ K, Ik denotes the
subset of partitions in I (〈Π,L〉, S) whose S-tail is πk. Further, Gk(x) is the generating
function of Ik. Since A is a (0, 1)-matrix, it follows that Fk(x) ∈ Z[[q]][[x]] for each
1 ≤ k ≤ K. More importantly, since the empty partition ∅ is contained in I1 but not in
Ik for 2 ≤ k ≤ K, we have G1(0) = 1 and Gk(0) = 0 for 2 ≤ k ≤ K. Since the entries in
the first column of A are all 1, it follows that

F1(0) = F2(0) = · · · = FK(0) = 1. (7.3.5)
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We next show the uniqueness of solutions of (7.3.3).

Proposition 7.3.1. In the q-difference system (7.3.3), we assume that, for each 1 ≤
k ≤ K, Fk(x) ∈ C[[q]][[x]]. If F1(0) = F2(0) = · · · = FK(0), then there exists a solution
to (7.3.3). Further, the solution is uniquely determined by F(0).

Proof. For each 1 ≤ k ≤ K, let us write

Fk(x) =
∑
n≥0

fk(n)xn,

where fk(n) ∈ C[[q]] for n ≥ 0. We also write for notational convenience that fk(n) = 0
for n < 0. Then,

∑
n≥0

fk(n)xn =
K∑
j=1

Ak,jx
](πj)q|πj |

∑
n≥0

fj(n)qnSxn

=
∑
n≥0

 K∑
j=1

Ak,jq
|πj |+(n−](πj))Sfj(n− ](πj))

xn.
Recall that ](π1) = |π1| = 0 and Ak,1 = 1 for all k. We have that, for n ≥ 0,

fk(n) = qnSf1(n) +
K∑
j=2

Ak,jq
|πj |+(n−](πj))Sfj(n− ](πj)). (7.3.6)

Setting n = 0 gives the requirement F1(0) = F2(0) = · · · = FK(0). Also, F(0) =
(f1(0), f2(0), . . . , fK(0))T uniquely determines fk(n) for all 1 ≤ k ≤ K and n ≥ 1 by
(7.3.6).

7.3.2 Two Examples

Recall that, for each 1 ≤ k ≤ K, Ik denotes the subset of partitions in I (〈Π,L〉, S)
whose S-tail is πk. Further,

Gk(x) =
∑
λ∈Ik

x](λ)q|λ|.

7.3.2.1 Example 1

In the first example, we consider

“partitions with difference at least 2 at distance 1.”

178



This partition set obviously corresponds to the Rogers–Ramanujan identities. In Example
6.1.1, we have shown that it is a span one linked partition ideal I (〈Π,L〉, S) where
Π = {π1, π2, π3} with π1 = ∅, π2 = 1 and π3 = 2, the linking sets are

L(π1) = {π1, π2, π3}, L(π2) = {π1, π2, π3}, L(π3) = {π1, π3},

and S = 2.
Notice that the generating function for partitions with difference at least 2 at distance

1 is
G1(x) + G2(x) + G3(x) =

∑
n≥0

qn
2
xn

(q; q)n
(7.3.7)

and that the generating function for partitions with difference at least 2 at distance 1
with the smallest part ≥ 2 is

G1(x) + G3(x) =
∑
n≥0

qn
2+nxn

(q; q)n
. (7.3.8)

We know from (7.3.4) that

F1(x)
F2(x)
F3(x)

 = A .


G1(x)
G2(x)
G3(x)

 =


1 1 1
1 1 1
1 0 1

 .


G1(x)
G2(x)
G3(x)

 .

Hence, by (7.3.7) and (7.3.8), if we put

F1(x) = F2(x) =
∑
n≥0

qn
2
xn

(q; q)n
(7.3.9)

and

F3(x) =
∑
n≥0

qn
2+nxn

(q; q)n
, (7.3.10)

then we have the following relation from (7.3.3):

F1(x)
F2(x)
F3(x)

 =


1 1 1
1 1 1
1 0 1

 .


1
xq

xq2

 .

F1(xq2)
F2(xq2)
F3(xq2)

 . (7.3.11)
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Conversely, if we are able to prove (7.3.11) directly (notice that F1(0) = F2(0) =
F3(0) = 1), then by Remark 7.3.1 and Proposition 7.3.1, we can compute that


G1(x)
G2(x)
G3(x)

 =


1

xq

xq2

 .

F ?

1 (x)
F ?

2 (x)
F ?

3 (x)



=


1

xq

xq2

 .

F1(xq2)
F2(xq2)
F3(xq2)

 .

Also, (7.3.7) and (7.3.8) can be deduced with no difficulty.

7.3.2.2 Example 2

In the second example, we consider

“partitions with difference at least 3 at distance 2 such that if two consecutive
parts differ by at most 1, then their sum is divisible by 3.”

This partition set corresponds to the Kanade–Russell conjectures I1–I3. It is shown in
§6.3.1 that this partition set is a span one linked partition ideal I (〈Π,L〉, S) where
S = 3, and Π = {π1, π2, . . . , π7} along with the linking sets given as follows.

Π linking set
π1 = ∅ {π1, π2, π3, π4, π5, π6, π7}
π2 = 1 {π1, π2, π3, π4, π5, π6, π7}

π3 = 2 + 1 {π1, π2, π3, π4, π5, π6, π7}
π4 = 3 + 1 {π1, π5, π6, π7}
π5 = 2 {π1, π2, π3, π4, π5, π6, π7}
π6 = 3 {π1, π5, π6, π7}

π7 = 3 + 3 {π1, π6, π7}

It is also shown in §6.3.1 that the generating function for such partitions is

G1(x) + G2(x) + G3(x) + G4(x)

+ G5(x) + G6(x) + G7(x)
=

∑
n1,n2≥0

qn
2
1+3n2

2+3n1n2xn1+2n2

(q; q)n1(q3; q3)n2

, (7.3.12)
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that the generating function for such partitions with the smallest part ≥ 2 is

G1(x) + G5(x) + G6(x) + G7(x) =
∑

n1,n2≥0

qn
2
1+3n2

2+3n1n2+n1+3n2xn1+2n2

(q; q)n1(q3; q3)n2

, (7.3.13)

and that the generating function for such partitions with the smallest part ≥ 3 is

G1(x) + G6(x) + G7(x) =
∑

n1,n2≥0

qn
2
1+3n2

2+3n1n2+2n1+3n2xn1+2n2

(q; q)n1(q3; q3)n2

. (7.3.14)

We know from (7.3.4) that


F1(x)
F2(x)
F3(x)
F4(x)
F5(x)
F6(x)
F7(x)


=



1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 0 0 0 1 1


.



G1(x)
G2(x)
G3(x)
G4(x)
G5(x)
G6(x)
G7(x)


.

Hence, by (7.3.12), (7.3.13) and (7.3.14), if we put

F1(x) = F2(x) = F3(x) = F5(x) =
∑

n1,n2≥0

qn
2
1+3n2

2+3n1n2xn1+2n2

(q; q)n1(q3; q3)n2

, (7.3.15)

F4(x) = F6(x) =
∑

n1,n2≥0

qn
2
1+3n2

2+3n1n2+n1+3n2xn1+2n2

(q; q)n1(q3; q3)n2

(7.3.16)

and

F7(x) =
∑

n1,n2≥0

qn
2
1+3n2

2+3n1n2+2n1+3n2xn1+2n2

(q; q)n1(q3; q3)n2

, (7.3.17)
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then we have the following relation from (7.3.3):


F1(x)
F2(x)
F3(x)
F4(x)
F5(x)
F6(x)
F7(x)


=



1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 0 0 0 1 1


.



1
xq

x2q3

x2q4

xq2

xq3

x2q6


.



F1(xq3)
F2(xq3)
F3(xq3)
F4(xq3)
F5(xq3)
F6(xq3)
F7(xq3)


. (7.3.18)

Conversely, we are also able to recover

(G1(x),G2(x),G3(x),G4(x),G5(x),G6(x),G7(x))T

as well as (7.3.12), (7.3.13) and (7.3.14) provided that we have proved (7.3.18) directly
since F1(0) = F2(0) = · · · = F7(0) = 1.

7.3.3 A Matrix Factorization Problem

Motivated by (7.3.11) and (7.3.18), we turn our interest to a matrix factorization
problem as follows.

Let R be a positive integer. Let α = (αi,j) ∈ MatR×R(N) be a fixed symmetric matrix.
Let A = (Ar) ∈ NR

>0 and γ = (γr) ∈ NR
>0 be fixed.

Let F be a set of q-multi-summations defined by

F :=
{
H(β) : β ∈ ZR and condition (7.3.21) is satisfied

}
, (7.3.19)

where H(β) = H(β1, . . . , βR) is of the form

H(β) :=
∑

n1,...,nR≥0

q
∑R

r=1 αr,rnr(nr−1)/2q
∑

1≤i<j≤R αi,jninjq
∑R

r=1 βrnrx
∑R

r=1 γrnr

(qA1 ; qA1)n1 · · · (qAR ; qAR)nR
(7.3.20)

and the additional condition reads: for all (n1, . . . , nR) ∈ NR\{(0, 0, . . . , 0)},

R∑
r=1

αr,rnr(nr − 1)
2 +

∑
1≤i<j≤R

αi,jninj +
R∑
r=1

βrnr > 0. (7.3.21)
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Now we consider a column functional vector

Fβ(x) =


F1(x)
F2(x)

...
FK(x)

 :=


H(β1)
H(β2)

...
H(β

K
)

 , (7.3.22)

where H(β
k
) ∈ F for all 1 ≤ k ≤ K.

We expect Fβ(x) to satisfy the following factorization property.

Factorization Property. Let U be a (0, 1)-matrix such that all entries in the first
row and column are 1. Let V be a diagonal matrix such that all (diagonal) entries are
monic monomials in x and q with V1,1 = 1. We say that Fβ(x) satisfies the Factorization
Property if

Fβ(x) = U .V .Fβ(xqS) (7.3.23)

for some positive integer S.

Example 7.3.1. In the example in §7.3.2.1, we have α =
(
2
)
, γ = (1), A = (1) and

Fβ(x) =


H(1)
H(1)
H(2)

 .

Also, S = 2.

Example 7.3.2. In the example in §7.3.2.2, we have α =
2 3

3 6

, γ = (1, 2), A = (1, 3)

and

Fβ(x) =



H(1, 3)
H(1, 3)
H(1, 3)
H(2, 6)
H(1, 3)
H(2, 6)
H(3, 6)


.

Also, S = 3.
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7.4 Non-computer-assisted Proofs

The aim of this section is to prove Andrews–Gordon type generating function identities
such as (7.3.12), (7.3.13) and (7.3.14) without computer assistance.

As we have seen in §7.3.2.2, to prove (7.3.12), (7.3.13) and (7.3.14), it suffices to show
(7.3.18).

Our starting point is a recurrence relation enjoyed by H(β1, . . . , βR) defined in (7.3.20).

7.4.1 A Recurrence Relation

Recall that

H(β1, . . . , βR)

=
∑

n1,...,nR≥0

q
∑R

r=1 αr,rnr(nr−1)/2q
∑

1≤i<j≤R αi,jninjq
∑R

r=1 βrnrx
∑R

r=1 γrnr

(qA1 ; qA1)n1 · · · (qAR ; qAR)nR
.

Lemma 7.4.1. For 1 ≤ r ≤ R, we have

H(β1, . . . , βr, . . . , βR) = H(β1, . . . , βr + Ar, . . . , βR)

+ xγrqβrH(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R). (7.4.1)

Proof. We have (recall that α is a symmetric matrix so that αi,j = αj,i for 1 ≤ i, j ≤ R)

H(β1, . . . , βr, . . . , βR)−H(β1, . . . , βr + Ar, . . . , βR)

=
∑

n1,...,nR≥0

q
∑

i
αi,ini(ni−1)/2q

∑
i<j

αi,jninjq
∑

i
βini(1− qnrAr)x

∑
i
γini

(qA1 ; qA1)n1 · · · (qAr ; qAr)nr · · · (qAR ; qAR)nR

=
∑

n1,...,nR≥0
nr≥1

q
∑

i
αi,ini(ni−1)/2q

∑
i<j

αi,jninjq
∑

i
βinix

∑
i
γini

(qA1 ; qA1)n1 · · · (qAr ; qAr)nr−1 · · · (qAR ; qAR)nR

= xγrqβr
∑

n1,...,nR≥0

q
∑

i
αi,ini(ni−1)/2q

∑
i<j

αi,jninjq
∑

i
(βi+αr,i)nix

∑
i
γini

(qA1 ; qA1)n1 · · · (qAr ; qAr)nr · · · (qAR ; qAR)nR
= xγrqβrH(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R).

The desired identity therefore follows.

Remark 7.4.1. It is worth pointing out that the recurrence (7.4.1) and its relations
to sum-like generating functions have connections with the theory of vertex operator
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algebras, especially in the context of principal subspaces of modules. For one recent
example, see (4.71)–(4.81) in [139].

Remark 7.4.2. A recent paper of Ablinger and Uncu [1] also seems to outline some
functionality regarding recurrences for q-multi-summations.

Recall that the Factorization Property says that

Fβ(x) = U .V .Fβ(xqS).

Further, if F (x) = H(β1, . . . , βR), then

F (xqS) = H(β1 + γ1S, . . . , βR + γRS). (7.4.2)

Probably, if we expect to apply Lemma 7.4.1 to deduce Andrews–Gordon type
generating function identities, we need to attach some additional conditions to the
Factorization Property.

Additional Conditions. For all 1 ≤ s ≤ R:

(i). γsS ∈ AsZ;

(ii). for all 1 ≤ r ≤ R, αr,s ∈ AsZ.

7.4.2 Proof of (7.3.11)

We first prove (7.3.11), which is relatively easy.

Theorem 7.4.2. Let

F1(x) = F2(x) =
∑
n≥0

qn
2
xn

(q; q)n
(7.4.3)

and

F3(x) =
∑
n≥0

qn
2+nxn

(q; q)n
. (7.4.4)

Then, 
F1(x)
F2(x)
F3(x)

 =


1 1 1
1 1 1
1 0 1

 .


1
xq

xq2

 .

F1(xq2)
F2(xq2)
F3(xq2)

 (7.4.5)
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We have shown in Example 7.3.1 that in this case S = 2, α =
(
2
)
, γ = (1), A = (1)

and 
F1(x)
F2(x)
F3(x)

 =


H(1)
H(1)
H(2)

 .
Further, it follows from (7.4.2) that

F1(xq2) = F2(xq2) = H(3) (7.4.6)

and

F3(xq2) = H(4). (7.4.7)

To prove (7.4.5), it suffices to show that

F1(x) = F1(xq2) + xqF2(xq2) + xq2F3(xq2) (7.4.8)

and

F3(x) = F1(xq2) + xq2F3(xq2). (7.4.9)

It follows from Lemma 7.4.1 that

F1(x) = H(1)

= H(1 + 1) + xqH(1 + 2)

= H(2) + xqH(3)

=
(
H(2 + 1) + xq2H(2 + 2)

)
+ xqH(3)

= H(3) + xq2H(4) + xqH(3)

= F1(xq2) + xq2F3(xq2) + xqF2(xq2).

Also,

F3(x) = H(2)

= H(2 + 1) + xq2H(2 + 2)

= H(3) + xq2H(4)
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= F1(xq2) + xq2F3(xq2).

Identities (7.4.8) and (7.4.9) are therefore proved.

7.4.3 Proof of (7.3.18)

We next prove (7.3.18).

Theorem 7.4.3. Let

F1(x) = F2(x) = F3(x) = F5(x) =
∑

n1,n2≥0

qn
2
1+3n2

2+3n1n2xn1+2n2

(q; q)n1(q3; q3)n2

, (7.4.10)

F4(x) = F6(x) =
∑

n1,n2≥0

qn
2
1+3n2

2+3n1n2+n1+3n2xn1+2n2

(q; q)n1(q3; q3)n2

(7.4.11)

and

F7(x) =
∑

n1,n2≥0

qn
2
1+3n2

2+3n1n2+2n1+3n2xn1+2n2

(q; q)n1(q3; q3)n2

. (7.4.12)

Then,


F1(x)
F2(x)
F3(x)
F4(x)
F5(x)
F6(x)
F7(x)


=



1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 0 0 0 1 1


.



1
xq

x2q3

x2q4

xq2

xq3

x2q6


.



F1(xq3)
F2(xq3)
F3(xq3)
F4(xq3)
F5(xq3)
F6(xq3)
F7(xq3)


. (7.4.13)

We have shown in Example 7.3.2 that in this case S = 3, α =
2 3

3 6

, γ = (1, 2),

A = (1, 3) and 

F1(x)
F2(x)
F3(x)
F4(x)
F5(x)
F6(x)
F7(x)


=



H(1, 3)
H(1, 3)
H(1, 3)
H(2, 6)
H(1, 3)
H(2, 6)
H(3, 6)


.
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Again, it follows from (7.4.2) that

F1(xq3) = F2(xq3) = F3(xq3) = F5(xq3) = H(4, 9), (7.4.14)

F4(xq3) = F6(xq3) = H(5, 12) (7.4.15)

and

F7(xq3) = H(6, 12). (7.4.16)

To prove (7.4.5), it suffices to show that

F1(x) =

F1(xq3) + xqF2(xq3) + x2q3F3(xq3) + x2q4F4(xq3)

+ xq2F5(xq3) + xq3F6(xq3) + x2q6F7(xq3)

 , (7.4.17)

F4(x) = F1(xq3) + xq2F5(xq3) + xq3F6(xq3) + x2q6F7(xq3) (7.4.18)

and

F7(x) = F1(xq2) + xq3F6(xq3) + x2q6F7(xq3). (7.4.19)

We will adopt the following notation to make our argument more transparent. First,
a term in gray indicates that we will apply Lemma 7.4.1 to this term. Also, if Lemma
7.4.1 is applied to one coordinate, then that coordinate will be shown in boldface. Finally,
the two underlined terms in the next line are deduced from the previous gray term by
Lemma 7.4.1.

It follows from Lemma 7.4.1 that

F1(x) = H(1,3)

= H(1, 6)
:::::::

+ x2q3H(4, 9)
:::::::::::

= H(2, 6)
:::::::

+ xqH(3, 9)
:::::::::

+ x2q3H(4, 9)

= H(3, 6)
:::::::

+ xq2H(4, 9)
::::::::::

+ xqH(3, 9) + x2q3H(4, 9)

= H(3,6) + xq2H(4, 9) + xqH(4, 9)
:::::::::

+ x2q4H(5, 12)
::::::::::::

+ x2q3H(4, 9)

= H(3, 9)
:::::::

+ x2q6H(6, 12)
::::::::::::

+ xq2H(4, 9) + xqH(4, 9) + x2q4H(5, 12)

+ x2q3H(4, 9)
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= H(4, 9)
:::::::

+ xq3H(5, 12)
:::::::::::

+ x2q6H(6, 12) + xq2H(4, 9) + xqH(4, 9)

+ x2q4H(5, 12) + x2q3H(4, 9)

= F1(xq3) + xq3F6(xq3) + x2q6F7(xq3) + xq2F5(xq3) + xqF2(xq3)

+ x2q4F4(xq3) + x2q3F3(xq3).

Also,

F4(x) = H(2, 6)

= H(3,6)
:::::::

+ xq2H(4, 9)
::::::::::

= H(3, 9)
:::::::

+ x2q6H(6, 12)
::::::::::::

+ xq2H(4, 9)

= H(4, 9)
:::::::

+ xq3H(5, 12)
:::::::::::

+ x2q6H(6, 12) + xq2H(4, 9)

= F1(xq3) + xq3F6(xq3) + x2q6F7(xq3) + xq2F5(xq3).

Finally,

F7(x) = H(3,6)

= H(3, 9)
:::::::

+ x2q6H(6, 12)
::::::::::::

= H(4, 9)
:::::::

+ xq3H(5, 12)
:::::::::::

+ x2q6H(6, 12)

= F1(xq3) + xq3F6(xq3) + x2q6F7(xq3).

Identities (7.4.17), (7.4.18) and (7.4.19) are therefore proved.

Figure 7.2. Node H(β1, . . . , βr, . . . , βR) and its children

H(β1, . . . ,βr, . . . , βR)

H(β1, . . . , βr + Ar, . . . , βR) H(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R)
1 xγrqβr

7.4.4 Binary Trees

Interestingly, the previous two proofs can be represented nicely by binary trees. More
precisely, all nodes are of the form H(β1, . . . , βr, . . . , βR). Then Lemma 7.4.1 gives two
children of H(β1, . . . , βr, . . . , βR): the left child is H(β1, . . . , βr + Ar, . . . , βR), weighted
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by 1, and the right child is H(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R), weighted by xγrqβr .
See Figure 7.2.

Now the proofs of (7.3.11) and (7.3.18) can be illustrated by Figures 7.3 and 7.4,
respectively.

Figure 7.3. The binary tree for (7.3.11)

H(1)

H(2)

H(3) H(4)

H(3)
1

1 xq2

xq

Figure 7.4. The binary tree for (7.3.18)

H(1,3)

H(1, 6)

H(2, 6)

H(3,6)

H(3, 9)

H(4, 9) H(5, 12)

H(6, 12)

H(4, 9)

H(3, 9)

H(4, 9) H(5, 12)

H(4, 9)
1

1

1

1

1 xq3

x2q6

xq2

xq

1 xq3

x2q3

In fact, it is relatively easy to deduce other much more complicated identities of the
same flavor as (7.3.11) and (7.3.18). For example, the next result follows from the binary
tree in Figure 7.5.

Theorem 7.4.4. Let

F1(x) = · · · = F6(x)
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=
∑

n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+n1

2 −n2−
n3
2 xn1+2n2+3n3

(q; q)n1(q2; q2)n2(q3; q3)n3

, (7.4.20)

F7(x) = · · · = F13(x)

=
∑

n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+ 3n1

2 +n2+ 5n3
2 xn1+2n2+3n3

(q; q)n1(q2; q2)n2(q3; q3)n3

, (7.4.21)

F14(x) = · · · = F21(x)

=
∑

n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+ 3n1

2 +3n2+ 11n3
2 xn1+2n2+3n3

(q; q)n1(q2; q2)n2(q3; q3)n3

(7.4.22)

and

F22(x) = F23(x)

=
∑

n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+ 5n1

2 +3n2+ 11n3
2 xn1+2n2+3n3

(q; q)n1(q2; q2)n2(q3; q3)n3

. (7.4.23)

Let

A =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
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and

W (x) = diag(1, xq2, xq, x2q3, x2q2, x3q4,

xq3, x2q5, x2q4, x3q7, x2q4, x3q6, x3q5,

x2q7, x2q6, x3q9, x3q8, x3q8, x3q7, x4q10, x4q9,

x3q10, x4q11).

Then, 
F1(x)
F2(x)

...
F23(x)

 = A .W (x).


F1(xq3)
F2(xq3)

...
F23(xq3)

 . (7.4.24)

Remark 7.4.3. It is worth pointing out that the q-multi-summations in this theorem are
similar to those appear in [109, (47) and (51)].

Proof. Let α =


1 2 3
2 6 6
3 6 9

, γ = (1, 2, 3), A = (1, 2, 3) and S = 3. We have

F1(x) = · · · = F6(x) = H(1, 2, 4) x 7→xq3
−−−−→ H(4, 8, 13),

F7(x) = · · · = F13(x) = H(2, 4, 7) x 7→xq3
−−−−→ H(5, 10, 16),

F14(x) = · · · = F21(x) = H(2, 6, 10) x 7→xq3
−−−−→ H(5, 12, 19)

and

F22(x) = F23(x) = H(3, 6, 10) x 7→xq3
−−−−→ H(6, 12, 19).

The rest follows from the binary tree in Figure 7.5.

It looks like one cannot deduce a span one linked partition ideal I (〈Π,L〉, S) from
Theorem 7.4.4. This is because by (7.4.24), we need S = 3. But in the diagonal matrix
W (x), there is a term x2q7, which induces a partition of size 7 that has two parts. This
means that one of the parts is larger than 3. However, for a span one linked partition
ideal, we require that all parts in partitions among Π must not exceed S.

On the other hand, we will show in the next corollary that Theorem 7.4.4 still
corresponds to a partition set.
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Corollary 7.4.5. Let Π = {π1, π2, . . . , π23} be a set of integer partitions where



π1 = ∅ π2 = 2 π3 = 1 π4 = 2 + 1
π5 = 1 + 1 π6 = 2 + 1 + 1

π7 = 3 π8 = 3 + 2 π9 = 2 + 2 π10 = 3 + 2 + 2
π11 = 3 + 1 π12 = 2 + 2 + 2 π13 = 3 + 1 + 1

π14 = 4 + 3 π15 = 3 + 3 π16 = 3 + 3 + 3 π17 = 3 + 3 + 2
π18 = 4 + 2 + 2 π19 = 3 + 2 + 2 π20 = 3 + 3 + 2 + 2 π21 = 3 + 2 + 2 + 2

π22 = 4 + 3 + 3 π23 = 3 + 3 + 3 + 2



.

Let L : Π→ P (Π) where P (Π) is the power set of Π be defined by

L(πi) =



{π1, π2, . . . , π23} for 1 ≤ i ≤ 6,

{π1, π2, π7, π8, π9, π10, π14, π15, π16, π17, π22} for 7 ≤ i ≤ 13,

{π1, π2, π7, π8, π14, π15, π16, π22} for 14 ≤ i ≤ 21,

{π1, π7, π14, π15, π22} for 22 ≤ i ≤ 23.

Let

Cλ : λ0 → λ1 → λ2 → · · · → λK → ∅→ ∅→ · · ·

be a chain such that for all i ≥ 0, λi ∈ Π and λi+1 ∈ L(λi). Let Φλ be an integer partition
induced from Cλ defined as in (6.1.3) with S = 3:

Φλ = λ0 ⊕ φ3(λ1)⊕ φ6(λ2)⊕ · · · ⊕ φ3K(λK)⊕ φ3(K+1)(∅)⊕ φ3(K+2)(∅)⊕ · · · .

Let S be the set of such partitions Φλ. Then,

∑
υ∈S

x](υ)q|υ| =
∑

n1,n2,n3≥0

q
n2

1
2 +3n2

2+
9n2

3
2 +2n1n2+6n2n3+3n3n1+n1

2 −n2−
n3
2 xn1+2n2+3n3

(q; q)n1(q2; q2)n2(q3; q3)n3

. (7.4.25)

Proof. First, it is easy to see that given a chain Cλ, the induced Φλ is indeed an integer
partition. Now we claim that for any two chains Cµ and Cν , we have Φµ = Φν if and only
if Cµ = Cν . Notice that the “if” part is trivial.

We show the “only if” part by contradiction. Namely, we assume that there are two
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chains Cµ 6= Cν such that Φµ = Φν . Let ` be the index such that µ` 6= ν` and µi = νi for
0 ≤ i ≤ `− 1. If neither µ` nor ν` contains a part of size 4, then the parts in Φµ of size
up to 3(`+ 1) are given by ⊕`i=0φ

3i(µi) and similarly the parts in Φν of size up to 3(`+ 1)
are given by ⊕`i=0φ

3i(νi). Since Φµ = Φν and µi = νi for 0 ≤ i ≤ ` − 1 as assumed, it
follows that φ3`(µ`) = φ3`(ν`) so that µ` = ν`. This contradicts the assumption that
µ` 6= ν`. If 4 is a part in one of µ` and ν`, then without loss of generality, we assume
that 4 is a part in µ`. Then µ` ∈ {π14, π18, π22}. Apparently, if 4 is also a part in ν`, we
must have ν` = µ`, which violates the assumption. Now let us assume that 4 is not a
part in ν`. Since Φµ = Φν , we know that 1 must be a part in ν`+1; otherwise, Φν contains
no parts of size 3`+ 4. Thus, ν`+1 ∈ {π3, π4, π5, π6, π11, π13}. Since ν`+1 ∈ L(ν`), we find
that ν` ∈ {π1, π2, π3, π4, π5, π6} and also the parts in Φν of size up to 3(`+ 1) are given
by (⊕`−1

i=0φ
3i(νi))⊕ φ3`(ν`). On the other hand, since µ` ∈ {π14, π18, π22}, the parts in Φµ

of size up to 3(`+ 1) are ⊕`−1
i=0φ

3i(µi) plus one of φ3`(3), φ3`(2 + 2) or φ3`(3 + 3) none of
which could be φ3`(ν`). This implies that Φµ 6= Φν , which leads to a contradiction.

Once we have shown that the induced partitions Φλ are pairwise distinct, the rest
is a simple application of the framework developed in this paper by first constructing
the associated directed graph as in Section 7.2.3. We leave this as an exercise to the
interested reader.

7.5 Open Problems

Our main concern is about the Factorization Property. Recall that U is a (0, 1)-
matrix such that all entries in the first row and column are 1, and V is a diagonal matrix
such that all (diagonal) entries are monic monomials in x and q with V1,1 = 1. The
Factorization Property says that

Fβ(x) = U .V .Fβ(xqS), (7.5.1)

where S is a positive integer and

Fβ(x) =


F1(x)
F2(x)

...
FK(x)

 =


H(β1)
H(β2)

...
H(β

K
)

 ,
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in which H(β) = H(β1, . . . , βR) is of the form

H(β) =
∑

n1,...,nR≥0

q
∑R

r=1 αr,rnr(nr−1)/2q
∑

1≤i<j≤R αi,jninjq
∑R

r=1 βrnrx
∑R

r=1 γrnr

(qA1 ; qA1)n1 · · · (qAR ; qAR)nR
.

Probably we also require the Additional Conditions: for all 1 ≤ s ≤ R:

(i). γsS ∈ AsZ;

(ii). for all 1 ≤ r ≤ R, αr,s ∈ AsZ.

Problem 7.5.1. For given U and V , is it possible to determine if there exist Fβ(x) and
S such that (7.5.1) is true?

We have another problem from a different direction.

Problem 7.5.2. Are there any criteria of Fβ(x) that we are always able to find U , V

and S such that (7.5.1) is true?

The last problem is probably simpler.

Problem 7.5.3. Can we construct a family of U , V , Fβ(x) and S such that (7.5.1)
holds?

If we are able to find such construction, then we may derive a family of span one
linked partition ideals (or at least a family of modified directed graphs) with nice analytic
generation functions.
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Chapter 8 |

Span One Linked Partition Ideals:
Gleißberg’s Identity

This chapter comes from

• S. Chern, On a Rogers–Ramanujan type identity of Gleißberg, preprint. (Ref. [63])

In the previous two chapters, a general theory on span one linked partition ideals is
introduced. Now it is time to return to where the race starts. That is, we will truely
prove a Rogers–Ramanujan type identity, instead of just some Andrews–Gordon type
generating function identities.

8.1 Main Result

Recall that in 1926, Schur [160] proved the following Rogers–Ramanujan type identity.

Theorem 8.1.1 (Schur). Let A(n) denote the number of partitions of n into distinct
parts congruent to ±1 modulo 3.

Let C(n) denote the number of partitions of n such that the difference between two
consecutive parts is at least 3 and greater than 3 if the smaller part is a multiple of 3.

Then,
A(n) = C(n). (8.1.1)

Two years later, in 1928, Gleißberg [84] further provided an extension of Schur’s
identity.

Theorem 8.1.2 (Gleißberg). Let m and r be positive integers with r < m/2. Let Am,r(n)
denote the number of partitions of n into distinct parts congruent to ±r modulo m, and
let Am,r(k, n) denote the number of partitions of n counted by Am,r(n) with k parts.

Let Cm,r(n) denote the number of partitions of n into parts congruent to 0 or ±r
modulo m such that the difference between two consecutive parts is at least m and greater
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than m if the smaller part is a multiple of m. Further , let Cm,r(k, n) denote the number
of partitions of n counted by Cm,r(n) such that the number of parts plus the number of
multiples of m among the parts equals k.

Then,
Am,r(k, n) = Cm,r(k, n). (8.1.2)

The object of this chapter is to not only reprove Gleißberg’s identity but also show
the following analog.

Theorem 8.1.3. Let m be a positive even integer and let r be a positive integer with
r < m/2.

Let Bm,r(n) denote the number of partitions of n into parts congruent to ±r modulo
m appearing exactly once and parts congruent to m

2 or 0 modulo m appearing exactly
twice such that the difference between two consecutive parts that are distinct is at least
m if the smaller part is congruent to ±r modulo m, at least m

2 + r if the smaller part
is congruent to m

2 modulo m, and at least m − r if the smaller part is congruent to 0
modulo m, and let Bm,r(k, n) denote the number of partitions of n counted by Bm,r(n)
with k parts.

Then,
Am,r(k, n) = Bm,r(k, n). (8.1.3)

Remark. For partitions counted by Bm,r, we allow those like (r), (m − r), (m2 ,
m
2 ) or

(m,m). But partitions (r, r) and (m− r,m− r) are not allowed since r and m− r appear
twice. Partitions (m2 ), (m) and (m2 ,m) are not allowed since m

2 and m do not appear
exactly twice, and in the last case the difference conditions are also not satisfied.

Examples. (i). Let m = 4 and r = 1. Partitions of 16 counted by A4,1(16) are 15 + 1,
13 + 3, 11 + 5, 9 + 7 and 7 + 5 + 3 + 1. Partitions of 16 counted by B4,1(16) are
15 + 1, 13 + 3, 11 + 5, 8 + 8 and 6 + 6 + 2 + 2. Hence, A4,1(2, 16) = B4,1(2, 16) = 4,
A4,1(4, 16) = B4,1(4, 16) = 1 and A4,1(k, 16) = B4,1(k, 16) = 0 otherwise.

(ii). Let m = 6 and r = 2. Partitions of 22 counted by A6,2(22) are 22, 20 + 2, 14 + 8,
16 + 4 + 2 and 10 + 8 + 4. Partitions of 22 counted by B6,2(22) are 22, 20 + 2, 14 + 8,
16+3+3 and 10+6+6. Hence, A6,2(1, 22) = B6,2(1, 22) = 1, A6,2(2, 22) = B6,2(2, 22) = 2,
A6,2(3, 22) = B6,2(3, 22) = 2 and A6,2(k, 22) = B6,2(k, 22) = 0 otherwise.
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8.2 In the Setting of Span One Linked Partition Ideals

Let Bm,r(n) denote the set of partitions counted byBm,r(n) and let Bm,r = ∪n≥0Bm,r(n).
We will interpret Bm,r in terms of span one linked partition ideals.

Claim 8.2.1. Bm,r is a span one linked partition ideal I (〈ΠB,LB〉, S) where S = m,
and ΠB = {πB,1, πB,2, πB,3, πB,4, πB,5} along with the linking sets given as follows.

ΠB linking set
πB,1 = ∅ {πB,1, πB,2, πB,3, πB,4, πB,5}
πB,2 = (r) {πB,1, πB,2, πB,3, πB,4, πB,5}

πB,3 = (m2 ,
m
2 ) {πB,1, πB,2, πB,3, πB,4, πB,5}

πB,4 = (m− r) {πB,1, πB,4, πB,5}
πB,5 = (m,m) {πB,1, πB,4, πB,5}

Proof. A straightforward verification tells us that any partition in I (〈ΠB,LB〉, S) is in
Bm,r.

On the other hand, given a partition λ ∈ Bm,r, we decompose it as

λ0 ⊕ φm(λ1)⊕ φm·2(λ2)⊕ · · · ⊕ φmK(λK).

Note that for 0 ≤ k ≤ K, φmk(λk) is simply the collection of parts in λ of size between
mk + 1 and mk +m. First, to ensure the difference conditions, we must have λk ∈ Π for
all k. Now fix some k ≥ 0. If λk = πB,1 = ∅, then there are no parts in λ of size between
mk + 1 and mk +m. Hence, λk+1 can be any partition in ΠB so that λk+1 ∈ LB(πB,1).
If λk = πB,2 = (r), then λ has one part of size mk + r. Now to satisfy the difference
conditions, we have five choices for λk+1 (here we only enumerate parts of size between
m(k + 1) + 1 and m(k + 1) +m):

(i). λ has no parts of size between m(k + 1) + 1 and m(k + 1) +m and hence λk+1 =
∅ = πB,1;

(ii). λ has only one part of size m(k + 1) + r and hence λk+1 = (r) = πB,2;

(iii). λ has only two parts of size m(k + 1) + m
2 and hence λk+1 = (m2 ,

m
2 ) = πB,3;

(iv). λ has only one part of size m(k + 1) +m− r and hence λk+1 = (m− r) = πB,4;

(v). λ has only two parts of size m(k + 1) +m and hence λk+1 = (m,m) = πB,5.

200



Hence, λk+1 ∈ LB(πB,2). For other cases, one has similar arguments. Hence, λ is in
I (〈ΠB,LB〉, S).

Consequently, Bm,r = I (〈ΠB,LB〉, S).

Let Cm,r(n) denote the set of partitions counted by Cm,r(n) and let Cm,r = ∪n≥0Cm,r(n).

Claim 8.2.2. Cm,r is a span one linked partition ideal I (〈ΠC ,LC〉, S) where S = m,
and ΠC = {πC,1, πC,2, πC,3, πC,4} along with the linking sets given as follows.

ΠC linking set
πC,1 = ∅ {πC,1, πC,2, πC,3, πC,4}
πC,2 = (r) {πC,1, πC,2, πC,3, πC,4}

πC,3 = (m− r) {πC,1, πC,3, πC,4}
πC,4 = (m) {πC,1}

Proof. The proof is analogous to that of Claim 8.2.1 and is therefore omitted.

8.3 A Refinement of Lemma 7.4.1

Let us turn to a refinement of Lemma 7.4.1.
As in Lemma 7.4.1, let R be a fixed positive integer. Let the symmetric matrix

α = (αi,j) ∈ MatR×R(N) and the vector A = (Ar) ∈ NR
>0 be fixed. This time we will fix

J vectors γj = (γj,r) ∈ NR
≥0 for j = 1, 2, . . . , J . Let x1, x2, . . . , xJ and q be intermediates

such that the following q-multi-summation H(β) = H(β1, . . . , βR) converges.

H(β) :=
∑

n1,...,nR≥0

q
∑R

r=1 αr,rnr(nr−1)/2q
∑

1≤i<j≤R αi,jninjq
∑R

r=1 βrnr

(qA1 ; qA1)n1 · · · (qAR ; qAR)nR

× x
∑R

r=1 γ1,rnr
1 · · · x

∑R

r=1 γJ,rnr
J . (8.3.1)

Lemma 8.3.1. For 1 ≤ r ≤ R, we have

H(β1, . . . , βr, . . . , βR) = H(β1, . . . , βr + Ar, . . . , βR)

+ x
γ1,r
1 · · ·xγJ,rJ qβrH(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R). (8.3.2)

Proof. We have (recall that α is symmetric so that αi,j = αj,i for 1 ≤ i, j ≤ R)

H(β1, . . . , βr, . . . , βR)−H(β1, . . . , βr + Ar, . . . , βR)
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=
∑

n1,...,nR≥0

q
∑

i
αi,ini(ni−1)/2q

∑
i<j

αi,jninjq
∑

i
βini(1− qnrAr)

(qA1 ; qA1)n1 · · · (qAr ; qAr)nr · · · (qAR ; qAR)nR

× x
∑

i
γ1,ini

1 · · · x
∑

i
γJ,ini

J

=
∑

n1,...,nR≥0
nr≥1

q
∑

i
αi,ini(ni−1)/2q

∑
i<j

αi,jninjq
∑

i
βini

(qA1 ; qA1)n1 · · · (qAr ; qAr)nr−1 · · · (qAR ; qAR)nR

× x
∑

i
γ1,ini

1 · · · x
∑

i
γJ,ini

J

= x
γ1,r
1 · · ·xγJ,rJ qβr

∑
n1,...,nR≥0

q
∑

i
αi,ini(ni−1)/2q

∑
i<j

αi,jninjq
∑

i
(βi+αr,i)ni

(qA1 ; qA1)n1 · · · (qAr ; qAr)nr · · · (qAR ; qAR)nR

× x
∑

i
γ1,ini

1 · · · x
∑

i
γJ,ini

J

= x
γ1,r
1 · · ·xγJ,rJ qβrH(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R).

The desired identity therefore follows.

Like Figure 7.2, the recurrence relation (8.3.2) can be illustrated by a binary tree
shown in Figure 8.1.

Figure 8.1. Node H(β1, . . . , βr, . . . , βR) and its children (refined)

H(β1, . . . ,βr, . . . , βR)

H(β1, . . . , βr + Ar, . . . , βR) H(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R)
1 x

γ1,r
1 · · ·xγJ,rJ qβr

8.4 Generating Functions

8.4.1 Partition Set Bm,r

Let B(x) denote the bivariate generating function

B(x) :=
∑

λ∈Bm,r

x](λ)q|λ| =
∑
n≥0

∑
k≥0

Bm,r(k, n)xkqn. (8.4.1)

Further, for i = 1, 2, . . . , 5, we write Bi(x) := ∑
x](λ)q|λ| where the sum runs through all

partitions λ ∈ Bm,r whose m-tail is πB,i. Noting that πB,i itself is also such a partition,
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hence for each i, we are able to write

Bi(x) = x](πB,i)q|πB,i|F ?
i (x)

for some F ?
i (x) ∈ Z[[q]][[x]] such that F ?

i (0) = 1. Therefore,


B1(x)
B2(x)
B3(x)
B4(x)
B5(x)


=



1
xqr

x2qm

xqm−r

x2q2m


.



F ?
1 (x)
F ?

2 (x)
F ?

3 (x)
F ?

4 (x)
F ?

5 (x)


. (8.4.2)

Further, since Bm,r is a span one linked partition ideal as claimed in Claim 8.2.1, we
have

B1(x)
B2(x)
B3(x)
B4(x)
B5(x)


=



1
xqr

x2qm

xqm−r

x2q2m


.



1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 0 0 1 1
1 0 0 1 1


.



B1(xqm)
B2(xqm)
B3(xqm)
B4(xqm)
B5(xqm)


. (8.4.3)

Substituting (8.4.2) into (8.4.3), replacing x by xq−m and putting Fi(x) = F ?
i (xq−m)

for each i, we have a matrix equation as follows.


F1(x)
F2(x)
F3(x)
F4(x)
F5(x)


=



1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 0 0 1 1
1 0 0 1 1


.



1
xqr

x2qm

xqm−r

x2q2m


.



F1(xqm)
F2(xqm)
F3(xqm)
F4(xqm)
F5(xqm)


. (8.4.4)

Further, we have Fi(0) = F ?
i (0) = 1 for all i.

Theorem 8.4.1. We have

F1(x) = F2(x) = F3(x)

=
∑

n1,n2,n3≥0

xn1+n2+2n3

(qm; qm)n1(qm; qm)n2(qm; qm)n3

× q
m
2 n1(n1−1)+m

2 n2(n2−1)+mn3(n3−1)+mn1n2+mn2n3+mn3n1+rn1+(m−r)n2+mn3 (8.4.5)
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and

F4(x) = F5(x)

=
∑

n1,n2,n3≥0

xn1+n2+2n3

(qm; qm)n1(qm; qm)n2(qm; qm)n3

× q
m
2 n1(n1−1)+m

2 n2(n2−1)+mn3(n3−1)+mn1n2+mn2n3+mn3n1+(m+r)n1+(m−r)n2+2mn3 . (8.4.6)

Proof. We know from Proposition 7.3.1 that it suffices to verify that these triple sum-
mations satisfy (8.4.4) since the right-hand sides of (8.4.5) and (8.4.6) decay to 1 as x
decays to 0.

We choose α =


m m m

m m m

m m 2m

, γ1 = (1, 1, 2) and A = (m,m,m) in (8.3.1). We also

write x1 = x. Then

H(r,m− r,m)

=
∑

n1,n2,n3≥0

xn1+n2+2n3

(qm; qm)n1(qm; qm)n2(qm; qm)n3

× q
m
2 n1(n1−1)+m

2 n2(n2−1)+mn3(n3−1)+mn1n2+mn2n3+mn3n1+rn1+(m−r)n2+mn3

and

H(m+ r,m− r, 2m)

=
∑

n1,n2,n3≥0

xn1+n2+2n3

(qm; qm)n1(qm; qm)n2(qm; qm)n3

× q
m
2 n1(n1−1)+m

2 n2(n2−1)+mn3(n3−1)+mn1n2+mn2n3+mn3n1+(m+r)n1+(m−r)n2+2mn3 .

Further, taking x→ xqm in the above two summations respectively gives H(m+ r, 2m−
r, 3m) and H(2m+ r, 2m− r, 4m).

Now it suffices to show that


H(r,m− r,m)
H(r,m− r,m)
H(r,m− r,m)

H(m+ r,m− r, 2m)
H(m+ r,m− r, 2m)


=



1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 0 0 1 1
1 0 0 1 1


.



1
xqr

x2qm

xqm−r

x2q2m


.



H(m+ r, 2m− r, 3m)
H(m+ r, 2m− r, 3m)
H(m+ r, 2m− r, 3m)
H(2m+ r, 2m− r, 4m)
H(2m+ r, 2m− r, 4m)


.

(8.4.7)
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But this can be illustrated by the binary tree displayed in Figure 8.2.

Finally, B(x) can be represented as follows.

Theorem 8.4.2. We have

B(x) =
∑

n1,n2,n3≥0

xn1+n2+2n3

(qm; qm)n1(qm; qm)n2(qm; qm)n3

× q
m
2 n1(n1−1)+m

2 n2(n2−1)+mn3(n3−1)+mn1n2+mn2n3+mn3n1+rn1+(m−r)n2+mn3 . (8.4.8)

Proof. We have

B(x) = B1(x) + B2(x) + B3(x) + B4(x) + B5(x)

= F ?
1 (x) + xqrF ?

2 (x) + x2qmF ?
3 (x) + xqm−rF ?

4 (x) + x2q2mF ?
5 (x)

= F1(xqm) + xqrF2(xqm) + x2qmF3(xqm) + xqm−rF4(xqm) + x2q2mF5(xqm).

It follows from (8.4.4) that the right-hand side is F1(x). Therefore, B(x) = F1(x) and
the theorem follows from (8.4.5).

Figure 8.2. The binary tree for (8.4.7)

H(r,m− r,m)

H(r,m− r, 2m)

H(m+ r,m− r,2m)

H(m+ r,m− r, 3m)

H(m+ r, 2m− r, 3m) H(2m+ r, 2m− r, 4m)

H(2m+ r, 2m− r, 4m)

H(m+ r, 2m− r, 3m)

H(m+ r, 2m− r, 3m)

1

1

1

1 xqm−r

x2q2m

xqr

x2qm
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8.4.2 Partition Set Cm,r

Let C(x, y) denote the trivariate generating function

C(x, y) :=
∑

λ∈Cm,r

x](λ)y]m(λ)q|λ|, (8.4.9)

where ]m(λ) counts the number of parts in λ that is a multiple of m. Note that the
definition of Cm,r(k, n) indicates that

C(x, x) =
∑
n≥0

∑
k≥0

Cm,r(k, n)xkqn. (8.4.10)

For i = 1, 2, 3, 4, we write Ci(x) = Ci(x, y) := ∑
x](λ)y]m(λ)q|λ| where the sum runs

through all partitions λ ∈ Cm,r whose m-tail is πC,i. Similarly, for each i, we are able to
write

Ci(x) = x](πC,i)y]m(πC,i)q|πC,i|G?
i (x)

for some G?
i (x) ∈ Z[[q]][[x, y]] such that G?

i (0) = 1. Therefore,

C1(x)
C2(x)
C3(x)
C4(x)

 =


1

xqr

xqm−r

xyqm

 .

G?

1(x)
G?

2(x)
G?

3(x)
G?

4(x)

 . (8.4.11)

Also, if we write Gi(x) = G?
i (xq−m) for each i, then Claim 8.2.2 yields the following

matrix equation.
G1(x)
G2(x)
G3(x)
G4(x)

 =


1 1 1 1
1 1 1 1
1 0 1 1
1 0 0 0

 .


1
xqr

xqm−r

xyqm

 .

G1(xqm)
G2(xqm)
G3(xqm)
G4(xqm)

 . (8.4.12)

Again, we have that for all i, Gi(x) decays to 1 as x decays to 0.

Theorem 8.4.3. We have

G1(x) = G2(x)

=
∑

n1,n2,n3≥0

xn1+n2+n3yn3

(qm; qm)n1(qm; qm)n2(qm; qm)n3
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× q
m
2 n1(n1−1)+m

2 n2(n2−1)+mn3(n3−1)+mn1n2+mn2n3+mn3n1+rn1+(m−r)n2+mn3 , (8.4.13)

G3(x)

=
∑

n1,n2,n3≥0

xn1+n2+n3yn3

(qm; qm)n1(qm; qm)n2(qm; qm)n3

× q
m
2 n1(n1−1)+m

2 n2(n2−1)+mn3(n3−1)+mn1n2+mn2n3+mn3n1+(m+r)n1+(m−r)n2+mn3 (8.4.14)

and

G4(x)

=
∑

n1,n2,n3≥0

xn1+n2+n3yn3

(qm; qm)n1(qm; qm)n2(qm; qm)n3

× q
m
2 n1(n1−1)+m

2 n2(n2−1)+mn3(n3−1)+mn1n2+mn2n3+mn3n1+(m+r)n1+(2m−r)n2+2mn3 . (8.4.15)

Proof. We choose α =


m m m

m m m

m m 2m

, γ1 = (1, 1, 1), γ2 = (0, 0, 1) and A = (m,m,m)

in (8.3.1). We also write x1 = x and x2 = y. To prove the desired result, it suffices to
show that


H(r,m− r,m)
H(r,m− r,m)

H(m+ r,m− r,m)
H(m+ r, 2m− r, 2m)

 =


1 1 1 1
1 1 1 1
1 0 1 1
1 0 0 0

 .


1
xqr

xqm−r

xyqm

 .

H(m+ r, 2m− r, 2m)
H(m+ r, 2m− r, 2m)
H(2m+ r, 2m− r, 2m)
H(2m+ r, 3m− r, 3m)

 .
(8.4.16)

Finally, these identities can be verified with the help of the binary tree displayed in
Figure 8.3.

Analogously, it can be seen that C(x, y) = G1(x). Hence, the following result holds.

Theorem 8.4.4. We have

C(x, y)

=
∑

n1,n2,n3≥0

xn1+n2+n3yn3

(qm; qm)n1(qm; qm)n2(qm; qm)n3

× q
m
2 n1(n1−1)+m

2 n2(n2−1)+mn3(n3−1)+mn1n2+mn2n3+mn3n1+rn1+(m−r)n2+mn3 . (8.4.17)

207



Figure 8.3. The binary tree for (8.4.16)

H(r,m− r,m)

H(m+ r,m− r,m)

H(m+ r, 2m− r,m)

H(m+ r, 2m− r, 2m) H(2m+ r, 3m− r, 3m)

H(2m+ r, 2m− r, 2m)

H(m+ r, 2m− r, 2m)
1

1

1 xyqm

xqm−r

xqr

8.5 Proof of Theorems 8.1.2 and 8.1.3

Let Am,r denote the set of partitions into distinct parts congruent to ±r modulo m.
We have

A(x) :=
∑

λ∈Am,r

x](λ)q|λ| =
∑
n≥0

∑
k≥0

Am,r(k, n)xkqn = (−xqr,−xqm−r; qm)∞. (8.5.1)

Theorem 8.5.1. We have

(−xqr,−xqm−r; qm)∞

=
∑

n1,n2,n3≥0

xn1+n2+2n3

(qm; qm)n1(qm; qm)n2(qm; qm)n3

× q
m
2 n1(n1−1)+m

2 n2(n2−1)+mn3(n3−1)+mn1n2+mn2n3+mn3n1+rn1+(m−r)n2+mn3 . (8.5.2)

Proof. We know from (8.4.4) that

F1(x) =
(
1 + xqr + x2qm

)
F1(xqm) +

(
xqm−r + x2q2m

)
F4(xqm) (8.5.3)

and

F4(x) = F1(xqm) +
(
xqm−r + x2q2m

)
F4(xqm). (8.5.4)

It turns out by subtracting (8.5.4) from (8.5.3) that

F4(x) = F1(x)−
(
xqr + x2qm

)
F1(xqm). (8.5.5)
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Substituting (8.5.5) into (8.5.3) yields a recurrence relation satisfied by F1(x).

F1(x) =
(
1 + xqr + x2qm + xqm−r + x2q2m

)
F1(xqm)

−
(
xqm−r + x2q2m

)(
xqm+r + x2q3m

)
F1(xq2m). (8.5.6)

In the recurrence relation (8.5.6), expanding F1(x) as a series in x indicates that
F1(x) is uniquely determined by F1(0). Note also that

[
(−xqr,−xqm−r; qm)∞

]
x=0

= 1 = F1(0).

Hence, to show
(−xqr,−xqm−r; qm)∞ = F1(x), (8.5.7)

it suffices to show

(−xqr,−xqm−r; qm)∞
=
(
1 + xqr + x2qm + xqm−r + x2q2m

)
(−xqm+r,−xq2m−r; qm)∞

−
(
xqm−r + x2q2m

)(
xqm+r + x2q3m

)
(−xq2m+r,−xq3m−r; qm)∞,

or

(
1 + xqr

)(
1 + xqm−r

)(
1 + xqm+r

)(
1 + xq2m−r

)
=
(
1 + xqr + x2qm + xqm−r + x2q2m

)(
1 + xqm+r

)(
1 + xq2m−r

)
−
(
xqm−r + x2q2m

)(
xqm+r + x2q3m

)
,

which is valid.
The desired identity then follows from (8.4.5).

It follows from Theorems 8.4.2, 8.4.4 and 8.5.1 that A(x) = B(x) = C(x, x). Therefore,
we deduce from (8.5.1), (8.4.1) and (8.4.10) that Am,r(k, n) = Bm,r(k, n) = Cm,r(k, n)
for any nonnegative integers n and k.

8.6 Endnotes

We are also able to demonstrate identities concerning certain q-multi-summations.
Here we give one example.
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Theorem 8.6.1. We have

∑
n1,n2≥0

q2n2
1+4n2

2+4n1n2−n1xn1+2n2

(q2; q2)n1(q4; q4)n2

=
∑

n1,n2,n3≥0

q2n2
1+2n2

2+4n2
3+4n1n2+4n2n3+4n3n1−n1+n2xn1+n2+2n3

(q4; q4)n1(q4; q4)n2(q4; q4)n3

(8.6.1)

and

∑
n1,n2≥0

q2n2
1+4n2

2+4n1n2+n1+4n2xn1+2n2

(q2; q2)n1(q4; q4)n2

=
∑

n1,n2,n3≥0

q2n2
1+2n2

2+4n2
3+4n1n2+4n2n3+4n3n1+3n1+n2+4n3xn1+n2+2n3

(q4; q4)n1(q4; q4)n2(q4; q4)n3

. (8.6.2)

Proof. We know from Theorem 8.4.1 with m = 4 and r = 1 that


RHS(8.6.1)(x)
RHS(8.6.1)(x)
RHS(8.6.1)(x)
RHS(8.6.2)(x)
RHS(8.6.2)(x)


=



1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 0 0 1 1
1 0 0 1 1


.



1
xq

x2q4

xq3

x2q8


.



RHS(8.6.1)(xq4)
RHS(8.6.1)(xq4)
RHS(8.6.1)(xq4)
RHS(8.6.2)(xq4)
RHS(8.6.2)(xq4)


.

(8.6.3)
Further, LHS(8.6.1)(0) = RHS(8.6.1)(0) = 1 and LHS(8.6.2)(0) = RHS(8.6.2)(0) = 1.
Hence, to show (8.6.1) and (8.6.2), it suffices to prove



LHS(8.6.1)(x)
LHS(8.6.1)(x)
LHS(8.6.1)(x)
LHS(8.6.2)(x)
LHS(8.6.2)(x)


=



1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 0 0 1 1
1 0 0 1 1


.



1
xq

x2q4

xq3

x2q8


.



LHS(8.6.1)(xq4)
LHS(8.6.1)(xq4)
LHS(8.6.1)(xq4)
LHS(8.6.2)(xq4)
LHS(8.6.2)(xq4)


.

(8.6.4)

Let us choose α =
4 4

4 8

, γ1 = (1, 2) and A = (2, 4), and write x1 = x in (8.3.1).
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Then (8.6.4) is equivalent to


H(1, 4)
H(1, 4)
H(1, 4)
H(3, 8)
H(3, 8)


=



1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 0 0 1 1
1 0 0 1 1


.



1
xq

x2q4

xq3

x2q8


.



H(5, 12)
H(5, 12)
H(5, 12)
H(7, 16)
H(7, 16)


. (8.6.5)

Finally, this matrix equation could be verified by the binary tree displayed in Figure
8.4.

In light of Theorem 8.5.1 with m = 4 and r = 1, we have the following corollary.

Corollary 8.6.2. We have

(−xq; q2)∞ =
∑

n1,n2≥0

q2n2
1+4n2

2+4n1n2−n1xn1+2n2

(q2; q2)n1(q4; q4)n2

=
∑

n1,n2,n3≥0

q2n2
1+2n2

2+4n2
3+4n1n2+4n2n3+4n3n1−n1+n2xn1+n2+2n3

(q4; q4)n1(q4; q4)n2(q4; q4)n3

. (8.6.6)

Figure 8.4. The binary tree for (8.6.5)

H(1,4)

H(1, 8)

H(3,8)

H(3, 12)

H(5, 12) H(7, 16)

H(7, 16)

H(5, 12)

H(5, 12)
1

1

1

1 xq3

x2q8

xq

x2q4
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Chapter 9 |

Rogers–Ramanujan Type Identities:
An Analytic Perspective

This chapter comes from

• C. Wang and S. Chern, Some basic hypergeometric transformations and Rogers–Ramanujan type
identities, Integral Transforms Spec. Funct. 31 (2020), no. 11, 873–890. (Ref. [169])

9.1 Introduction

In the previous three chapters, we have mentioned identities of Rogers–Ramanujan
type in a combinatorial perspective. Now we will turn our attention to analytic Rogers–
Ramanujan type identities, which are generally of the form that a q-series infinite product
equals a q-summation or q-multi-summation.

Our starting point is the following transformation formula.

Theorem 9.1.1. Let An be a complex sequence. Then, under suitable convergence
conditions, we have

∞∑
m=0

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m m∑
n=0

(q−m, qma/x, y; q)n
(y/x; q)n

qnAn

= (axq, xq; q)∞
(aq, x2q; q)∞

∞∑
m=0

(1− aq2m)(a, y; q)m(a/x; q)2m

(1− a)(q, aq/y; q)m(axq; q)2m

(
x2q

y

)m m∑
n=0

(q−m, aqm; q)nqnAn.

(9.1.1)

The derivation of this relation in [169] relies on a q-series expansion formula due to
Liu [129, Theorem 9.1]. However, we will present a different proof at this place. Let us
recall [83, (3.4.7)]:

2φ1

 a, b

aq/b
; q, qx

b2

 = (xq/b, aqx2/b2; q)∞
(aqx/b, qx2/b2; q)∞
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× 8φ7

 ax/b, q(ax/b) 1
2 ,−q(ax/b) 1

2 , (aq) 1
2 ,−(aq) 1

2 , a
1
2 ,−a 1

2 , x

(ax/b) 1
2 ,−(ax/b) 1

2 , x(aq) 1
2/b,−x(aq) 1

2/b, xqa
1
2/b,−xqa 1

2/b, aq/b
; q, qx

b2

 .
(9.1.2)

Proof of Theorem 9.1.1. We simply compare the coefficients of AN for each N ≥ 0 on
both sides. First,

Coefficient of AN on the LHS

=
∑
m≥N

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m (q−m, qma/x, y; q)N
(y/x; q)N

qN

=
∑
m≥N

(a/x; q)m+N(yqN/x; q)m−N(y; q)N
(q; q)m−N(aq/y; q)m

(
x2q

y

)m
qN−mN+(N2 )

= (a/x; q)2N(y; q)N
(aq/y; q)N

(
x2q

y

)N
q−(N2 )

2φ1

 aq2N/x, yqN/x

aqN+1/y
; q, x2

yqN−1


= (a/x; q)2N(y; q)N

(aq/y; q)N

(
x2q

y

)N
q−(N2 ) (aq2N+1x, xq; q)∞

(aq2N+1, x2q; q)∞

×
∑
m≥0

(1− aq2Nq2m)(aq2N , yqN ; q)m(aq2N/x; q)2m

(1− aq2N)(q, aqN+1/y; q)m(axq2N+1; q)2m

(
x2q1−N

y

)m
.

(by (9.1.2) with a 7→ aq2N/x, b 7→ yqN/x and x 7→ yqN)

Also,

Coefficient of AN on the RHS

= (axq, xq; q)∞
(aq, x2q; q)∞

∑
m≥N

(1− aq2m)(a, y; q)m(a/x; q)2m

(1− a)(q, aq/y; q)m(axq; q)2m

(
x2q

y

)m
(q−m, aqm; q)NqN

= (axq, xq; q)∞
(aq, x2q; q)∞

∑
m≥N

(1− aq2m)(a; q)m+N(y; q)m(a/x; q)2m

(1− a)(aq/y; q)m(axq; q)2m(q; q)m−N

(
x2q

y

)m
qN−mN+(N2 )

= (axq, xq; q)∞
(aq, x2q; q)∞

(a; q)2N(y; q)N(a/x; q)2N

(aq/y; q)N(axq; q)2N

(
x2q

y

)N
q−(N2 )

×
∑
m≥0

(1− aq2(m+N))(aq2N , yqN ; q)m(aq2N/x; q)2m

(1− a)(q, aqN+1/y; q)m(axq2N+1; q)2m

(
x2q1−N

y

)m
.

It is easy to see that the two expressions are the same and therefore the desired result
follows.
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9.2 Some q-Transformations and Their Applications

In this section, we apply Theorem 9.1.1 to deduce several new q-transformations and
exhibit their applications to identities of Rogers–Ramanujan type.

9.2.1 q-Transformations

9.2.1.1 Transformation I

Taking (a, x, y, q) = (a2, x2, y2, q2) and

An = (−λ,−λq; q2)n
(q2,−a,−aq, λ2q2; q2)n

in Theorem 9.1.1, we have

∞∑
m=0

(a2/x2, y2/x2; q2)m
(q2, a2q2/y2; q2)m

(
x4q2

y2

)m
5φ4

 q−2m, q2ma2/x2, y2,−λ,−λq
−a,−aq, λ2q2, y2/x2 ; q2, q2


= (a2x2q2, x2q2; q2)∞

(a2q2, x4q2; q2)∞

∞∑
m=0

(1− a2q4m)(a2, y2; q2)m(a2/x2; q2)2m

(1− a2)(q2, a2q2/y2; q2)m(a2x2q2; q2)2m

(
x4q2

y2

)m

× 4φ3

 q−2m, q2ma2,−λ,−λq
−a,−aq, λ2q2 ; q2, q2

 .
Combining the above identity with a formula due to Verma and Jain [168, (5.3)]:

4φ3

 q−2n, a2q2n,−λ,−qλ
−a,−qa, q2λ2 ; q2, q2

 = (−q, a/λ; q)n(−λ)n
(−a, qλ; q)n

,

we arrive at our first transformation formula after simplification.

Transformation 9.2.1.

∞∑
m=0

(a2/x2, y2/x2; q2)m
(q2, a2q2/y2; q2)m

(
x4q2

y2

)m
5φ4

 q−2m, q2ma2/x2, y2,−λ,−λq
−a,−aq, λ2q2, y2/x2 ; q2, q2


= (a2x2q2, x2q2; q2)∞

(a2q2, x4q2; q2)∞

×
∞∑
m=0

(1− a2q4m)(a, a/λ; q)m(y2; q2)m(a2/x2; q2)2m

(1− a2)(q, qλ; q)m(a2q2/y2; q2)m(a2x2q2; q2)2m

(
−x4q2λ

y2

)m
. (9.2.1)
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9.2.1.2 Transformation II

Taking

An = (
√
λ,−
√
λ; q)n

(q,√aq,−√aq, λ; q)n
in Theorem 9.1.1, we have

∞∑
m=0

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m
5φ4

 q−m, qma/x, y,
√
λ,−
√
λ

√
aq,−√aq, λ, y/x

; q, q


= (axq, xq; q)∞
(aq, x2q; q)∞

∞∑
m=0

(1− aq2m)(a, y; q)m(a/x; q)2m

(1− a)(q, aq/y; q)m(axq; q)2m

(
x2q

y

)m

× 4φ3

 q−m, qma/x,
√
λ,−
√
λ

√
aq,−√aq, λ

; q, q
 .

Applying the following identity due to Andrews [13, (4.6)]:

4φ3

 q−n, aqn,
√
λ,−
√
λ

√
aq,−√aq, λ

; q, q
 =


0 if n is odd,

(q, aq/λ; q2)n/2(λ)n/2
(aq, λq; q2)n/2

if n is even,

the second transformation formula follows.

Transformation 9.2.2.

∞∑
m=0

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m
5φ4

 q−m, qma/x, y,
√
λ,−
√
λ

√
aq,−√aq, λ, y/x

; q, q


= (axq, xq; q)∞
(aq, x2q; q)∞

∞∑
m=0

(1− aq4m)(a, aq/λ; q2)m(y; q)2m(a/x; q)4m

(1− a)(q2, qλ; q2)m(aq/y; q)2m(axq; q)4m

(
x4q2λ

y2

)m
. (9.2.2)

9.2.1.3 Transformation III

Taking

An = (a1/3, a1/3e2πi/3, a1/3e4πi/3; q)n
(q,
√
a,−
√
a,
√
aq,−√aq; q)n

in Theorem 9.1.1 gives

∞∑
m=0

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m
6φ5

 q−m, qma/x, y, a1/3, a1/3e2πi/3, a1/3e4πi/3
√
a,−
√
a,
√
aq,−√aq, y/x

; q, q
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= (axq, xq; q)∞
(aq, x2q; q)∞

∞∑
m=0

(1− aq2m)(a, y; q)m(a/x; q)2m

(1− a)(q, aq/y; q)m(axq; q)2m

(
x2q

y

)m

× 5φ4

 q−m, aqm, a1/3, a1/3e2πi/3, a1/3e4πi/3
√
a,−
√
a,
√
aq,−√aq

; q, q
 .

Our third transformation formula comes from the following identity of Andrews [13, (4.7)]:

5φ4

 q−n, aqn, a1/3, a1/3e2πi/3, a1/3e4πi/3
√
a,−
√
a,
√
aq,−√aq

; q, q
=


0 if 3 - n,

(a; q3)n/3(q; q)nan/3
(a; q)n(q3; q3)n/3

if 3 | n.

Transformation 9.2.3.

∞∑
m=0

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m
6φ5

 q−m, qma/x, y, a1/3, a1/3e2πi/3, a1/3e4πi/3
√
a,−
√
a,
√
aq,−√aq, y/x

; q, q


= (axq, xq; q)∞
(aq, x2q; q)∞

∞∑
m=0

(1− aq6m)(a; q3)m(y; q)3m(a/x; q)6m

(1− a)(q3; q3)m(aq/y; q)3m(axq; q)6m

(
ax6q3

y3

)m
. (9.2.3)

9.2.1.4 Other Known Transformations

One could also apply our approach to deduce a handful of known transformation
formulas. Let us present two instances that were first shown in [128].

We first take (a, x, y, q) = (a2, x2, y2, q2) and

An = (−λ,−λq; q2)n
(q2,−aq,−aq2, λ2; q2)n

in Theorem 9.1.1. With the help of an identity due to Verma and Jain [168, (5.4)]:

4φ3

 q−2n, a2q2n,−λ,−λq
−aq,−aq2, λ2 ; q2, q2

 = (−q, qa/λ; q)n(1 + a)(−λ)n
(−a, λ; q)n(1 + aq2n) ,

we obtain a transformation formula that is equivalent to [128, (2.1)].

Transformation 9.2.4.

∞∑
m=0

(a2/x2, y2/x2; q2)m
(q2, a2q2/y2; q2)m

(
x4q2

y2

)m
5φ4

 q−2m, q2ma2/x2, y2,−λ,−λq
−aq,−aq2, λ2, y2/x2 ; q2, q2


= (a2x2q2, x2q2; q2)∞

(a2q2, x4q2; q2)∞
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×
∞∑
m=0

(1− aq2m)(a, aq/λ; q)m(y2; q2)m(a2/x2; q2)2m

(1− a)(q, λ; q)m(a2q2/y2; q2)m(a2x2q2; q2)2m

(
−x4q2λ

y2

)m
. (9.2.4)

On the other hand, we take (a, x, y, q) = (a3, x3, y3, q3) and

An = (aq, aq2, aq3; q3)n
(q3, a3/2q3,−a3/2q3, a3/2q3/2,−a3/2q3/2; q3)n

in Theorem 9.1.1. Then by an identity due to Andrews [13, (4.5)]:

5φ4

 q−n, aqn, a1/3q1/3, a1/3q2/3, a1/3q

a1/2q,−a1/2q, a1/2q1/2,−a1/2q1/2 ; q, q


= (1− a)(1− a1/3q2n/3)(q; q)n(a1/3; q1/3)n(aq)n/3
(1− a1/3)(1− aq2n)(a; q)n(q1/3; q1/3)n

,

we obtain a transformation formula that is equivalent to [128, (2.5)].

Transformation 9.2.5.

∞∑
m=0

(a3/x3, y3/x3; q3)m
(q3, a3q3/y3; q3)m

(
x6q3

y3

)m

× 6φ5

 q−3m, q3ma3/x3, y3, aq, aq2, aq3

a3/2q3,−a3/2q3, a3/2q3/2,−a3/2q3/2, y3/x3 ; q3, q3


= (a3x3q3, x3q3; q3)∞

(a3q3, x6q3; q3)∞

×
∞∑
m=0

(1− aq2m)(a; q)m(y3; q3)m(a3/x3; q3)2m

(1− a)(q; q)m(a3q3/y3; q3)m(a3x3q3; q3)2m

(
ax6q4

y3

)m
. (9.2.5)

9.2.2 Rogers–Ramanujan Type Identities

We are ready to present a number of Rogers–Ramanujan type identities based on
Transformations 9.2.1, 9.2.2 and 9.2.3.

Theorem 9.2.6. We have

2
∑
s,t≥0

(q−1; q2)2sq
8s2+4t2+8st

(q4; q4)t(q2; q2)2s(−1; q2)2s
= (q7, q13, q20; q20)∞

(q4; q4)∞
+ (q9, q11, q20; q20)∞

(q4; q4)∞
, (9.2.6)

∑
s,t≥0

(−1; q)2s(−1)sq3s2+2t2+4st+3s+2t

(q2; q2)t(q2; q2)s(−q; q)2s(q2; q2)s+t
= 1

(q4; q8)∞
(9.2.7)
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and

2
∑
s,t≥0

(−q−1; q2)2s(−1)sq6s2+4t2+8st

(q4; q4)t(q4; q4)s(−1; q2)2s(q2; q4)s+t
= (q7, q9, q16; q16)∞

(q4; q4)∞
+ (q5, q11, q16; q16)∞

(q4; q4)∞
.

(9.2.8)

Proof. We first set x→ 0, y →∞ and λ = −a1/2q−1/2 in (9.2.1) to obtain

∑
s,t≥0

(a1/2q−1/2; q)2sa
4s+2tq4s2+2t2+4st

(q2; q2)t(q2; q2)s(aq; q2)s(−a; q)2s

= 1
(a2q2; q2)∞

∞∑
m=0

(1− a2q4m)(a; q)m
(1− a2)(q; q)m

(−1)ma 9m
2 q5m2− 3m

2 . (9.2.9)

Replacing q by q2 and taking a = 1 in (9.2.9), we then arrive at (9.2.6) by utilizing the
Jacobi triple product identity

∞∑
n=−∞

(−1)nqn2
zn =

∞∏
n=1

(1− zq2n−1)(1− q2n−1/z)(1− q2n). (9.2.10)

On the other hand, we choose x→ 0, y = (aq)1/2 and λ = a1/2q−1/2 in (9.2.1). Then

∑
s,t≥0

(−a1/2q−1/2; q)2s(−1)sa3s+2tq3s2+2t2+4st

(q2; q2)t(q2; q2)s(−a; q)2s(aq; q2)s+t

= 1
(a2q2; q2)∞

∞∑
m=0

(1− a2q4m)(a; q)m
(1− a2)(q; q)m

(−1)ma 7m
2 q4m2− 3m

2 . (9.2.11)

Taking a = q in (9.2.11), we obtain (9.2.7) with the help of (9.2.10). We further replace
q by q2 and take a = 1 in (9.2.11). Then (9.2.8) follows.

Remark 9.2.1. It is notable that by taking a = q, applying the Jacobi triple product
identity (9.2.10) and replacing q2 by q, one may recover the second Rogers–Ramanujan
identity [83, (2.7.4)]:

∑
n≥0

qn
2+n

(q; q)n
= 1

(q2, q3; q5)∞
. (9.2.12)

Theorem 9.2.7. We have

∑
s,t≥0

(−1; q2)sq2s2+t2+2st

(q; q)t(q; q)s(q; q2)s(−1; q)s
= (q9, q11, q20; q20)∞

(q; q)∞
, (9.2.13)
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∑
s,t≥0

(−q; q2)sq2s2+t2+2st+4s+2t

(q; q)t(q; q)2s+1
= (q2, q18, q20; q20)∞

(q; q)∞
, (9.2.14)

∑
s,t≥0

(−1; q2)s(−1)sq 3
2 s

2+t2+2st

(q; q)t(q; q)s(q; q2)s(−1; q)s(q1/2+s; q)t
= (q7, q9, q16; q16)∞

(q; q)∞
(9.2.15)

and

∑
s,t≥0

(−q; q2)s(−1)sq 3
2 s

2+t2+2st+3s+2t

(q; q)t(q; q)2s+1(q3/2+s; q)t
= (q2, q14, q16; q16)∞

(q; q)∞
. (9.2.16)

Proof. In (9.2.2), setting x→ 0, y →∞ and λ = −a1/2, we have

∑
s,t≥0

(−a1/2; q2)sa2s+tq2s2+t2+2st

(q; q)t(q; q)s(aq; q2)s(−a1/2; q)s

= 1
(aq; q)∞

∞∑
m=0

(1− aq4m)(a; q2)m
(1− a)(q2; q2)m

(−1)ma 9m
2 q10m2−m. (9.2.17)

Taking a = 1 and a = q2 in (9.2.17), respectively, we arrive at (9.2.13) and (9.2.14) with
the help of (9.2.10).

Also, one may take x→ 0, y = (aq)1/2 and λ = −a1/2 in (9.2.2). Then

∑
s,t≥0

(−a1/2; q2)s(−1)sa 3
2 s+tq

3
2 s

2+t2+2st

(q; q)t(q; q)s(aq; q2)s(−a1/2; q)s(a1/2qs+1/2; q)t

= 1
(aq; q)∞

∞∑
m=0

(1− aq4m)(a; q2)m
(1− a)(q2; q2)m

(−1)ma 7m
2 q8m2−m. (9.2.18)

We have (9.2.15) and (9.2.16) by taking a = 1 and a = q2 respectively in (9.2.18) and
then using (9.2.10).

Theorem 9.2.8. We have

1 +
∑
s≥1
t≥0

(q3; q3)s−1q
2s2+t2+2st

(q; q)t(q; q)s(q; q)2s−1
= (q21, q24, q45; q45)∞

(q; q)∞
, (9.2.19)

∑
s,t≥0

(q3; q3)sq2s2+t2+2st+6s+3t

(q; q)t(q; q)s(q; q)2s+2
= (q3, q42, q45; q45)∞

(q; q)∞
, (9.2.20)

1 +
∑
s≥1
t≥0

(q6; q6)s−1q
3s2+2t2+4st

(q2; q2)t(q2; q2)s(q2; q2)2s−1(−q2s+1; q2)t
= (q33, q39, q72; q72)∞

(q2; q2)∞
(9.2.21)
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and

∑
s,t≥0

(q3; q3)sq
3
2 s

2+t2+2st+ 9
2 s+3t

(q; q)t(q; q)s(q; q)2s+2(−qs+2; q)t
= (q3, q33, q36; q36)∞

(q; q)∞
. (9.2.22)

Proof. In (9.2.3), we first set x→ 0 and y →∞ to obtain

∑
s,t≥0

(a; q3)sa2s+tq2s2+t2+2st

(q; q)t(q; q)s(a; q)2s

= 1
(aq; q)∞

∞∑
m=0

(1− aq6m)(a; q3)m
(1− a)(q3; q3)m

(−1)ma7mq
45m2−3m

2 . (9.2.23)

Taking a = 1 and a = q3 in (9.2.23) respectively and using (9.2.10), we have (9.2.19) and
(9.2.20).

Further, we take x→ 0 and y = −(aq)1/2 in (9.2.3). Then

∑
s,t≥0

(a; q3)sa
3
2 s+tq

3
2 s

2+t2+2st

(q; q)t(q; q)s(a; q)2s(−a1/2qs+
1
2 ; q)t

= 1
(aq; q)∞

∞∑
m=0

(1− aq6m)(a; q3)m
(1− a)(q3; q3)m

(−1)ma 11
2 mq18m2− 3m

2 . (9.2.24)

Letting a = 1 (with q replaced by q2) and a = q3 in (9.2.24) respectively and using
(9.2.10), we have (9.2.21) and (9.2.22).

9.3 Generalized Transformations and Their Applications

In this section, we establish several generalized transformations based on Theorem
9.1.1 and some formulas due to Verma and Jain [168]. For convenience, we define

Mi :=

0 if i = 0 or −1,

r1 + r2 + · · ·+ ri if i ≥ 1.

We also introduce the following compact notation [69]:

Λ(c)
k

 {xi, yi}
[u, v]


q

:=
v∏
i=u

(xi, yi; q)k
(c/xi, c/yi; q)k

(
c

xiyi

)k
.
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9.3.1 Multiple Rogers–Ramanujan Type Identities

Before introducing our generalized transformations, we first present some multiple
Rogers–Ramanujan type identities to illustrate their power.

Theorem 9.3.1. For t ≥ 1, we have

∑
i,j≥0

∑
r1,r2,...,rt≥0

(−q2Mt ; q2)i
(q; q)i(q; q)j(q; q2)2Mt+i(−q2Mt ; q)i

× q2i2+j2+2ij+(8i+4j)Mt+2(M2
1 +···+M2

t−1)+9M2
t

(q2; q2)r1(q2; q2)r2 · · · (q2; q2)rt

= (q2t+9, q2t+11, q4t+20; q4t+20)∞
(q; q)∞

, (9.3.1)

∑
i,j≥0

∑
r1,r2,...,rt≥0

(−q2Mt+1; q2)i
(q; q)i(q; q)j(q; q2)2Mt+i+1(−q2Mt+1; q)i

× q2i2+j2+2ij+4i+2j+(8i+4j+9)Mt+2(M2
1 +···+M2

t−1+M1+···+Mt−1)+9M2
t

(q2; q2)r1(q2; q2)r2 · · · (q2; q2)rt

= (q2, q4t+18, q4t+20; q4t+20)∞
(q; q)∞

, (9.3.2)

∑
i,j≥0

∑
r1,r2,...,rt≥0

(−q2Mt ; q2)i(−1)i
(q; q)i(q; q)j(q; q2)2Mt+i(−q2Mt ; q)i(qi+2Mt+1/2; q)j

× q
3
2 i

2+j2+2ij+(6i+4j)Mt+2(M2
1 +···+M2

t−1)+7M2
t

(q2; q2)r1(q2; q2)r2 · · · (q2; q2)rt

= (q2t+7, q2t+9, q4t+16; q4t+16)∞
(q; q)∞

(9.3.3)

and

∑
i,j≥0

∑
r1,r2,...,rt≥0

(−q2Mt+1; q2)i(−1)i
(q; q)i(q; q)j(q; q2)2Mt+i+1(−q2Mt+1; q)i(qi+2Mt+3/2; q)i+j

× q
3
2 i

2+j2+2ij+3i+2j+(6i+4j+7)Mt+2(M2
1 +···+M2

t−1+M1+···+Mt−1)+7M2
t

(q2; q2)r1(q2; q2)r2 · · · (q2; q2)rt

= (q2, q4t+14, q4t+16; q4t+16)∞
(q; q)∞

. (9.3.4)

Proof. Letting x→ 0, y →∞, λ = −a1/2 and c1, d1, . . . , ct, dt →∞ in (9.3.14), we have

∑
i,j≥0

∑
r1,r2,...,rt≥0

(−a1/2q2Mt ; q2)ia2i+j+M1+···+Mt−1+ 9
2Mt

(q; q)i(q; q)j(aq; q2)2Mt+i(−a1/2q2Mt ; q)i
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× q2i2+j2+2ij+(8i+4j)Mt+2(M2
1 +···+M2

t−1)+9M2
t

(q2; q2)r1(q2; q2)r2 · · · (q2; q2)rt

= 1
(aq; q)∞

∞∑
m=0

(1− aq4m)(a; q2)m
(1− a)(q2; q2)m

(−1)ma( 9
2 +t)mq2(t+5)m2−m. (9.3.5)

Taking a = 1 and a = q2 in (9.3.5) respectively and using the Jacobi triple product
identity (9.2.10), we have (9.3.1) and (9.3.2).

On the other hand, we set x→ 0, y = (aq)1/2, λ = −a1/2 and c1, d1, . . . , ct, dt →∞
in (9.3.14). Then

∑
i,j≥0

∑
r1,r2,...,rt≥0

(−a1/2q2Mt ; q2)i(−1)ia 3
2 i+j+M1+···+Mt−1+ 7

2Mt

(q; q)i(q; q)j(aq; q2)2Mt+i(−a1/2q2Mt ; q)i(a1/2qi+2Mt+1/2; q)j

× q
3
2 i

2+j2+2ij+(6i+4j)Mt+2(M2
1 +···+M2

t−1)+7M2
t

(q2; q2)r1(q2; q2)r2 · · · (q2; q2)rt

= 1
(aq; q)∞

∞∑
m=0

(1− aq4m)(a; q2)m
(1− a)(q2; q2)m

(−1)ma( 7
2 +t)mq2(t+4)m2−m. (9.3.6)

Taking a = 1 and a = q2 in (9.3.6), and then using (9.2.10), one has (9.3.3) and
(9.3.4).

Theorem 9.3.2. For t ≥ 1, we have

1 +
∑
i,j≥0

∑
r1,r2,...,rt≥0
(i,r1,...,rt)6=0

(q3; q3)2Mt+i−1

(q; q)i(q; q)j(q; q)6Mt+2i−1

× q2i2+j2+2ij+(12i+6j)Mt+3(M2
1 +···+M2

t−1)+21M2
t

(q3; q3)r1(q3; q3)r2 · · · (q3; q3)rt

= (q3t+21, q3t+24, q6t+45; q6t+45)∞
(q; q)∞

, (9.3.7)

∑
i,j≥0

∑
r1,r2,...,rt≥0

(q3; q3)2Mt+i

(q; q)i(q; q)j(q; q)6Mt+2i+2

× q2i2+j2+2ij+6i+3j+(12i+6j+21)Mt+3(M2
1 +···+M2

t−1+M1+···+Mt−1)+21M2
t

(q3; q3)r1(q3; q3)r2 · · · (q3; q3)rt

= (q3, q6t+42, q6t+45; q6t+45)∞
(q; q)∞

, (9.3.8)

∑
i,j≥0

∑
r1,r2,...,rt≥0

(q3; q3)2Mt+i−1a
3
2 i+j+M1+···+Mt−1+ 11

2 Mt

(q; q)i(q; q)j(q; q)6Mt+2i−1(−q3Mt+i+1/2; q)j

× q
3
2 i

2+j2+2ij+(9i+6j)Mt+3(M2
1 +···+M2

t−1)+ 33
2 M

2
t

(q3; q3)r1(q3; q3)r2 · · · (q3; q3)rt
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= (q6t+33, q6t+39, q12t+72; q12t+72)∞
(q2; q2)∞

(9.3.9)

and

∑
i,j≥0

∑
r1,r2,...,rt≥0

(q3; q3)2Mt+i

(q; q)i(q; q)j(q; q)6Mt+2i+2(−q3Mt+i+2; q)j

× q
3
2 i

2+j2+2ij+ 9
2 i+3j+(9i+6j+ 33

2 )Mt+3(M2
1 +···+M2

p−1+M1+···+Mt−1)+ 33
2 M

2
t

(q3; q3)r1(q3; q3)r2 · · · (q3; q3)rt

= (q3, q6t+33, q6t+36; q6t+36)∞
(q2; q2)∞

. (9.3.10)

Proof. We set x→ 0, y →∞ and c1, d1, . . . , ct, dt →∞ in (9.3.15). Then

∑
i,j≥0

∑
r1,r2,...,rt≥0

(a; q3)2Mt+ia
2i+j+M1+···+Mt−1+7Mt

(q; q)i(q; q)j(a; q)6Mt+2i

× q2i2+j2+2ij+(12i+6j)Mt+3(M2
1 +···+M2

t−1)+21M2
t

(q3; q3)r1(q3; q3)r2 · · · (q3; q3)rt

= 1
(aq; q)∞

∞∑
m=0

(a; q3)n(1− aq6m)
(q3; q3)m(1− a) (−1)ma(t+7)mq( 45

2 +3t)m2− 3
2m. (9.3.11)

Taking a = 1 and a = q3 in (9.3.11), and using (9.2.10), we have (9.3.7) and (9.3.8).
Further, letting x→ 0, y = (aq)1/2 and c1, d1, . . . , ct, dt →∞ in (9.3.15), we have

∑
i,j≥0

∑
r1,r2,...,rt≥0

(a; q3)2Mt+ia
3
2 i+j+M1+···+Mt−1+ 11

2 Mt

(q; q)i(q; q)j(a; q)6Mt+2i(−a1/2q3Mt+i+1/2; q)j

× q
3
2 i

2+j2+2ij+(9i+6j)Mt+3(M2
1 +···+M2

t−1)+ 33
2 M

2
t

(q3; q3)r1(q3; q3)r2 · · · (q3; q3)rt

= 1
(aq; q)∞

∞∑
m=0

(a; q3)n(1− aq6m)
(q3; q3)m(1− a) (−1)ma(t+ 11

2 )mq(18+3t)m2− 3
2m. (9.3.12)

Taking a = 1 (with q replaced by q2) and a = q3 in (9.3.12), and using (9.2.10), one has
(9.3.9) and (9.3.10).
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9.3.2 Generalized q-Transformations

9.3.2.1 Transformation I

We first take

An =
[n/2]∑
k=0

(q, aq/λ; q2)kλkqk(2k−1)

(aq2k, q; q)2k(aq4k+1, q; q)n−2k(aq, qλ; q2)k
Λ(aq2)
k

 {ci, di}
[1, t]


q2

in Theorem 9.1.1. Then

∞∑
m=0

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m m∑
n=0

(q−m, qma/x, y; q)nqn
(y/x; q)n

×
[n/2]∑
k=0

(q, aq/λ; q2)kλkqk(2k−1)

(aq2k, q; q)2k(aq4k+1, q; q)n−2k(aq, qλ; q2)k
Λ(aq2)
k

 {ci, di}
[1, t]


q2

= (axq, xq; q)∞
(aq, x2q; q)∞

∞∑
m=0

(1− aq2m)(a, y; q)m(a/x; q)2m

(1− a)(q, aq/y; q)m(axq; q)2m

(
x2q

y

)m

×
m∑
n=0

(q−m, aqm; q)nqn

×
[n/2]∑
k=0

(q, aq/λ; q2)kλkqk(2k−1)

(aq2k, q; q)2k(aq4k+1, q; q)n−2k(aq, qλ; q2)k
Λ(aq2)
k

 {ci, di}
[1, t]


q2

.

Interchanging the last two summations on both sides yields

∞∑
m=0

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m m∑
k=0

(q, aq/λ; q2)kλkqk(2k−1)

(aq2k, q; q)2k(aq, qλ; q2)k

× Λ(aq2)
k

 {ci, di}
[1, t]


q2

m∑
n=2k

(q−m, qma/x, y; q)nqn
(aq4k+1, q; q)n−2k(y/x; q)n

= (axq, xq; q)∞
(aq, x2q; q)∞

∞∑
m=0

(1− aq2m)(a, y; q)m(a/x; q)2m

(1− a)(q, aq/y; q)m(axq; q)2m

(
x2q

y

)m

×
m∑
k=0

(q, aq/λ; q2)kλkqk(2k−1)

(aq2k, q; q)2k(aq, qλ; q2)k
Λ(aq2)
k

 {ci, di}
[1, t]


q2

m∑
n=2k

(q−m, aqm; q)nqn
(aq4k+1, q; q)n−2k

.

It follows that

∞∑
m=0

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m m∑
k=0

(q, aq/λ; q2)kλkq2k(k+1)

(aq2k, q; q)2k(aq, qλ; q2)k
Λ(aq2)
k

 {ci, di}
[1, t]


q2
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× (q−m, qma/x, y; q)2k

(y/x; q)2k
3φ2

 q−m+2k, aqm+2k/x, yq2k

aq4k+1, yq2k/x
; q, q


= (axq, xq; q)∞

(aq, x2q; q)∞

∞∑
m=0

(1− aq2m)(a, y; q)m(a/x; q)2m

(1− a)(q, aq/y; q)m(axq; q)2m

(
x2q

y

)m

×
m∑
k=0

(q, aq/λ; q2)kλkq2k(k+1)(q−m, aqm; q)2k

(aq2k, q; q)2k(aq, qλ; q2)k
Λ(aq2)
k

 {ci, di}
[1, t]


q2

× 2φ1

 q−m+2k, aqm+2k

a2q4k+1 ; q, q
 .

Applying the q-Pfaff–Saalschütz identity

3φ2

 q−n, a, b

c, abc−1q1−n ; q, q
 = (c/a, c/b; q)n

(c, c/ab; q)n
, (9.3.13)

we have

3φ2

 q−m+2k, aqm+2k/x, yq2k

aq4k+1, yq2k/x
; q, q


= (xq−m+2k+1; q)m−2k(aq2k+1/y; q)m−2k

(aq4k+1; q)m−2k(xq−m+1/y; q)m−2k

= (1/x; q)m−2k(aq2k+1/y; q)m−2k(yq2k)m−2k

(aq4k+1; q)m−2k(yq2k/x; q)m−2k
.

Notice also that the inner summation on the right-hand side equals 0 when m 6= 2k.
Hence,

∞∑
m=0

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m m∑
k=0

(q, aq/λ; q2)kλkq2k2

(aq2k, q; q)2k(aq, qλ; q2)k
Λ(aq2)
k

 {ci, di}
[1, t]


q2

× (q−m, qma/x, y; q)2k

(y/x; q)2k

(1/x; q)m−2k(aq2k+1/y; q)m−2k(yq2k)m−2k

(aq4k+1; q)m−2k(yq2k/x; q)m−2k

= (axq, xq; q)∞
(aq, x2q; q)∞

∞∑
m=0

(1− aq4m)(a, aq/λ; q2)m(y; q)2m(a/x; q)4m

(1− a)(q2, qλ; q2)m(aq/y; q)2m(axq; q)4m

(
x4λq2

y2

)m

× Λ(aq2)
m

 {ci, di}
[1, t]


q2

.
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After simplification, we have

∞∑
m=0

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m (1/x, aq/y; q)mym
(aq, y/x; q)m

×
m∑
k=0

(1− aq4k)(a, aq/λ; q2)k(qma/x, y, q−m; q)2kλ
kq2k2

(1− a)(q2, qλ; q2)k(xq−m+1, aq/y, aqm+1; q)2k

(
λx2q2

y2

)k

× Λ(aq2)
k

 {ci, di}
[1, t]


q2

= (axq, xq; q)∞
(aq, x2q; q)∞

∞∑
m=0

(1− aq4m)(a, aq/λ; q2)m(y; q)2m(a/x; q)4m

(1− a)(q2, qλ; q2)m(aq/y; q)2m(axq; q)4m

(
x4λq2

y2

)m

× Λ(aq2)
m

 {ci, di}
[1, t]


q2

.

With the aid of [168, (4.3)], we arrive at the first generalized transformation.

Transformation 9.3.3.

∞∑
m=0

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m ∑
r1,r2...,rt≥0

t∏
j=1

( aq2

cjdj
; q2)rj (cj , dj ; q2)Mj−1

(q2; q2)rj (aq
2

cj
, aq

2

dj
; q2)Mj

(ajq2j)rt−j+1

(cjdj)Mj−1

× (aq/λ; q2)Mt(q−m, aqm/x, y; q)2Mt(−λ)MtqM
2
t

(aq; q2)2Mt(λq; q2)Mt(y/x; q)2Mta
Mt

× 5φ4

 q−m+2Mt , aqm+2Mt/x, yq2Mt ,
√
λqMt ,−

√
λqMt

a1/2q1/2+2Mt ,−a1/2q1/2+2Mt , λq2Mt , yq2Mt/x
; q, q


= (axq, xq; q)∞

(aq, x2q; q)∞

∞∑
m=0

(1− aq4m)(a, aq/λ; q2)m(y; q)2m(a/x; q)4m
(1− a)(q2, λq; q2)m(aq/y; q)2m(axq; q)4m

× Λ(aq2)
m

 {ci, di}
[1, t]


q2

(
λx4q2

y2

)m
. (9.3.14)

Remark 9.3.1. Transformation (9.3.14) reduces to (9.2.2) when t = 0.

We prove the next two transformation formulas in a similar way to that of (9.3.14);
the details will be omitted.
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9.3.2.2 Transformation II

Taking

An =
[n/3]∑
k=0

(−1)kq3k(3k−1)/2(a; q3)kak
(a; q)6k(aq6k+1, q; q)n−3k(q3; q3)k

Λ(aq3)
k

 {ci, di}
[1, t]


q3

in Theorem 9.1.1, and applying [168, (4.5)], we obtain the second generalized transforma-
tion.

Transformation 9.3.4.

∞∑
m=0

(a/x, y/x; q)m
(q, aq/y; q)m

(
x2q

y

)m ∑
r1,r2...,rt≥0

t∏
j=1

( aq3

cjdj
; q3)rj (cj , dj ; q3)Mj−1

(q3; q3)rj (aq
3

cj
, aq

3

dj
; q3)Mj

(ajq3j−3)rt−j+1

(cjdj)Mj−1

× (a; q3)2Mt(q−m, aqm/x, y; q)3Mtq
3Mt(Mt+1)

(a; q)6Mt(y/x; q)3Mt

× 6φ5

 q−m+3Mt , aqm+3Mt/x, yq3Mt , a1/3q2Mt , a1/3e2πi/3q2Mt , a1/3e4πi/3q2Mt

√
aq3Mt ,−

√
aq3Mt ,

√
aqq3Mt ,−√aqq3Mt , yq3Mt/x

; q, q


= (axq, xq; q)∞

(aq, x2q; q)∞

∞∑
m=0

(a; q3)m(1− aq6m)(y; q)3m(a/x; q)6m
(q3; q3)m(1− a)(aq/y; q)3m(axq; q)6m

(
ax6q3

y3

)m

× Λ(aq3)
m

 {ci, di}
[1, t]


q3

. (9.3.15)

Remark 9.3.2. When t = 0, (9.3.15) reduces to (9.2.3). It is also necessary to point
out that there are two typos in [168, (4.5)]: (aq3; q3)2Mp−4 and (aq; q)6Mp−4 should be
(a; q3)2Mp−4 and (a; q)6Mp−4 , respectively.

9.3.2.3 Transformation III

Taking (a, x, y, q) = (a2, x2, y2, q2) and

An =
n∑
k=0

(−q, aq/λ; q)k(1 + a)λkqk(k−1)

(a2q2k, q2; q2)k(a2q4k+2, q2; q2)n−k(−a, λ; q)k(1 + aq2k)Λ(aq)
k

 {ci, di}
[1, t]


q

in Theorem 9.1.1 and applying [168, (4.1)], we obtain the following generalized transfor-
mation that is equivalent to [128, (2.3)].
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Transformation 9.3.5.

∞∑
m=0

(a2/x2, y2/x2; q)m
(q2, a2q2/y2; q2)m

(
x4q2

y2

)m ∑
r1,r2,...,rt≥0

t∏
j=1

( aq
cj ,dj

; q)rj (cj , dj ; q)Mj−1

(q; q)j(aq/cj , aq/dj ; q)Mj

(ajqj+1)rt−j+1

(cjdj)Mj−1

× (aq/λ; q)Mt(a2q2m/x2, y2, q−2m; q2)Mt(−λ)MtqMt(Mt−1)/2

(−aq; q)2Mt(λ; q)Mt(y2/x2; q2)Mta
Mt

× 5φ4

 q−2m+2Mt , q2m+2Mta2/x2, y2q2Mt ,−λqMt ,−λq1+Mt

−aq1+2Mt ,−aq2+2Mt , λ2q2+2Mt , q2Mty2/x2 ; q2, q2


= (a2x2q2, x2q2; q2)∞

(a2q2, x4q2; q2)∞

∞∑
m=0

(1− aq2m)(a, aq/λ; q)m(y2; q2)m(a2/x2; q2)2m
(1− a)(q, λ; q)m(a2q2/y2; q2)m(a2x2q2; q2)2m

× Λ(aq)
m

 {ci, di}
[1, t]


q

(−λx4q2

y2

)m
. (9.3.16)

Remark 9.3.3. Transformation (9.3.16) reduces to (9.2.4) when t = 0.
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Part III |
Asymptotics
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Outline

• Chapter 10 is devoted to a refined Meinardus-type method with its application to
square-root partitions into distinct parts.

• Chapters 11–13 are devoted to asymptotics for coefficients in modular infinite products
that concern either Dedekind eta function or Jacobi theta function with the assistance
of Rademacher’s circle method.

• Chapter 14 is devoted to nonmodular infinite products that arise from a conjecture of
Seo and Yee.
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Chapter 10 |

The Square-root Partition into Distinct Parts

This chapter comes from

• S. Chern, Note on the square-root partition into distinct parts, Ramanujan J. 54 (2021), no. 2,
449–461. (Ref. [55])

10.1 Introduction

The square-root partition, which is a partition into parts with the order {b
√

1c, b
√

2c,
b
√

3c, . . ., b
√
kc, . . .}, was introduced by Balasubramanian and Luca [33]. For example,

1 has three square-root partitions: b
√

1c, b
√

2c, and b
√

3c. Let r(n) be the number of
square-root partitions of n. It is not hard to see that r(n) has generating function:

∑
n≥0

r(n)qn =
∏
k≥1

1
(1− qk)2k+1 .

In [131], Luca and Ralaivaosaona studied the asymptotic behavior of r(n). They showed
that, as n→∞,

r(n) =
(
1 + o(1)

)
25/183−1/2π−1/2ζ(3)7/18n−8/9

× exp
3ζ(3)1/3

21/3 n2/3 + ζ(2)
22/3ζ(3)1/3n

1/3 − ζ(2)2

24ζ(3) + 2ζ ′(−1) + ζ ′(0)
,

where as usual ζ(·) is the Riemann zeta function.
In general, if we are given a prescribed ordered set of parts, then apart from partitions

into parts in this set, we are often interested in partitions into distinct parts as well.
In the square-root partition case, we will assume that, for instance, b

√
1c, b

√
2c, and

b
√

3c are different parts, although they have the same numerical value. Let rD(n) be
the number of square-root partitions of n into distinct parts. One would see that the
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generating function of rD(n) is

F (q) :=
∑
n≥0

rD(n)qn =
∏
k≥1

(1 + qk)2k+1 =
∏
k≥1

(1− q2k)2k+1

(1− qk)2k+1 . (10.1.1)

Similar to the asymptotic formula of r(n), we will prove the following result.

Theorem 10.1.1. As n→∞, we have that

rD(n) =
(
1 + o(1)

)
2−7/63−1/3π−1/2ζ(3)1/6n−2/3

× exp
34/3ζ(3)1/3

2 n2/3 + ζ(2)
2 · 31/3ζ(3)1/3n

1/3 − ζ(2)2

72ζ(3)

. (10.1.2)

We remark that for a general infinite product

∏
k≥1

1
(1− qk)ak ,

where a1, a2, . . . is a “nice” sequence of non-negative integers, Meinardus’ theorem [134]
is a powerful tool to study the asymptotic behavior of its Taylor coefficients. A delicate
presentation of Meinardus’ approach is given in Chapter 6 of George Andrews’ book
The theory of partitions [12]. However, Meinardus’ original theorem requires that the
associated Dirichlet series of the sequence (ak)k≥1,

D(s) :=
∑
k≥1

ak
ks
,

has only one simple pole. But if D(s) has multiple singularities, Meinardus’ approach is
still admissible, provided that we make suitable adjustments. A general result on such
case was given by Granovsky and Stark [88], but the computation of coefficients is not
explicit there. In this chapter, we are going to give a more transparent account of the
generalization of Meinardus’ approach, using rD(n) as a specific example.
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10.2 Outline of the Proof

10.2.1 Cauchy’s Integral Formula

Recall that Cauchy’s integral formula indicates that

rD(n) = 1
2πi

∫
|q|=e−x

F (q)
qn+1 dq.

Making the change of variables q = e−τ with τ = x+ 2πiy, reversing the integral order
and writing f(τ) = F (e−τ ), we obtain

rD(n) = enx
∫
|y|≤ 1

2

f(τ)e2πiny dy. (10.2.1)

Note that here
f(τ) =

∏
k≥1

(1− e−2kτ )2k+1

(1− e−kτ )2k+1 . (10.2.2)

10.2.2 The Saddle Point Method

Let us begin with an estimate of f(τ), the proof of which will be given in §§10.3 and
10.4.

Theorem 10.2.1. Let τ = x+ 2πiy. For 0 < x < 1/2, we have that

(i) For |Arg(τ)| ≤ π/4,

log f(τ) = 3ζ(3)
2 τ−2 + ζ(2)

2 τ−1 − 2 log 2
3 +O(x1/2). (10.2.3)

(ii) For π/4 ≤ |Arg(τ)| ≤ π/2,

|f(τ)| < f(x)e− 1
22x . (10.2.4)

Now we apply the saddle point method to study the asymptotics of rD(n). To do so,
we need to roughly minimize enxf(τ). In light of (10.2.3), it is enough to minimize

nx+ 3ζ(3)
2 x−2 + ζ(2)

2 x−1.
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Taking derivatives, setting to 0 and multiplying both sides by x3, one has

nx3 − ζ(2)
2 x− 3ζ(3) = 0. (10.2.5)

Let X be the unique positive root. Then

X =
(
1 + o(1)

)
3

√
3ζ(3)
n

. (10.2.6)

Also, it can be computed that (see §10.5 for a proof):

X−1 = 1
(3ζ(3))1/3n

1
3 − ζ(2)

18ζ(3) + ζ(2)2

36(3ζ(3))5/3n
− 1

3 +O(n− 2
3 ). (10.2.7)

Recall that
rD(n) = enX

∫
|y|≤ 1

2

f(X + 2πiy)e2πiny dy.

Let us split the integral into two pieces.

rD(n) = enX

∫
|y|≤X11/6

+
∫
X11/6≤|y|≤ 1

2

f(X + 2πiy)e2πiny dy

=: I1 + I2. (10.2.8)

For convenience, we shall still write τ = X + 2πiy.

10.2.3 The Main Term

Let us first compute the main term I1. Note that when |y| ≤ X11/6, it follows from
Part (i) of Theorem 10.2.1 that, as n→∞,

log f(τ) = 3ζ(3)
2 τ−2 + ζ(2)

2 τ−1 − 2 log 2
3 +O(X1/2).

We have the expansions

τ−2 = 1
X2 −

4πiy
X3 −

12π2y2

X4 +O(X1/2) (10.2.9)

and
τ−1 = 1

X
− 2πiy

X2 −
4π2y2

X3 +O(X3/2). (10.2.10)
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Hence,

f(τ)e2πiny =
(
1 + o(1)

)
2−2/3 exp

3ζ(3)
2

(
1
X2 −

4πiy
X3 −

12π2y2

X4

)

+ ζ(2)
2

(
1
X
− 2πiy

X2 −
4π2y2

X3

)
+ 2πiny


=
(
1 + o(1)

)
2−2/3 exp

(3ζ(3)
2X2 + ζ(2)

2X

)
−
(

3ζ(3)
X3 + ζ(2)

2X2 − n
)

2πiy

−
(

9ζ(3)
2X4 + ζ(2)

2X3

)
4π2y2

.
It follows from (10.2.5) that

f(τ)e2πiny =
(
1 + o(1)

)
2−2/3 exp

(3ζ(3)
2X2 + ζ(2)

2X

)
−
(

9ζ(3)
2X4 + ζ(2)

2X3

)
4π2y2

.
Hence,

I1 = enX
∫
|y|≤X11/6

f(τ)e2πiny dy

=
(
1 + o(1)

)
2−2/3 exp

nX + 3ζ(3)
2X2 + ζ(2)

2X


×
∫
|y|≤X11/6

exp
− (9ζ(3)

2X4 + ζ(2)
2X3

)
4π2y2

 dy.

It follows from (10.2.5) and (10.2.7) that

exp
nX + 3ζ(3)

2X2 + ζ(2)
2X

 = exp
3ζ(3)

X2 + ζ(2)
2X + 3ζ(3)

2X2 + ζ(2)
2X


=
(
1 + o(1)

)
exp

34/3ζ(3)1/3

2 n2/3 + ζ(2)
2 · 31/3ζ(3)1/3n

1/3 − ζ(2)2

72ζ(3)

.
Further, making the change of variables u = κy with

κ = 2π
√

9ζ(3)
2X4 + ζ(2)

2X3 ,
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one has

∫
|y|≤X11/6

exp
− (9ζ(3)

2X4 + ζ(2)
2X3

)
4π2y2

 dy = κ−1
∫
|u|≤κX11/6

e−u
2
du. (10.2.11)

Note that κX11/6 � X−1/6 →∞ as n→∞ (so that X → 0). Hence,
∫
|u|≤κX11/6

e−u
2
du =

(
1 + o(1)

)√
π. (10.2.12)

Moreover,
κ−1 =

(
1 + o(1)

)
2−1/23−1/3π−1ζ(3)1/6n−2/3.

Hence,

I1 =
(
1 + o(1)

)
2−7/63−1/3π−1/2ζ(3)1/6n−2/3

× exp
34/3ζ(3)1/3

2 n2/3 + ζ(2)
2 · 31/3ζ(3)1/3n

1/3 − ζ(2)2

72ζ(3)

.
10.2.4 The Error Term

The integral I2 contributes the error term. Note that for sufficiently large n, one has
X11/6 ≤ X/2π ≤ 1/2. Now we separate X11/6 ≤ |y| ≤ 1/2 into two cases.

Case 1 : X11/6 ≤ |y| ≤ 1/2 and |Arg(τ)| ≥ π/4. Hence, X/2π ≤ |y| ≤ 1/2. We can
see from the proof above that

enXf(X)� exp
nX + 3ζ(3)

2X2 + ζ(2)
2X


� exp

34/3ζ(3)1/3

2 n2/3 + ζ(2)
2 · 31/3ζ(3)1/3n

1/3

.
Further, it follows from Part (ii) of Theorem 10.2.1 that

enX
∫
X
2π≤|y|≤

1
2

f(τ)e2πiny dy � enXf(X)e− 1
22X

� exp
34/3ζ(3)1/3

2 n2/3 + ζ(2)
2 · 31/3ζ(3)1/3n

1/3 − 1 + o(1)
22 · 31/3ζ(3)1/3n

1/3


= o(I1).
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Case 2 : X11/6 ≤ |y| ≤ 1/2 and |Arg(τ)| ≤ π/4. Hence, X11/6 ≤ |y| ≤ X/2π. It
follows from the expansions (10.2.9) and (10.2.10) that there exist constants c1, c2 > 0
such that

<(τ−2) ≤ X−2 − c1X
−1/3

and
<(τ−1) ≤ X−1 − c2X

2/3.

It follows from Part (i) of Theorem 10.2.1 that there exists a constant c > 0 such that

|f(τ)| � exp
3ζ(3)

2X2 + ζ(2)
2X −

c

X1/3

.
Hence,

enX
∫
X11/6≤|y|≤ X

2π

f(τ)e2πiny dy

� exp
nX + 3ζ(3)

2X2 + ζ(2)
2X −

c

X1/3


= o(I1),

where we use a similar argument to that in Case 1.

10.2.5 Remark on the Choice X11/6

Let us briefly comment on why do we split the integral at |y| = X11/6 in (10.2.8). Let
us say the integral is split at |y| = Xθ.

To obtain the truncated Gaussian integral in (10.2.11), one should expand τ−2

and τ−1 in (10.2.9) and (10.2.10) to the third term so that the error terms are o(1).
We can compute that the two errors are, respectively, O(y3/X5) = O(X3θ−5) and
O(y3/X4) = O(X3θ−4). Hence, one should have 3θ − 5 > 0 so that θ > 5/3.

On the other hand, to ensure that (10.2.12) is true, one should have κXθ → ∞ as
X → 0. This indicates that θ − 2 < 0 so that θ < 2.

Hence, we merely need to choose θ in (5/3, 2).

10.3 Part (i) of Theorem 10.2.1

Recall that |Arg(τ)| ≤ π/4.
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10.3.1 Mellin Transform

It follows from (10.2.2) that

log f(τ) =
∑
k≥1

(2k + 1)
(

log(1− e−2kτ )− log(1− e−kτ )
)

=
∑
k≥1

(2k + 1)
∑
`≥1

e−k`τ
`
− e−2k`τ

`

.
Recall that the Mellin transform maps e−t to the Gamma function Γ(s), that is, for

c > 0,
e−t = 1

2πi

∫ c+i∞

c−i∞
Γ(s)t−s ds.

Hence,

log f(τ) =
∑
k≥1

(2k + 1)
∑
`≥1

1
`

 1
2πi

∫ 3+i∞

3−i∞
Γ(s)

(
(k`τ)−s − (2k`τ)−s

)
ds


= 1

2πi

∫ 3+i∞

3−i∞
τ−s(1− 2−s)Γ(s)

∑
`≥1

1
`s+1

∑
k≥1

2k + 1
ks

 ds

= 1
2πi

∫ 3+i∞

3−i∞
τ−s(1− 2−s)Γ(s)ζ(s+ 1)

(
2ζ(s− 1) + ζ(s)

)
ds. (10.3.1)

Here we may interchange the integral and summations as Γ(s) decays rapidly to 0 as we
integrate up the line 3 + it and the summation over k and ` is absolutely convergent for
s on this line.

Let us write

Φ(s) := (1− 2−s)Γ(s)ζ(s+ 1)
(
2ζ(s− 1) + ζ(s)

)
.

10.3.2 Shifting the Path of Integration

Recall that a standard result on the Gamma function asserts that |Γ(s)| dies away to
0 exponentially along any fixed vertical line. More precisely, for s = σ + it with σ fixed,
we have that, as |t| → ∞,

|Γ(s)| = exp
(− π

2 + o(1)
)
|t|

. (10.3.2)
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On the other hand, |ζ(s)| has at most polynomial growth on fixed vertical lines.1

Note that Φ(s) has three poles s = 0, 1, and 2 in the stripe −1/2 ≤ <(s) ≤ 3. If we
integrate τ−sΦ(s) over the rectangle with corners

3− iT, 3 + iT, −1
2 + iT, −1

2 − iT,

the residue theorem tells us that

1
2πi

∫ 3+iT

3−iT
+
∫ − 1

2 +iT

3+iT
+
∫ − 1

2−iT

− 1
2 +iT

+
∫ 3−iT

− 1
2−iT

τ−sΦ(s) ds

= Ress=0 τ
−sΦ(s) + Ress=1 τ

−sΦ(s) + Ress=2 τ
−sΦ(s). (10.3.3)

Further, the two integrals ∫ − 1
2 +iT

3+iT
and

∫ 3−iT

− 1
2−iT

die away to 0 as T →∞, following from the growth rates of Γ(s) and ζ(s) along vertical
lines.

We now bound the integral

1
2πi

∫ − 1
2 +i∞

− 1
2−i∞

τ−sΦ(s) ds.

Recall that |Arg(τ)| ≤ π/4. It follows from the relation τ = x+ 2πiy that

|τ | ≤
√

2x.

Hence, along the line s = −1
2 + it, we have

|τ−s| = | exp(−s log τ)|

= exp
(1

2 |τ |+ tArg(τ)
)

1In fact, if we define µ(σ) := inf
{
m ∈ R : ζ(σ + it) = O(|t|m)

}
, then

µ(σ) =


0 if σ > 1,
1
2 (1− σ) if 0 ≤ σ ≤ 1,
1
2 − σ if σ < 0.

When σ > 1, it is trivial. When σ < 0, the result follows from the functional equation of the Riemann
zeta function. When 0 ≤ σ ≤ 1, the result can be deduced from the theorem of Phragmén–Lindelöf.

241



≤ |τ |1/2 exp
(
π

4 |t|
)
.

It follows from (10.3.2) that

|τ−sΓ(s)| ≤ |τ |1/2 exp
(− π

4 + o(1)
)
|t|

.
Again, the exp(·) factor above decreases to 0 exponentially as |t| → ∞. It follows from
the polynomial growth of the Riemann zeta function that

1
2πi

∫ − 1
2 +i∞

− 1
2−i∞

τ−sΦ(s) ds� x1/2.

It follows from (10.3.1) and (10.3.3) that

log f(τ) = Ress=0 τ
−sΦ(s) + Ress=1 τ

−sΦ(s) + Ress=2 τ
−sΦ(s) +O(x1/2). (10.3.4)

10.3.3 Residues

Let us compute the residues of Φ(s) at s = 0, 1, and 2. Recall that

Φ(s) = (1− 2−s)Γ(s)ζ(s+ 1)
(
2ζ(s− 1) + ζ(s)

)
.

Φ(s) has simple poles at s = 1 and 2. Hence,

Ress=1 τ
−sΦ(s) = τ−1(1− 2−1)Γ(1)ζ(2) Ress=1 ζ(s)

= ζ(2)
2 τ−1

and

Ress=2 τ
−sΦ(s) = 2τ−2(1− 2−2)Γ(2)ζ(3) Ress=2 ζ(s− 1)

= 3ζ(3)
2 τ−2.

For the pole at s = 0, we know that 1− 2−s = (log 2)s+O(s2), Γ(s) = s−1 +O(1), and
ζ(s+ 1) = s−1 +O(1). Hence,

τ−sΦ(s) =
(
1 +O(s)

)(
(log 2)s+O(s2)

)(
s−1 +O(1)

)
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×
(
s−1 +O(1)

)(
(2ζ(−1) + ζ(0)) +O(s)

)
,

so that

Ress=0 τ
−sΦ(s) =

(
2ζ(−1) + ζ(0)

)
log 2 = −2 log 2

3 .

It follows from (10.3.4) that

log f(τ) = 3ζ(3)
2 τ−2 + ζ(2)

2 τ−1 − 2 log 2
3 +O(x1/2).

10.4 Part (ii) of Theorem 10.2.1

Recall that π/4 ≤ |Arg(τ)| ≤ π/2. We have also assumed that 0 < x < 1/2 and
|y| ≤ 1/2. For convenience, let us put

ak =

2k + 1 if k is odd,

k if k is even.

Note that ak ≥ 1 for all positive k. It follows from (10.2.2) that

f(τ) =
∏
k≥1

(1− e−2kτ )2k+1

(1− e−kτ )2k+1 =
∏
k≥1

1
(1− e−kτ )ak .

Hence,

log |f(τ)|
f(x) = <

∑
k≥1

ak
(

log(1− e−kx)− log(1− e−kτ )
)

=
∑
k≥1

ak
∑
`≥1

e−k`x

`

(
cos(2πk`y)− 1

)
≤
∑
k≥1

ake
−kx

(
cos(2πky)− 1

)
≤
∑
k≥1

e−kx
(

cos(2πky)− 1
)

= <
 e−τ

1− e−τ

− e−x

1− e−x

≤ e−x

|1− e−τ | −
e−x

1− e−x .
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Next, we observe that

|1− e−τ | =
√

1− 2e−x cos(2πy) + e−2x. (10.4.1)

Since π/4 ≤ |Arg(τ)| ≤ π/2 and |y| ≤ 1/2, it follows that x ≤ |2πy| ≤ π. Hence for
fixed x, the right-hand side of (10.4.1) is minimized when 2πy = ±x. That is,

|1− e−τ | ≥
√

1− 2e−x cos(x) + e−2x. (10.4.2)

Now we show that when 0 < x < 1/2,

1− 2e−x cos(x) + e−2x > 1.21(1− e−x)2. (10.4.3)

This is equivalent to

0.21(e−2x + 1)− 2.42e−x + 2e−x cos(x) < 0. (10.4.4)

It suffices to show that the left-hand side of (10.4.4) is a decreasing function for x ∈
(0, 1/2). Differentiating the left-hand side of (10.4.4), one has

2e−x
(
1.21−

√
2 sin(x+ π/4)

)
− 0.42e−2x.

To show the above function is < 0, it suffices to check

0.21e−x +
√

2 sin(x+ π/4) > 1.21. (10.4.5)

Noting that e−x > 1− x, we have

0.21e−x +
√

2 sin(x+ π/4) > 0.21(1− x) +
√

2 sin(x+ π/4) > 1.21.

The last inequality is true since 0.21(1−x)+
√

2 sin(x+π/4) is increasing for x ∈ (0, 1/2).
It follows from (10.4.2) and (10.4.3) that, when 0 < x < 1/2,

|1− e−τ | > 1.1(1− e−x).

It turns out that
log |f(τ)|

f(x) < − 1
11

e−x

1− e−x .
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It is not hard to verify that when 0 < x < 1/2,

e−x

1− e−x >
1

2x.

Hence,
log |f(τ)|

f(x) < − 1
22x,

so that
|f(τ)| < f(x)e− 1

22x .

10.5 Expansion of X−1

In this section, we give the expansion of X−1. Recall from (10.2.5) that

aX−3 + bX−2 − n = 0, (10.5.1)

where
a = 3ζ(3) and b = ζ(2)

2 .

Let us write
µ = n−

1
3 and X−1 = a−

1
3µ−1 + ξ.

Then (10.5.1) becomes

a
(
a−

1
3µ−1 + ξ

)3
+ b

(
a−

1
3µ−1 + ξ

)2
− µ−3 = 0,

so that by multiplying by a 2
3µ2 on both sides, one has

aξ ·
((

1 + a
1
3µξ

)2
+
(
1 + a

1
3µξ

)
+ 1

)
+ b

(
1 + a

1
3µξ

)2
= 0. (10.5.2)

Now we may treat ξ := ξ(µ) as an implicit function of µ defined by (10.5.2). Note that

ξ(0) = − b

3a = − ζ(2)
18ζ(3) .

The implicit function theorem ensures that we may write ξ(µ) as a power series in µ in a
neighborhood of µ = 0. We compute that

ξ′(0) = b2

9a5/3 = ζ(2)2

36(3ζ(3))5/3 .
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Hence,
ξ(µ) = − ζ(2)

18ζ(3) + ζ(2)2

36(3ζ(3))5/3µ+O(µ2)

so that as n→∞,

X−1 = 1
(3ζ(3))1/3n

1
3 − ζ(2)

18ζ(3) + ζ(2)2

36(3ζ(3))5/3n
− 1

3 +O(n− 2
3 ).
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Chapter 11 |

The Method of Rademacher:
Background and Preliminaries

This chapter comes from

• S. Chern, Asymptotics for the Fourier coefficients of eta-quotients, J. Number Theory 199 (2019),
168–191. (Ref. [53])

• S. Chern, S. Chern, Asymptotics for the Taylor coefficients of certain infinite products, to appear
in Ramanujan J. (Ref. [57])

In this series of three chapters, Rademacher’s method on asymptotics will be investi-
gated. We will utilize this method to deduce two general results, one of which concerns
infinite products involving the Dedekind eta function and the other of which concerns
infinite products involving the Jacobi theta function.

11.1 Introduction

It is, more or less, reasonable to say that the prospering circle method was born when
Hardy and Ramanujan decided to study the asymptotics of the partition function p(n).
By focusing on the asymptotics of the generating function 1/(q; q)∞ near q = 1 inside
the unit disc D ⊂ C, Hardy and Ramanujan [96] showed that

p(n) ∼ 1
4
√

3
n−1e

2π
√
n√

6 . (11.1.1)

A couple of decades later, Rademacher [143] stepped further and proved an exact series
for p(n):

p(n) = 1
2
√

2π
∑
k≥1

Ak(n)
√
k
d

dn

 2√
n− 1

24

sinh
π
k

√
2
3

(
n− 1

24

) , (11.1.2)
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where
Ak(n) =

∑
0≤h<k

gcd(h,k)=1

eπi(s(h,k)−2nh/k)

with s(h, k) being the Dedekind sum defined by

s(d, c) :=
∑

n mod c

((
dn

c

))((
n

c

))
(11.1.3)

where

((x)) :=

x− bxc − 1/2 if x 6∈ Z,

0 if x ∈ Z.

Rademacher’s approach is straightforward in essence, however delicate in detail. The
basic idea is merely Cauchy’s integral formula, but we need various techniques including
Ford circles, Farey sequences, modular symmetry and the Dedekind eta-function.

One natural generalization that would come up to one’s mind is the following general
family of holomorphic functions on the open unit disk D:

G(q) =
∑
n≥0

g(n)qn =
J∏
j=1

(qmj ; qmj)δj∞, (11.1.4)

where m = (m1, . . . ,mJ) is a sequence of J distinct positive integers and δ = (δ1, . . . , δJ)
is a sequence of J non-zero integers. For some specific G(q), the interested readers may
refer to the work of Grosswald [89], Iseki [102, 103], Hagis Jr. [92–94], O-Y. Chan [46]
and many others. For general G(q) with ∑R

r=1 δr < 0, the recent work of Sussman [166]
presented a Rademacher-type formula. Sussman’s result can in some sense be treated
as a special case of the work of Bringmann and Ono [44], in which the coefficients of
harmonic Maass forms are studied. On the other hand, Sills [162] provided an automatic
algorithm when ∑R

r=1 δr = 0. When ∑R
r=1 δr = 1, a subclass of such G(q) was studied by

B. Kim [112].
Another direction that might be of one’s interest is about infinite products under

symmetric congruence conditions:

G(q) =
∑
n≥0

g(n)qn =
J∏
j=1

(qrj , qmj−rj ; qmj)δj∞, (11.1.5)

where m = (m1, . . . ,mJ) and r = (r1, . . . , rJ) are two sequences of J positive integers
satisfying 1 ≤ rj < mj for all j = 1, . . . , J , and δ = (δ1, . . . , δJ) is a sequence of J
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nonzero integers. Regarding such infinite products, the most famous examples arise from
the Rogers–Ramanujan identities (Rogers [156], Ramanujan [145]). Recall that the first
Rogers–Ramanujan identity states that (cf. Corollary 7.67 in [12])

1
(q, q4; q5)∞

=
∑
n≥0

qn
2

(q; q)n
.

On the left-hand side, we have the generating function for partitions such that each part
is congruent to ±1 modulo 5. Let p5,±1(n) be the number of such partitions of n. Its
asymptotic formula was shown by Lehner [118]:

p5,±1(n) ∼ csc(π/5)
4 · 31/4 · 51/4n

−3/4 exp
2π

√
n

15

. (11.1.6)

The interested reader may also refer to Niven [136], Livingood [130], Petersson [140,141],
Subrahmanyasastri [165] and so forth for the asymptotic behaviors of other partition
functions under symmetric congruence conditions. Next, the infinite product (11.1.5) may
also be of number-theoretic interest. One example is the Rogers–Ramanujan continued
fraction. Recall that the Rogers–Ramanujan continued fraction has an infinite product
form

q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · · =
 q, q4

q2, q3; q5


∞

.

Let us focus on the infinite product part and write

∑
n≥0

C(n)qn =
 q, q4

q2, q3; q5


∞

.

It is known from Richmond and Szekeres [152] that

C(n) ∼ 21/2

53/4 cos
4π

5

(
n+ 3

20

)n−3/4 exp
4π

5

√
n

5

. (11.1.7)

Hence for sufficiently large n, C(5n+ 0, 2) > 0 and C(5n+ 1, 3, 4) < 0. We also remark
that in [152], Richmond and Szekeres indeed studied the asymptotic behavior of the
Taylor coefficients of the general infinite product

m−1∏
j=1

(qj; qm)−ζχ(j)
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wherem is a positive fundamental discriminant, χ(j) = (m|j) is the Kronecker symbol and
ζ is either 1 or −1. Finally, in recent years, there are a number of papers [4,21,99,133,167]
studying vanishing Taylor coefficients of certain infinite products. For instance, Tang
[167] showed that the Taylor coefficients of

∑
n≥0

B(n)qn = (−q2,−q3; q5)2
∞(q2, q8; q10)∞ = (q2, q8; q10)∞(q4; q6; q10)2

∞
(q2, q3; q5)2

∞

satisfy B(5n+1) = 0 for all n ≥ 0. At the end of Tang’s paper, he also provided numerical
evidence of the inequalities B(5n+ 0, 2, 3) > 0 and B(5n+ 4) < 0 for sufficiently large n.
Similar numerical evidences are also provided for inequalities of Taylor coefficients of
other infinite products.

The aim of this series is to study the asymptotics for the Taylor coefficients in
the infinite products (11.1.4) and (11.1.5). In this chapter, we will provide necessary
preliminaries.

11.2 Dedekind Eta Function and Jacobi Theta Function

In this section, we introduce the Dedekind eta function and Jacobi theta function.
All results here are standard, which can be found in, for example, [25] or [176].

Let τ ∈ H and ς ∈ C. The Dedekind eta function is defined by

η(τ) := q1/24(q; q)∞ (11.2.1)

with q := e2πiτ . Further, the Jacobi theta function reads

ϑ(ς; τ) :=
∑

ν∈Z+ 1
2

e2πiν(ς+ 1
2 )+πiν2τ . (11.2.2)

Notice that if we put ζ := e2πiς , then the Jacobi triple product identity indicates that

ϑ(ς; τ) = −iq1/8ζ−1/2(ζ, ζ−1q, q; q)∞. (11.2.3)

The Dedekind eta function and Jacobi theta function are of broad interest due to

their transformation properties. Let γ =
a b

c d

 ∈ SL2(Z) where we assume that c > 0.
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Recall that the Möbius transformation for τ ∈ H is defined by

γ(τ) := aτ + b

cτ + d
.

Further, for the γ given above, we write for convenience

γ∗(τ) := 1
cτ + d

.

If

χ(γ) = exp
πi(a+ d

12c − s(d, c)−
1
4

),
where, again, s(d, c) is the Dedekind sum, then

η(γ(τ)) = χ(γ)(cτ + d)1/2η(τ) (11.2.4)

and

ϑ(ςγ∗(τ); γ(τ)) = χ(γ)3(cτ + d)1/2e
πicς2
cτ+d ϑ(ς; τ). (11.2.5)

Further, let α and β be integers. The Jacobi theta function also satisfies

ϑ(ς + ατ + β; τ) = (−1)α+βe−πiα
2τe−2πiαςϑ(ς; τ). (11.2.6)

11.3 Cauchy’s Integral Formula and Farey Arcs

To study the asymptotics for the Taylor coefficients of a holomorphic function G(q)
inside the unit disk, we turn to the celebrated circle method due to Rademacher [143,144]
whose idea originates from Hardy and Ramanujan [96]. We directly apply Cauchy’s
integral formula to deduce

g(n) = 1
2πi

∮
C:|q|=r

G(q)
qn+1 dq,

where the contour integral is taken counter-clockwise. Now one puts r = e−2π% with
% = 1/N2 where N is a sufficiently large positive integer.

The next task is to study the asymptotics of G(q) when q is close to a rational point
exp(2πih/k) on the unit circle. To do so, we dissect the circle C by Farey arcs. Let h/k
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with gcd(h, k) = 1 be a Farey fraction of order N .1 If we denote by ξh,k the interval
[−θ′h,k, θ′′h,k] with θ′h,k and θ′′h,k being the positive distances from h/k to its neighboring
mediants, then R/Z can be covered by intervals ⋃h,k ξh,k where 0 ≤ h < k ≤ N and
gcd(h, k) = 1. For each q on the circle C, we may find a Farey fraction h/k such that
arg(q) = 2π(h/k + φ) with φ ∈ ξh,k. Thus, we have q = e2πi(h/k+i%+φ) and hence,

g(n) =
∑

1≤k≤N

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k

∫
ξh,k

G
(
e2πi(h/k+i%+φ)

)
e−2πinφe2πn% dφ.

Let z = k(%− iφ). Making the change of variables τ = (h+ iz)/k yields

g(n) =
∑

1≤k≤N

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k

∫
ξh,k

G
(
e2πiτ

)
e−2πinφe2πn% dφ. (11.3.1)

11.4 Choosing a Suitable Matrix in SL2(Z)

Another task we should finish is to construct a suitable matrix in SL2(Z) so that the
infinite products (11.1.4) and (11.1.5) can be nicely reformulated around the Farey arc
with respect to h/k through the transformation properties of the Dedekind eta function
and Jacobi theta function.

Below we assume that 0 ≤ h < k are integers such that gcd(h, k) = 1. Let m be a
positive integer.

Let d = gcd(m, k). For convenience, we write m = dm′ and k = dk′. We put ~m(h, k)
an integer such that

~m(h, k) mh

gcd(m, k) ≡ −1 (mod k

gcd(m, k)).

Notice that one may always find such an integer since gcd(h, k) = 1. Let us put
bm′ = (~m(h, k)m′h+ 1)/k′. It is straightforward to verify that the following matrix is in
SL2(Z):

γ(m,h,k) =
~m(h, k) −bm′

k′ −m′h

 . (11.4.1)

1The Farey sequence of order N is the increasing sequence of irreducible fractions between 0 and 1
whose denominator is at most N . For example, { 0

1 ,
1
6 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

5
6 ,

1
1} is the Farey sequence

of order 6.
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Since τ = (h+ iz)/k = (h+ iz)/dk′, one may compute

γ(m,h,k)(mτ)

=
~m(h, k) ·mh+iz

dk′
− bm′

k′ ·mh+iz
dk′
−m′h

= ~m(h, k)m′h+ i~m(h, k)m′z − (~m(h, k)m′h+ 1)
m′hk′ + ik′m′z −m′hk′

= ~m(h, k)
k′

+ 1
m′k′z

i.

Thus,

γ(m,h,k)(mτ) = ~m(h, k) gcd(m, k)
k

+ gcd2(m, k)
mkz

i. (11.4.2)

On the other hand, we have

γ∗(m,h,k)(mτ) = 1
k′ ·mh+iz

dk′
−m′h

= −gcd(m, k)
mz

i

and hence for r < m,

rτγ∗(m,h,k)(mτ) = r gcd(m, k)
mk

− rh gcd(m, k)
mkz

i. (11.4.3)

Further, if we put

λm,r(h, k) :=
⌈

rh

gcd(m, k)

⌉

and
λ∗m,r(h, k) := λm,r(h, k)− rh

gcd(m, k) ,

then,

rτγ∗(m,h,k)(mτ) + λm,r(h, k)γ(m,h,k)(mτ)

= r gcd(m, k)
mk

+ λm,r(h, k)~m(h, k) gcd(m, k)
k

+ λ∗m,r(h, k)gcd2(m, k)
mkz

i. (11.4.4)

11.5 Some Auxiliary Results

11.5.1 Necessary Bounds

Now we are going to present some useful bounds.

First, it is well known (cf. Chapter 3 in [97]) that for a Farey fraction h/k of order
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N , one has
1

2kN ≤ θ′h,k, θ
′′
h,k ≤

1
kN

. (11.5.1)

Let |ξh,k| be the length of the interval ξh,k. By noticing that |ξh,k| = θ′h,k + θ′′h,k, one has

1
kN
≤ |ξh,k| ≤

2
kN

. (11.5.2)

Next, since z = k(%− iφ), it follows that

<(z) = k% = k

N2 . (11.5.3)

This implies that
|z| ≥ k

N2 . (11.5.4)

Further, one has

<
(1
z

)
≥ k

2 (11.5.5)

since

<
(1
z

)
= 1
k

%

%2 + φ2 ≥
1
k

N−2

N−4 + k−2N−2 = k

k2N−2 + 1 ≥
k

1 + 1 = k

2 ,

where we use the fact k ≤ N in the last inequality.

11.5.2 Some Partition-theoretic Results

In this section, η is a positive integer and δ is a nonzero integer. Let q be such that
|q| < 1.

Let pη(n) denote the number of partition η-tuples of n. Then

∑
n≥0

pη(n)qn =
(

1
(q; q)∞

)η
.

Further, if we write ∑
n≥0

dη(n)qn := (q; q)η∞,

an easy partition-theoretic argument indicates that |dη(n)| ≤ pη(n) for all n ≥ 0. Also,
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we have dη(0) = pη(0) = 1. In general, if we write

∑
n≥0

aδ(n)qn := (q; q)δ∞,

then

aδ(n) =

p|δ|(n) if δ < 0,

d|δ|(n) if δ > 0,

and hence |aδ(n)| ≤ p|δ|(n) for all n ≥ 0. Trivially, we also have

∣∣∣∣(q; q)δ∞∣∣∣∣ =

∣∣∣∣∣∣
∑
n≥0

aδ(n)qn
∣∣∣∣∣∣

≤
∑
n≥0

p|δ|(n)|q|n.

Further, for real 0 ≤ x < 1, we have

∑
n≥0

p1(n)xn = 1
(x;x)∞

= exp
−∑

k≥1
log(1− xk)


≤ exp

 x

(1− x)2

. (11.5.6)

Likewise, let p∗η(s, t;n) denote the number of 2-colored (say, red and blue) partition
η-tuples of n with s parts in total colored by red and t parts in total colored by blue.
Here we allow 0 as a part. Let ζ and ξ be such that |ζ| < 1 and |ξ| < 1. The following
infinite triple summation

∑
n≥0

∑
s≥0

∑
t≥0

p∗η(s, t;n)ζsξtqn =
(

1
(ζ, ξ; q)∞

)η

is absolutely convergent. Further, considering another absolutely convergent infinite
triple summation ∑

n≥0

∑
s≥0

∑
t≥0

d∗η(s, t;n)ζsξtqn := (ζ, ξ; q)η∞,

we have that (−1)s+td∗η(s, t;n) denotes the number of 2-colored (again, red and blue)
distinct partition (in which 0 is still allowed as a part) η-tuples of n with s parts in
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total colored by red and t parts in total colored by blue. An easy partition-theoretic
argument indicates that |d∗η(s, t;n)| ≤ p∗η(s, t;n) for all s, t, n ≥ 0. Also, we have
d∗η(0, 0; 0) = p∗η(0, 0; 0) = 1. In general, if we write

∑
n≥0

∑
s≥0

∑
t≥0

aδ(s, t;n)ζsξtqn := (ζ, ξ; q)δ∞,

then

aδ(s, t;n) =

p
∗
|δ|(s, t;n) if δ < 0,

d∗|δ|(s, t;n) if δ > 0,

and hence |aδ(s, t;n)| ≤ p∗|δ|(s, t;n) for all s, t, n ≥ 0. We also have

∣∣∣∣(ζ, ξ; q)δ∞∣∣∣∣ =

∣∣∣∣∣∣
∑
n≥0

∑
s≥0

∑
t≥0

aδ(s, t;n)ζsξtqn
∣∣∣∣∣∣

≤
∑
n≥0

∑
s≥0

∑
t≥0

p∗|δ|(s, t;n)|ζ|s|ξ|t|q|n.

Further, for real 0 ≤ α, β, x < 1, we have

∑
n≥0

∑
s≥0

∑
t≥0

p∗1(s, t;n)αsβtxn = 1
(α, β;x)∞

= exp
−∑

k≥0
log(1− αxk)−

∑
`≥0

log(1− βx`)


≤ exp
 α

1− α + αx

(1− x)2 + β

1− β + βx

(1− x)2

. (11.5.7)

11.5.3 Evaluating an Integral

The last task in this chapter is to evaluate a useful integral.

Lemma 11.5.1. Let a ∈ R>0, b ∈ R and c ∈ 1
2Z≤0. Let gcd(h, k) = 1. Define

I :=
∫
ξh,k

e
π

12k(az+bz)zce−2πinφe2πn% dφ. (11.5.8)

Then, for those positive integers n with n > −b/24, we have

I = 2π
k

(
24n+ b

a

)− c+1
2

I−c−1

(
π

6k
√
a(24n+ b)

)
+ E(I), (11.5.9)
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where
|E(I)| ≤ 2−cπ−1e

πa
3 N−c

n+ b
24

e2π%(n+ b
24). (11.5.10)

Proof. We first put w = z/k = %− iφ and reverse the integral order to obtain

I = 1
2πi

∫ %+iθ′h,k

%−iθ′′
h,k

2πe
πa

12k2w e2πw(n+ b
24)(kw)c dw.

One may separate the integral into three parts

I = 1
2πi

(∫
Γ
−
∫ %−iθ′′h,k

−∞−iθ′′
h,k

+
∫ %+iθ′h,k

−∞+iθ′
h,k

)
2πe

πa
12k2w e2πw(n+ b

24)(kw)c dw

=: J1 − J2 + J3,

where

Γ := (−∞− iθ′′h,k)→ (%− iθ′′h,k)→ (%+ iθ′h,k)→ (−∞+ iθ′h,k)

is a Hankel contour.
To compute the main term J1, we make the following change of variables t =

wk
√

(24n+ b)/a to obtain

J1 = 2π
k

(
24n+ b

a

)− c+1
2 1

2πi

∫
Γ̃
e

π
12k

√
a(24n+b)(t+ 1

t )tc dt.

Note that the new contour Γ̃ is still a Hankel contour. Recalling the contour integral
representation of Is(x):

Is(x) = 1
2πi

∫
Γ
t−s−1e

x
2 (t+ 1

t ) dt (Γ is a Hankel contour),

we conclude

J1 = 2π
k

(
24n+ b

a

)− c+1
2

I−c−1

(
π

6k
√
a(24n+ b)

)
.

For the error term E(I), which comes from J2 and J3, we put w = x + iθ with
−∞ ≤ x ≤ % and θ ∈ {θ′h,k,−θ′′h,k}. We know that

∣∣∣∣e2πw(n+ b
24)
∣∣∣∣ = e2πx(n+ b

24),
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∣∣∣e πa
12k2w

∣∣∣ = e
πa

12k2<( 1
w) = e

πa
12k2

x
x2+θ2 ≤ e

πa
12k2

x
θ2 ≤ e

πa
12k2 %(2kN)2 = e

πa
3 ,

and

|(kw)c| =
(
|kw|−1

)−c
≤
(

1
k
√
x2 + θ2

)−c
≤
(

1
k|θ|

)−c
≤ (2N)−c,

where we use the bound 1
2kN ≤ |θ| ≤

1
kN

. Hence for j = 2 and 3, we have

|Jj| ≤
1

2π

∫ %

−∞
2πeπa3 e2πx(n+ b

24) (2N)−c dx

= 2−c−1π−1e
πa
3 N−c

n+ b
24

e2π%(n+ b
24).

This implies that

|E(I)| = | − J2 + J3| ≤ |J2|+ |J3| ≤
2−cπ−1e

πa
3 N−c

n+ b
24

e2π%(n+ b
24),

which gives (11.5.10).
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Chapter 12 |

The Method of Rademacher:
Dedekind Eta Products

This chapter comes from

• S. Chern, Asymptotics for the Fourier coefficients of eta-quotients, J. Number Theory 199 (2019),
168–191. (Ref. [53])

• S. Chern, D. Tang, and L. Wang, Some inequalities for Garvan’s bicrank function of 2-colored
partitions, Acta Arith. 190 (2019), no. 2, 171–191. (Ref. [67])

12.1 Main Result

We will study the asymptotics for

G(q) =
∑
n≥0

g(n)qn =
J∏
j=1

(qmj ; qmj)δj∞, (12.1.1)

where m = (m1, . . . ,mJ) is a sequence of J distinct positive integers and δ = (δ1, . . . , δJ)
is a sequence of J non-zero integers.

Let k and h be positive integers such that gcd(h, k) = 1. We define

Σ := −1
2

J∑
j=1

δj,

Ω :=
J∑
j=1

δjmj,

Πk :=
J∏
j=1

(
mj

gcd(mj, k)

)− δj2
,
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∆(k) := −
J∑
j=1

δj gcd2(mj, k)
mj

and

ωh,k := exp
−πi J∑

j=1
δj · s

(
mjh

gcd(mj, k) ,
k

gcd(mj, k)

) , (12.1.2)

where s(d, c) is the Dedekind sum.
Let L = lcm(m1, . . . ,mR). We divide the set {1, 2, . . . , L} into two disjoint subsets:

L>0 := {1 ≤ ` ≤ L : ∆(`) > 0},

L≤0 := {1 ≤ ` ≤ L : ∆(`) ≤ 0}.

Our main result states as follows.

Theorem 12.1.1. If Σ ≤ 0 and the inequality

min
1≤j≤J

(
gcd2(mj, `)

mj

)
≥ ∆(`)

24 (12.1.3)

holds for all 1 ≤ ` ≤ L, then for positive integers n > −Ω/24, we have

g(n) = E(n) + 2π
∑
`∈L>0

Π`

(
24n+ Ω

∆(`)

)−Σ+1
2

×
∑

1≤k≤N?

k≡` mod L

1
k
I−Σ−1

(
π

6k
√

∆(`)(24n+ Ω)
) ∑

0≤h<k
gcd(h,k)=1

e−
2πinh
k ωh,k,

(12.1.4)

where

N? =


√√√√2π

(
n+ Ω

24

) , (12.1.5)

Is(x) is the modified Bessel function of the first kind, and

E(n)�m,δ ΞΣ(n) :=



1 if Σ = 0,(
n+ Ω

24

)1/4
if Σ = −1

2 ,(
n+ Ω

24

)1/2
log

(
n+ Ω

24

)
if Σ = −1,(

n+ Ω
24

)−Σ−1/2
if Σ ≤ −3

2 .

(12.1.6)
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Remark 12.1.1. To better understand the asymptotic behavior of g(n), one may apply
the asymptotic expansion of Is(x) (cf. [2, p. 377, (9.7.1)]): for fixed s, when | arg x| < π

2 ,

Is(x) ∼ ex√
2πx

(
1− 4s2 − 1

8x + (4s2 − 1)(4s2 − 9)
2!(8x)2 − · · ·

)
. (12.1.7)

12.2 A Transformation Formula

Let us define
P (τ) := 1

(q; q)∞
= e

πiτ
12

1
η(τ) , (12.2.1)

where q := e2πiτ . Let m be a positive integer. Hence,

P (mτ) = e
πimτ

12
1

η(mτ) .

Recall that d = gcd(m, k), m = dm′ and k = dk′. Recall also that τ = (h+ iz)/k. One
has, from (11.2.4) with γ = γ(m,h,k) as in (11.4.1) and the fact s(−m′h, k′) = −s(m′h, k′),
that

P (mτ) = e
πimτ

12 χ(γ(m,h,k))(γ∗(m,h,k)(mτ))− 1
2

1
η(γ(m,h,k)(mτ))

=
√
mz

d
eπis(m

′h,k′) exp
 π

12k

(
−mz + d2

m

1
z

)P(γ(m,h,k)(mτ)
)
.

Consequently, we deduce the following transformation formula.

Lemma 12.2.1. We have

G(e2πiτ ) =
J∏
j=1

P−δj(mjτ)

= zΣ ωh,k Πk exp
 π

12k (Ωz + ∆(k)z−1)
 J∏
j=1

P−δj
(
γ(mj ,h,k)(mjτ)

)
. (12.2.2)

12.3 Outline of the Proof

We know from (11.3.1) and (13.2.3) that

g(n) =
∑

1≤k≤N

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k

∫
ξh,k

G
(
e2πiτ

)
e−2πinφe2πn% dφ

263



=
∑

1≤k≤N

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k ωh,k Πk

×
∫
ξh,k

zΣ exp
 π

12k (Ωz + ∆(k)z−1)
 J∏
j=1

P−δj
(
γ(mj ,h,k)(mjτ)

)
e−2πinφe2πn% dφ.

Let us fix a Farey fraction h/k. We first find the integer 1 ≤ ` ≤ L such that k ≡ `

(mod L). For convenience, we write ρ(k) := `. It is not hard to observe that for all
j = 1, 2, . . . , J ,

gcd(mj, k) = gcd(mj, `).

It turns out that ∆(k) = ∆(`) and Πk = Π`. We now split g(n) as follows.

g(n) =
∑

1≤`≤L
Π`

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k ωh,k

×
∫
ξh,k

zΣ exp
 π

12k (Ωz + ∆(`)z−1)
 J∏
j=1

P−δj
(
γ(mj ,h,k)(mjτ)

)
e−2πinφe2πn% dφ

=:
∑

1≤`≤L
S`.

Define

Ξ∗Σ(N) :=



1 if Σ = 0,

N1/2 if Σ = −1
2 ,

N logN if Σ = −1,

N−2Σ−1 if Σ ≤ −3
2 .

(12.3.1)

The minor arcs are those with respect to h/k with ρ(k) ∈ L≤0. We have the following
bound.

Theorem 12.3.1. Let ` ∈ L≤0. If Σ ≤ 0, then for positive integers n > −Ω/24, we have

S` �m,r,δ Ξ∗Σ(N) exp
 2π
N2

(
n+ Ω

24

).

In particular, if we take N =
⌊√

2π
(
n+ Ω

24

)⌋
, then S` �m,r,δ ΞΣ(n).

The arcs with respect to h/k with ρ(k) ∈ L>0 give us the main contribution.
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Theorem 12.3.2. Let ` ∈ L>0. If Σ ≤ 0 and the inequality

min
1≤j≤J

(
gcd2(mj, `)

mj

)
≥ ∆(`)

24 (12.3.2)

holds, then for positive integers n > −Ω/24, we have

S` = E` + Π`

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k ωh,k

2π
k

(
24n+ Ω

∆(`)

)−Σ+1
2

× I−Σ−1

(
π

6k
√

∆(`)(24n+ Ω)
)
,

where

E` �m,r,δ Ξ∗Σ(N)e
2π
N2 (n+ Ω

24 ) + N−Σ+2e
2π
N2 (n+ Ω

24)

n+ Ω
24

.

In particular, if we take N =
⌊√

2π
(
n+ Ω

24

)⌋
, then E` �m,r,δ ΞΣ(n).

Theorems 12.3.1 and 12.3.2 immediately imply the main result.

12.4 Minor Arcs

Let ` ∈ L≤0, namely, ∆(`) ≤ 0. Notice that

|S`| ≤ Π`

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1

∫
ξh,k

|z|Σ exp
 π

12k (Ω<(z) + ∆(`)<(z−1))


×

∣∣∣∣∣∣
J∏
j=1

P−δj
(
γ(mj ,h,k)(mjτ)

)∣∣∣∣∣∣e2πn% dφ.

We now consider the Farey arcs with respect to h/k with k ≡ ` (mod L). Since
∆(`) ≤ 0, it follows from (11.5.3) and (11.5.5) that

exp
 π

12k (Ω<(z) + ∆(`)<(z−1))
 ≤ exp

 π

12k

(
Ω k

N2 + ∆(`)k2

)
= exp

π% Ω
12

 exp
π∆(`)

24

.
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Also, it follows from (11.5.4) with the assumption Σ ≤ 0 that

|z|Σ ≤ kΣN−2Σ.

Now we write for short τ̃j = γ(mj ,h,k)(mjτ). It follows from (11.4.2) that

=(τ̃j) = gcd2(mj, k)
mjk

<(z−1) = gcd2(mj, `)
mjk

<(z−1).

Then,
J∏
j=1

P−δj
(
γ(mj ,h,k)(mjτ)

)
=

J∏
j=1

1
(e2πiτ̃j ; e2πiτ̃j)−δj∞

.

As we have seen in §11.5.2,∣∣∣∣∣∣ 1
(e2πiτ̃j ; e2πiτ̃j)−δj∞

∣∣∣∣∣∣ ≤
∑
n≥0

p|δj |(n)|e2πiτ̃j |n

=
∑
n≥0

p|δj |(n)e−2π=(τ̃j)n

=
∑
n≥0

p|δj |(n) exp
(
− 2πgcd2(mj, `)

mjk
<(z−1)n

)

≤
∑
n≥0

p|δj |(n) exp
(
− πgcd2(mj, `)

mj

n

)
,

where we use <(z−1) ≥ k/2. It follows from (11.5.7) that
∣∣∣∣∣∣ 1
(e2πiτ̃j ; e2πiτ̃j)−δj∞

∣∣∣∣∣∣� 1.

Putting the above arguments together yields

S` �
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1

∫
ξh,k

kΣN−2Σe
π% Ω
12 e2πn% dφ

�
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1

e2π%(n+ Ω
24 )kΣ−1N−2Σ−1

� Ξ∗Σ(N)e2π%(n+ Ω
24 ) = Ξ∗Σ(N)e

2π
N2 (n+ Ω

24 ).
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12.5 Major Arcs

Let ` ∈ L>0, namely, ∆(`) > 0. For convenience, we write τ̃j(h, k) = γ(mj ,h,k)(mjτ).
Recall that

S` = Π`

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k ωh,k

×
∫
ξh,k

zΣ exp
 π

12k (Ωz + ∆(`)z−1)
 J∏
j=1

P−δj
(
τ̃j(h, k)

)
e−2πinφe2πn% dφ.

We split Sκ,` into two parts Σ1 and Σ2 where

Σ1 := Π`

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k ωh,k

×
∫
ξh,k

zΣ exp
 π

12k (Ωz + ∆(`)z−1)
e−2πinφe2πn% dφ

and

Σ2 := Π`

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k ωh,k

×
∫
ξh,k

zΣ exp
 π

12k (Ωz + ∆(`)z−1)
 J∏

j=1
P−δj

(
τ̃j(h, k)

)
− 1

e−2πinφe2πn% dφ.

We first show that Σ2 is negligible. Let us fix h and k and write τ̃j = τ̃j(h, k). Then,

|Σ2| ≤ Π`

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1

∫
ξh,k

|z|Σ exp
 π

12k (Ω<(z) + ∆(`)<(z−1))


×

∣∣∣∣∣∣
J∏
j=1

P−δj
(
τ̃j
)
− 1

∣∣∣∣∣∣e2πn% dφ.

As we have seen in §11.5.2,∣∣∣∣∣∣
J∏
j=1

P−δj
(
τ̃j
)
− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
J∏
j=1

1
(e2πiτ̃j ; e2πiτ̃j)−δj∞

− 1

∣∣∣∣∣∣
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≤
∑

n:=(n1,...,nJ )∈ZJ≥0

J∏
j=1

p|δj |(nj)|e2πiτ̃j |nj − 1

=
∑

n∈ZJ≥0\(0,...,0)

J∏
j=1

p|δj |(nj)|e2πiτ̃j |nj

=
∑

n∈ZJ≥0\(0,...,0)

J∏
j=1

p|δj |(nj)e−2π=(τ̃j)nj

=
∑

n∈ZJ≥0\(0,...,0)

 J∏
j=1

p|δj |(nj)
 exp

− 2π<(z−1)
k

J∑
j=1

gcd2(mj, `)
mj

nj

.
Hence,

exp
π∆(`)

12k z−1

∣∣∣∣∣∣P−δj
(
τ̃j
)
− 1

∣∣∣∣∣∣
≤

∑
n∈ZJ≥0\(0,...,0)

 J∏
j=1

p|δj |(nj)
 exp

− 2π<(z−1)
k

(
− ∆(`)

24 +
J∑
j=1

gcd2(mj, `)
mj

nj

).
Since at least one coordinate of n = (n1, . . . , nJ) is nonzero, under the condition (12.3.2),
we know that

−∆(`)
24 +

J∑
j=1

gcd2(mj, `)
mj

nj ≥ −
∆(`)
24 + min

1≤j≤J

(
gcd2(mj, `)

mj

)
≥ 0

for all n ∈ ZJ≥0\(0, . . . , 0). Recalling that <(z−1) ≥ k/2, it follows that

exp
π∆(`)

12k z−1

∣∣∣∣∣∣P−δj
(
τ̃j
)
− 1

∣∣∣∣∣∣
is maximized when <(z−1) = k/2. Namely,

exp
π∆(`)

12k z−1

∣∣∣∣∣∣P−δj
(
τ̃j
)
− 1

∣∣∣∣∣∣
≤ exp

π∆(`)
12k z−1

 ∑
n∈ZJ≥0\(0,...,0)

 J∏
j=1

p|δj |(nj)
 exp

− π J∑
j=1

gcd2(mj, `)
mj

nj

� 1.
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We conclude that

Σ2 �
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1

∫
ξh,k

kΣN−2Σe
π% Ω
12 e2πn% dφ

�
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1

e2π%(n+ Ω
24 )kΣ−1N−2Σ−1

� Ξ∗Σ(N)e2π%(n+ Ω
24 ) = Ξ∗Σ(N)e

2π
N2 (n+ Ω

24 ).

Finally, we estimate the main contribution Σ1. Recall that

Σ1 := Π`

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k ωh,k

×
∫
ξh,k

zΣ exp
 π

12k (Ωz + ∆(`)z−1)
e−2πinφe2πn% dφ

We simply apply Lemma 11.5.1. The main contribution to Σ1 is

Π`

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k ωh,k

2π
k

(
24n+ Ω

∆(`)

)−Σ+1
2

I−Σ−1

(
π

6k
√

∆(`)(24n+ Ω)
)
.

The error term in Σ1 is bounded by

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1

N−Σe2π%(n+ Ω
24)

n+ Ω
24

� N−Σ+2e
2π
N2 (n+ Ω

24)

n+ Ω
24

.

12.6 An Application

As an application of Theorem 12.1.1, we show some inequalities for Garvan’s bicrank
function of 2-colored partitions.

A partition is called 2-colored if each part is receiving a color from the set of two
prescribed colors. Let p−2(n) count the number of 2-colored partitions of n. Then,

∞∑
n=0

p−2(n)qn = 1
(q; q)2

∞
.

It is notable that p−2(n) also satisfies nice arithmetic properties. For example, Hammond
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and Lewis [95] proved that

p−2(5n+ 2) ≡ p−2(5n+ 3) ≡ p−2(5n+ 4) ≡ 0 (mod 5). (12.6.1)

To give a unified combinatorial proof of all three congruences in (12.6.1), in 2010, Garvan
[81] introduced a bicrank function for 2-colored partitions (see [81] for the lengthy
definition). Let M∗(m,n) count the number of 2-colored partitions of n with bicrank m.
Garvan showed that M∗(m,n) has the following generating function (cf. [81, (6.17)]):

∞∑
m=−∞

∞∑
n=0

M∗(m,n)zmqn = (q; q)2
∞

(zq, z−1q, z2q, z−2q; q)∞
, (12.6.2)

from which he proved that, for any integer n ≥ 0,

M∗(0, 5, 5n+ 2) = M∗(1, 5, 5n+ 2) = · · · = M∗(4, 5, 5n+ 2) = p−2(5n+ 2)
5 ,

M∗(0, 5, 5n+ 4) = M∗(1, 5, 5n+ 4) = · · · = M∗(4, 5, 5n+ 4) = p−2(5n+ 4)
5 ,

M∗(0, 5, 5n+ 3) ≡M∗(1, 5, 5n+ 3) ≡ · · · ≡M∗(4, 5, 5n+ 3) (mod 5),

where M∗(j, k, n) := ∑
m≡j (mod k) M

∗(m,n) is the number of 2-colored partitions of n
with bicrank congruent to j modulo k.

On the other hand, the following inequalities were shown by Andrews and Lewis [24].

Theorem 12.6.1 (Andrews–Lewis). For n ≥ 0,

M(0, 2, 2n) > M(1, 2, 2n), M(0, 2, 2n+ 1) < M(0, 2, 2n+ 1),

where M(r,m, n) counts the number of partitions of n with crank congruent to r modulo
m.

Along this line, it would be interesting to study sign patterns for the bicrank function.
First, taking z = ζ3 = e2πi/3 in (12.6.2) yields

∞∑
n=0

(M∗(0, 3, n)−M∗(1, 3, n)) qn = (q; q)2
∞

(ζ3q, ζ
−1
3 q, ζ2

3q, ζ
−2
3 q; q)∞

= (q; q)4
∞

(q3; q3)2
∞
. (12.6.3)

For the infinite product in (12.6.3), we have, in the setting of (12.1.1), m = {1, 3}
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and δ = {4,−2}. Hence, L = 3 and L>0 = {3}. Applying Theorem 12.1.1 yields an
asymptotic formula as follows.

Theorem 12.6.2. For n ≥ 1,

M∗(0, 3, n)−M∗(1, 3, n) ∼ c(n) I0

2π
√
n− 1/12
3
√

3

 , (12.6.4)

where

c(n) =



4π
3 cos 2π

9 if n ≡ 0 (mod 3),

−4π
3 cos π9 if n ≡ 1 (mod 3),

4π
3 sin π

18 if n ≡ 2 (mod 3).

Remark 12.6.1. If one treats the error term E(n) more carefully, it can be shown that
E(n) is able to be bounded explicitly:

|E(n)| ≤ 173.1
√
n− 1

12

log
√

2π
(
n− 1

12

)
+ 1

+ 74.3
√
n− 1

12

+ 2.8
√
n− 1

12 exp
π

√
n− 1/12
3
√

3

 .
See [67] for details. It turns out through a short computation that the sign ofM∗(0, 3, n)−
M∗(1, 3, n) is determined by the main term (and hence by c(n)) when n ≥ 114. We
therefor deduce the following inequalities.

Theorem 12.6.3. For n ≥ 0,

M∗(0, 3, n) > M∗(1, 3, n) if n ≡ 0, 2 (mod 3),

M∗(0, 3, n) < M∗(1, 3, n) if n ≡ 1 (mod 3),

except for n = 5.

Likewise, taking z = i in (12.6.2) yields

∞∑
n=0

(M∗(0, 4, n)−M∗(2, 4, n)) qn
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= (q; q)2
∞

(iq,−iq,−q,−q; q)∞
= (q; q)2

∞
(−q2; q2)∞(−q; q)2

∞
= (q; q)4

∞
(q2; q2)∞(q4; q4)∞

. (12.6.5)

Analogously, we deduce an asymptotic formula for M∗(0, 4, n)−M∗(2, 4, n).

Theorem 12.6.4. For n ≥ 1,

M∗(0, 4, n)−M∗(2, 4, n)

= c1(n) I0

π
√
n− 1/12
2
√

3

+ c2(n) I0

π
√
n− 1/12
4
√

3

+ E(n), (12.6.6)

where

c1(n) =


−π if n ≡ 1 (mod 4),

π if n ≡ 3 (mod 4),

0 otherwise,

c2(n) =



π sin π8 if n ≡ 0 (mod 8),

π cos π8 if n ≡ 2 (mod 8),

−π sin π8 if n ≡ 4 (mod 8),

−π cos π8 if n ≡ 6 (mod 8),

0 otherwise,

and

|E(n)| ≤ 224.2
√
n− 1

12

log
√

2π
(
n− 1

12

)
+ 1

+ 55.6
√
n− 1

12

+ 2.4
√
n− 1

12 exp
π

√
n− 1/12
6
√

3

 .
We also deduce from a short computation that the sign of M∗(0, 4, n)−M∗(2, 4, n) is

determined by the main term when n ≥ 2160. The following inequalities therefore hold.

Theorem 12.6.5. For n ≥ 0,

M∗(0, 4, n) > M∗(2, 4, n) if n ≡ 0, 2, 3, 7 (mod 8),

M∗(0, 4, n) < M∗(2, 4, n) if n ≡ 1, 4, 5, 6 (mod 8),

except for n = 4 and 20.
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Chapter 13 |

The Method of Rademacher:
Jacobi Theta Products

This chapter comes from

• S. Chern, Asymptotics for the Taylor coefficients of certain infinite products, to appear in
Ramanujan J. (Ref. [57])

13.1 Main Result

We will study the asymptotics for

G(q) =
∑
n≥0

g(n)qn =
J∏
j=1

(qrj , qmj−rj ; qmj)δj∞, (13.1.1)

where m = (m1, . . . ,mJ) and r = (r1, . . . , rJ) are two sequences of J positive integers
satisfying 1 ≤ rj < mj for all j = 1, . . . , J , and δ = (δ1, . . . , δJ) is a sequence of J
nonzero integers.

Recall that we have defined in §11.4 that for 0 ≤ h < k with gcd(h, k) = 1,

λm,r(h, k) :=
⌈

rh

gcd(m, k)

⌉

and
λ∗m,r(h, k) := λm,r(h, k)− rh

gcd(m, k) .

Also, ~m(h, k) is an integer such that

~m(h, k) mh

gcd(m, k) ≡ −1 (mod k

gcd(m, k)).
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Next, we define

Ω :=
J∑
j=1

δj

2mj − 12rj +
12r2

j

mj

,
∆(h, k) := −

J∑
j=1

δj

2 gcd2(mj, k)
mj

+ 12 gcd2(mj, k)
mj

(λ∗2mj ,rj(h, k)− λ∗mj ,rj(h, k))


and

ωh,k := exp
−πi J∑

j=1
δj · s

(
mjh

gcd(mj, k) ,
k

gcd(mj, k)

) , (13.1.2)

where s(d, c) is the Dedekind sum. We also define

Dh,k := exp
πi J∑

j=1
δj

(
rjh

k
− rj gcd(mj, k)

mjk
+

2rj gcd(mj, k)λ∗mj ,rj(h, k)
mjk

+
~mj(h, k) gcd(mj, k)

k
(λ2

mj ,rj
(h, k)− λmj ,rj(h, k))

).
One readily verifies that the choice of ~m(h, k) does not affect the value of Dh,k. At last,
we define

Πh,k :=



∏
j:λ∗mj,rj (h,k)=0

1− exp
(

2πi
rj gcd(mj, k) + rj~mj(h, k)mjh

mjk

)δj

if there exists j such that λ∗mj ,rj(h, k) = 0,

1

otherwise.

Remark 13.3.1 tells us that the choice of ~m(h, k) also does not affect the value of Πh,k.
Also, Proposition 13.3.3 indicates that for any j with λ∗mj ,rj(h, k) = 0, we have

1− exp
(

2πi
rj gcd(mj, k) + rj~mj(h, k)mjh

mjk

)
6= 0.

Hence the value Πh,k is well-defined and Πh,k 6= 0.
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Given a real 0 ≤ x < 1, we define

Υ(x) :=


1 if x = 0,

x if 0 < x ≤ 1/2,

1− x if 1/2 < x < 1.

Let L = lcm(m1, . . . ,mR). We define two disjoint sets:

L>0 := {(κ, `) : 1 ≤ ` ≤ L, 0 ≤ κ < `, ∆(κ, `) > 0},

L≤0 := {(κ, `) : 1 ≤ ` ≤ L, 0 ≤ κ < `, ∆(κ, `) ≤ 0}.

Our main result states as follows.

Theorem 13.1.1. If the inequality

min
1≤j≤J

(
Υ
(
λ∗mj ,rj(κ, `)

)gcd2(mj, `)
mj

)
≥ ∆(κ, `)

24 (13.1.3)

holds for all 1 ≤ ` ≤ L and 0 ≤ κ < `, then for positive integers n > −Ω/24, we have

g(n) = E(n) + 2πi
∑J

j=1 δj
∑

1≤`≤L

∑
0≤κ<`

(κ,`)∈L>0

(
24n+ Ω
∆(κ, `)

)− 1
2

×
∑

1≤k≤N?

k≡` mod L

1
k
I−1

(
π

6k
√

∆(κ, `)(24n+ Ω)
)

×
∑

0≤h<k
gcd(h,k)=1
h≡κ mod `

e−
2πinh
k (−1)

∑J

j=1 δjλmj,rj (h,k)ω2
h,k Dh,kΠh,k, (13.1.4)

where

N? =


√√√√2π

(
n+ Ω

24

) , (13.1.5)

Is(x) is the modified Bessel function of the first kind, and

E(n)�m,r,δ 1. (13.1.6)

Remark 13.1.1. To better understand the asymptotic behavior of g(n), one may again
apply the asymptotic expansion of Is(x) (cf. [2, p. 377, (9.7.1)]): for fixed s, when
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| arg x| < π
2 ,

Is(x) ∼ ex√
2πx

(
1− 4s2 − 1

8x + (4s2 − 1)(4s2 − 9)
2!(8x)2 − · · ·

)
. (13.1.7)

13.2 A Transformation Formula

Let us define
�(ς; τ) := (ζ, ζ−1q; q)∞, (13.2.1)

where q := e2πiτ and ζ := e2πiς . It follows from (11.2.3) that

�(ς; τ) = ie−
πiτ
6 eπiς

ϑ(ς; τ)
η(τ) . (13.2.2)

Let r < m be positive integers. Hence,

�(rτ ;mτ) = ie−
πimτ

6 eπirτ
ϑ(rτ ;mτ)
η(mτ) .

Recall that d = gcd(m, k), m = dm′ and k = dk′. Recall also that τ = (h + iz)/k.
One has, from (11.2.4), (11.2.5), (11.2.6) with γ = γ(m,h,k) as in (11.4.1) and the fact
s(−m′h, k′) = −s(m′h, k′), that

�(rτ ;mτ) = ie−
πimτ

6 eπirτχ(γ(m,h,k))−2e−
πik′r2τ2
k′mτ−m′h

×
ϑ(rτγ∗(m,h,k)(mτ); γ(m,h,k)(mτ))

η(γ(m,h,k)(mτ))

= ie−
πimτ

6 eπirτχ(γ(m,h,k))−2e−
πikr2τ2
kmτ−mh (−1)λm,r(h,k)

× eπiλ2
m,r(h,k)γ(m,h,k)(mτ)e

2πiλm,r(h,k)rτγ∗(m,h,k)(mτ)

×
ϑ(rτγ∗(m,h,k)(mτ) + λm,r(h, k)γ(m,h,k)(mτ); γ(m,h,k)(mτ))

η(γ(m,h,k)(mτ))
= i(−1)λm,r(h,k)e−2πis(m′h,k′)

× exp
πi(rh

k
− rd

mk
+

2rdλ∗m,r(h, k)
mk

+ ~m(h, k)d
k

(λ2
m,r(h, k)− λm,r(h, k))

)
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× exp
 π

12k

((
2m− 12r + 12r2

m

)
z

−
(2d2

m
+ 12d2

m
(λ∗2m,r(h, k)− λ∗m,r(h, k))

)1
z

)
×�

(
rτγ∗(m,h,k)(mτ) + λm,r(h, k)γ(m,h,k)(mτ); γ(m,h,k)(mτ)

)
.

Consequently, we deduce the following transformation formula.

Lemma 13.2.1. We have

G(e2πiτ ) =
J∏
j=1
�δj(rjτ ;mjτ)

= i
∑J

j=1 δj(−1)
∑J

j=1 δjλmj,rj (h,k)ω2
h,k Dh,k

× exp
 π

12k (Ωz + ∆(h, k)z−1)


×
J∏
j=1
�δj

(
rjτγ

∗
(mj ,h,k)(mjτ) + λmj ,rj(h, k)γ(mj ,h,k)(mjτ); γ(mj ,h,k)(mjτ)

)
. (13.2.3)

Remark 13.2.1. It follows from (11.4.4) that for all j = 1, 2, . . . , J ,

0 ≤ =
(
rjτγ

∗
(mj ,h,k)(mjτ) + λmj ,rj(h, k)γ(mj ,h,k)(mjτ)

)
< =

(
γ(mj ,h,k)(mjτ)

)
.

13.3 Outline of the Proof

We know from (11.3.1) and (13.2.3) that

g(n) =
∑

1≤k≤N

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k

∫
ξh,k

G
(
e2πiτ

)
e−2πinφe2πn% dφ

= i
∑J

j=1 δj
∑

1≤k≤N

∑
0≤h<k

gcd(h,k)=1

e−
2πinh
k (−1)

∑J

j=1 δjλmj,rj (h,k)ω2
h,k Dh,k

×
∫
ξh,k

exp
 π

12k (Ωz + ∆(h, k)z−1)


×
J∏
j=1
�δj

(
rjτγ

∗
(mj ,h,k)(mjτ) + λmj ,rj(h, k)γ(mj ,h,k)(mjτ); γ(mj ,h,k)(mjτ)

)
× e−2πinφe2πn% dφ.
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Let us fix a Farey fraction h/k. We first find integers 1 ≤ ` ≤ L and 0 ≤ κ < ` such
that k ≡ ` (mod L) and h ≡ κ (mod `). For convenience, we write ρ(h, k) := (κ, `). It
is not hard to observe that for all j = 1, 2, . . . , J ,

gcd(mj, k) = gcd(mj, `) and λ∗mj ,rj(h, k) = λ∗mj ,rj(κ, `).

It turns out that ∆(h, k) = ∆(κ, `). We now split g(n) as follows.

g(n) = i
∑J

j=1 δj
∑

1≤`≤L

∑
0≤κ<`

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

e−
2πinh
k

× (−1)
∑J

j=1 δjλmj,rj (h,k)ω2
h,k Dh,k

×
∫
ξh,k

exp
 π

12k (Ωz + ∆(κ, `)z−1)


×
J∏
j=1
�δj

(
rjτγ

∗
(mj ,h,k)(mjτ) + λmj ,rj(h, k)γ(mj ,h,k)(mjτ); γ(mj ,h,k)(mjτ)

)
× e−2πinφe2πn% dφ

=: i
∑J

j=1 δj
∑

1≤`≤L

∑
0≤κ<`

Sκ,`.

The minor arcs are those with respect to h/k with ρ(h, k) ∈ L≤0. We have the
following bound.

Theorem 13.3.1. Let (κ, `) ∈ L≤0. For positive integers n > −Ω/24, we have

Sκ,` �m,r,δ exp
 2π
N2

(
n+ Ω

24

).

In particular, if we take N =
⌊√

2π
(
n+ Ω

24

)⌋
, then Sκ,` �m,r,δ 1.

The arcs with respect to h/k with ρ(h, k) ∈ L>0 give us the main contribution.

Theorem 13.3.2. Let (κ, `) ∈ L>0. If the inequality

min
1≤j≤J

(
Υ
(
λ∗mj ,rj(κ, `)

)gcd2(mj, `)
mj

)
≥ ∆(κ, `)

24 (13.3.1)
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holds, then for positive integers n > −Ω/24, we have

Sκ,` = Eκ,` +
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

e−
2πinh
k (−1)

∑J

j=1 δjλmj,rj (h,k)ω2
h,k Dh,kΠh,k

× 2π
k

(
24n+ Ω
∆(κ, `)

)− 1
2

I−1

(
π

6k
√

∆(κ, `)(24n+ Ω)
)
,

where

Eκ,` �m,r,δ e
2π
N2 (n+ Ω

24 ) + N2e
2π
N2 (n+ Ω

24)

n+ Ω
24

.

In particular, if we take N =
⌊√

2π
(
n+ Ω

24

)⌋
, then Eκ,` �m,r,δ 1.

Theorems 13.3.1 and 13.3.2 immediately imply the main result. Before present-
ing proofs of the two results respectively in §§13.4 and 13.5, we make the following
preparations.

For fixed κ and ` with 1 ≤ ` ≤ L and 0 ≤ κ < `, one may split the indices
{1, 2, . . . , J} into two disjoint parts:

J ∗κ,` = {j∗1 , . . . , j∗α} and J ∗∗κ,` = {j∗∗1 , . . . , j∗∗β },

so that for j∗ ∈ J ∗κ,` we have λ∗mj∗ ,rj∗ (κ, `) = 0 and for j∗∗ ∈ J ∗∗κ,` we have λ∗mj∗∗ ,rj∗∗ (κ, `) 6=
0.

Proposition 13.3.3. Let j∗ ∈ J ∗κ,`. For any Farey fraction h/k such that k ≡ ` (mod L)
and h ≡ κ (mod `), we have that

rj∗τγ
∗
(mj∗ ,h,k)(mj∗τ) + λmj∗ ,rj∗ (h, k)γ(mj∗ ,h,k)(mj∗τ)

=
rj∗ gcd(mj∗ , k) + rj∗~mj∗ (h, k)mj∗h

mj∗k
(13.3.2)

is a real noninteger. Further,

∣∣∣∣1− e 2πi
mj∗

∣∣∣∣ ≤
∣∣∣∣∣∣1− e2πi

(
rj∗τγ

∗
(mj∗ ,h,k)(mj∗τ)+λmj∗ ,rj∗ (h,k)γ(mj∗ ,h,k)(mj∗τ)

)∣∣∣∣∣∣ ≤ 2. (13.3.3)

Proof. In this proof, we write for shortm = mj∗ and r = rj∗ . We also write d = gcd(m, k),
m = dm′ and k = dk′. Since j∗ ∈ J ∗κ,`, we have λ∗m,r(h, k) = λ∗m,r(κ, `) = 0. Hence d
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divides rh and λm,r(h, k) = rh/d. We know from (11.4.4) that

rτγ∗(m,h,k)(mτ) + λm,r(h, k)γ(m,h,k)(mτ)

= rd

mk
+ λm,r(h, k)~m(h, k)d

k
+ λ∗m,r(h, k) d2

mkz
i

= rd

mk
+ λm,r(h, k)~m(h, k)d

k

= rd

mk
+ rh

d

~m(h, k)d
k

= r(1 + ~m(h, k)m′h)
m′k

= bm′r

m
= bm′

m′
r

d
,

where as in §11.4, we have put bm′ = (~m(h, k)m′h+ 1)/k′. Hence it is a real number.
Notice that d = gcd(m, k). Since gcd(h, k) = 1, d | rh implies that d | r. Further,

bm′ = (~m(h, k)m′h + 1)/k′ implies that gcd(m′, bm′) = 1. Hence, if bm′
m′

r
d
is an integer,

then m′ | r
d
so that m = dm′ | r. This violates the assumption that 1 ≤ r ≤ m −

1. Hence rτγ∗(m,h,k)(mτ) + λm,r(h, k)γ(m,h,k)(mτ) is not an integer and (13.3.3) follows
immediately.

Remark 13.3.1. Recall that ~m(h, k) is defined to be an integer such that

~m(h, k) mh

gcd(m, k) ≡ −1 (mod k

gcd(m, k)).

Let n be an integer. It turns out that

exp
2πi

rj∗ gcd(mj∗ , k) + rj∗
(
~mj∗ (h, k) + n k

gcd(mj∗ ,k)

)
mj∗h

mj∗k


= exp

2πi
rj∗ gcd(mj∗ , k) + rj∗~mj∗ (h, k)mj∗h

mj∗k
+ 2nπi rj∗h

gcd(mj∗ , k)


= exp

2πi
rj∗ gcd(mj∗ , k) + rj∗~mj∗ (h, k)mj∗h

mj∗k

,
since from the above proof we have gcd(mj∗ , k) | rj∗ . Hence the choice of ~mj∗ (h, k) does

281



not affect the value of

exp
2πi

(
rj∗τγ

∗
(mj∗ ,h,k)(mj∗τ) + λmj∗ ,rj∗ (h, k)γ(mj∗ ,h,k)(mj∗τ)

)
= exp

2πi
rj∗ gcd(mj∗ , k) + rj∗~mj∗ (h, k)mj∗h

mj∗k

.

13.4 Minor Arcs

Let (κ, `) ∈ L≤0, namely, ∆(κ, `) ≤ 0. We write J ∗ = J ∗κ,` and J ∗∗ = J ∗∗κ,`. Notice
that

|Sκ,`| ≤
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

∫
ξh,k

exp
 π

12k (Ω<(z) + ∆(κ, `)<(z−1))


×

∣∣∣∣∣∣
J∏
j=1
�δj

(
rjτγ

∗
(mj ,h,k)(mjτ) + λmj ,rj(h, k)γ(mj ,h,k)(mjτ); γ(mj ,h,k)(mjτ)

)∣∣∣∣∣∣
× e2πn% dφ.

We now consider the Farey arcs with respect to h/k with k ≡ ` (mod L) and h ≡ κ
(mod `). Since ∆(κ, `) ≤ 0, it follows from (11.5.3) and (11.5.5) that

exp
 π

12k (Ω<(z) + ∆(κ, `)<(z−1))
 ≤ exp

 π

12k

(
Ω k

N2 + ∆(κ, `)k2

)
= exp

π% Ω
12

 exp
π∆(κ, `)

24

.
For convenience, now we write λj = λmj ,rj(h, k) and λ∗j = λ∗mj ,rj(h, k). We also write

for short ς̃j = rjτγ
∗
(mj ,h,k)(mjτ) + λmj ,rj(h, k)γ(mj ,h,k)(mjτ) and τ̃j = γ(mj ,h,k)(mjτ). We

know from (11.4.2) and (11.4.4) that

=(τ̃j) = gcd2(mj, k)
mjk

<(z−1) = gcd2(mj, `)
mjk

<(z−1)

and
=(ς̃j) = λ∗j

gcd2(mj, k)
mjk

<(z−1) = λ∗j
gcd2(mj, `)

mjk
<(z−1).
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Notice that
0 ≤ =(ς̃j) < =(τ̃j).

We write

J∏
j=1
�δj(ς̃j; τ̃j) =

∏
j∗∈J ∗

(1− e2πiς̃j∗ )δj∗

×
∏

j∗∈J ∗
(e2πi(τ̃j∗+ς̃j∗ ), e2πi(τ̃j∗−ς̃j∗ ); e2πiτ̃j∗ )δj∗∞

×
∏

j∗∗∈J ∗∗
(e2πiς̃j∗∗ , e2πi(τ̃j∗∗−ς̃j∗∗ ); e2πiτ̃j∗∗ )δj∗∗∞ .

First, it follows from Proposition 13.3.3 that

∏
j∗∈J ∗

(1− e2πiς̃j∗ )δj∗ � 1.

Further, as we have seen in §11.5.2, for j∗ ∈ J ∗ (hence λ∗j∗ = 0),
∣∣∣∣(e2πi(τ̃j∗+ς̃j∗ ), e2πi(τ̃j∗−ς̃j∗ ); e2πiτ̃j∗ )δj∗∞

∣∣∣∣
≤
∑
n≥0

∑
s≥0

∑
t≥0

p∗|δj∗ |(s, t;n)|e2πi(τ̃j∗+ς̃j∗ )|s|e2πi(τ̃j∗−ς̃j∗ )|t|e2πiτ̃j∗ |n

=
∑
n≥0

∑
s≥0

∑
t≥0

p∗|δj∗ |(s, t;n)e−2π=(τ̃j∗+ς̃j∗ )se−2π=(τ̃j∗−ς̃j∗ )te−2π=(τ̃j∗ )n

=
∑
n≥0

∑
s≥0

∑
t≥0

p∗|δj∗ |(s, t;n) exp
(
− 2πgcd2(mj∗ , `)

mj∗k
<(z−1)s

)

× exp
(
− 2πgcd2(mj∗ , `)

mj∗k
<(z−1)t

)
exp

(
− 2πgcd2(mj∗ , `)

mj∗k
<(z−1)n

)

≤
∑
n≥0

∑
s≥0

∑
t≥0

p∗|δj∗ |(s, t;n) exp
(
− πgcd2(mj∗ , `)

mj∗
s

)

× exp
(
− πgcd2(mj∗ , `)

mj∗
t

)
exp

(
− πgcd2(mj∗ , `)

mj∗
n

)
,

where we use <(z−1) ≥ k/2. It follows from (11.5.7) that

(e2πi(τ̃j∗+ς̃j∗ ), e2πi(τ̃j∗−ς̃j∗ ); e2πiτ̃j∗ )δj∗∞ � 1.
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Likewise, for j∗∗ ∈ J ∗∗,∣∣∣∣(e2πiς̃j∗∗ , e2πi(τ̃j∗∗−ς̃j∗∗ ); e2πiτ̃j∗∗ )δj∗∗∞
∣∣∣∣

≤
∑
n≥0

∑
s≥0

∑
t≥0

p∗|δj∗∗ |(s, t;n) exp
(
− πλ∗j∗∗

gcd2(mj∗∗ , `)
mj∗∗

s

)

× exp
(
− π(1− λ∗j∗∗)

gcd2(mj∗∗ , `)
mj∗∗

t

)
exp

(
− πgcd2(mj∗∗ , `)

mj∗∗
n

)
� 1.

Hence,

Sκ,` �
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

∫
ξh,k

e
π% Ω
12 e2πn% dφ

�
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

e2π%(n+ Ω
24 ) 1
kN

� e2π%(n+ Ω
24 ) = e

2π
N2 (n+ Ω

24 ).

13.5 Major Arcs

Let (κ, `) ∈ L>0, namely, ∆(κ, `) > 0. Again, we write J ∗ = J ∗κ,` and J ∗∗ = J ∗∗κ,`.
Let us consider the Farey arcs with respect to h/k with k ≡ ` (mod L) and h ≡ κ
(mod `). For convenience, we write ς̃j(h, k) = rjτγ

∗
(mj ,h,k)(mjτ)+λmj ,rj (h, k)γ(mj ,h,k)(mjτ)

and τ̃j(h, k) = γ(mj ,h,k)(mjτ).

Recall that

Sκ,` =
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

e−
2πinh
k (−1)

∑J

j=1 δjλmj,rj (h,k)ω2
h,k Dh,k

×
∫
ξh,k

exp
 π

12k (Ωz + ∆(κ, `)z−1)
 J∏
j=1
�δj

(
ς̃j(h, k); τ̃j(h, k)

)
× e−2πinφe2πn% dφ.
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We split Sκ,` into two parts Σ1 and Σ2 where

Σ1 :=
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

e−
2πinh
k (−1)

∑J

j=1 δjλmj,rj (h,k)ω2
h,k Dh,k

×
∫
ξh,k

exp
 π

12k (Ωz + ∆(κ, `)z−1)
Πh,ke

−2πinφe2πn% dφ

and

Σ2 :=
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

e−
2πinh
k (−1)

∑J

j=1 δjλmj,rj (h,k)ω2
h,k Dh,k

×
∫
ξh,k

exp
 π

12k (Ωz + ∆(κ, `)z−1)
 J∏

j=1
�δj

(
ς̃j(h, k); τ̃j(h, k)

)
− Πh,k


× e−2πinφe2πn% dφ.

We first show that Σ2 is negligible. Notice that by (11.5.3)

|Σ2| ≤
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

e2π%(n+ Ω
24 )|Πh,k|

×
∫
ξh,k

exp
π∆(κ, `)

12k <(z−1)
∣∣∣∣∣∣ 1

Πh,k

J∏
j=1
�δj

(
ς̃j(h, k); τ̃j(h, k)

)
− 1

∣∣∣∣∣∣ dφ.
Let us fix h and k and write ς̃j = ς̃j(h, k) and τ̃j = τ̃j(h, k). We also write λ∗j = λ∗mj ,rj (h, k).
Recalling the definition of Πh,k and Proposition 13.3.3, we have

1
Πh,k

J∏
j=1
�δj

(
ς̃j; τ̃j

)
− 1 =

∏
j∗∈J ∗

(e2πi(τ̃j∗+ς̃j∗ ), e2πi(τ̃j∗−ς̃j∗ ); e2πiτ̃j∗ )δj∗∞

×
∏

j∗∗∈J ∗∗
(e2πiς̃j∗∗ , e2πi(τ̃j∗∗−ς̃j∗∗ ); e2πiτ̃j∗∗ )δj∗∗∞ − 1.

Let us write for short

ς̃New
j =

τ̃j + ς̃j if j ∈ J ∗,

ς̃j if j ∈ J ∗∗.
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It follows again from (11.4.2) and (11.4.4) that

=(τ̃j) = gcd2(mj, `)
mjk

<(z−1),

=(ς̃j) = λ∗j
gcd2(mj, `)

mjk
<(z−1)

and
=(ς̃New

j ) = Φ(λ∗j)
gcd2(mj, `)

mjk
<(z−1),

where for real 0 ≤ x < 1,

Φ(x) :=

1 if x = 0,

x otherwise.

We have∣∣∣∣∣∣ 1
Πh,k

J∏
j=1
�δj

(
ς̃j; τ̃j

)
− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
J∏
j=1

(e2πiς̃New
j , e2πi(τ̃j−ς̃j); e2πiτ̃j)δj∞ − 1

∣∣∣∣∣∣
≤

∑
n:=(n1,...,nJ )∈ZJ≥0

∑
s:=(s1,...,sJ )∈ZJ≥0

∑
t:=(t1,...,tJ )∈ZJ≥0

J∏
j=1

p∗|δj |(sj, tj;nj)|e
2πiς̃New

j |sj |e2πi(τ̃j−ς̃j)|tj |e2πiτ̃j |nj − 1

=
∑∑∑

n×s×t∈(ZJ≥0)3\(0,...,0)3

J∏
j=1

p∗|δj |(sj, tj;nj)|e
2πiς̃New

j |sj |e2πi(τ̃j−ς̃j)|tj |e2πiτ̃j |nj

=
∑∑∑

n×s×t∈(ZJ≥0)3\(0,...,0)3

J∏
j=1

p∗|δj |(sj, tj;nj)e
−2π=(ς̃New

j )sje−2π=(τ̃j−ς̃j)tje−2π=(τ̃j)nj

=
∑∑∑

n×s×t∈(ZJ≥0)3\(0,...,0)3

 J∏
j=1

p∗|δj |(sj, tj;nj)


× exp
− 2π<(z−1)

k

J∑
j=1

gcd2(mj, `)
mj

(
Φ(λ∗j)sj + (1− λ∗j)tj + nj

).
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Hence,

exp
π∆(κ, `)

12k <(z−1)
∣∣∣∣∣∣ 1

Πh,k

J∏
j=1
�δj

(
ς̃j; τ̃j

)
− 1

∣∣∣∣∣∣
≤

∑∑∑
n×s×t∈(ZJ≥0)3\(0,...,0)3

 J∏
j=1

p∗|δj |(sj, tj;nj)


× exp
− 2π<(z−1)

k

(
− ∆(κ, `)

24 +
J∑
j=1

gcd2(mj, `)
mj

(
Φ(λ∗j)sj + (1− λ∗j)tj + nj

)).
Since at least one coordinate of n× s× t is nonzero, under the condition (13.3.1), we
know that

− ∆(κ, `)
24 +

J∑
j=1

gcd2(mj, `)
mj

(
Φ(λ∗j)sj + (1− λ∗j)tj + nj

)

≥ −∆(κ, `)
24 + min

1≤j≤J

(
Υ(λ∗j)

gcd2(mj, `)
mj

)
≥ 0

for all n× s× t ∈ (ZJ≥0)3\(0, . . . , 0)3. Recalling that <(z−1) ≥ k/2, it follows that

exp
π∆(κ, `)

12k <(z−1)
∣∣∣∣∣∣ 1

Πh,k

J∏
j=1
�δj

(
ς̃j; τ̃j

)
− 1

∣∣∣∣∣∣
is maximized when <(z−1) = k/2. Namely,

exp
π∆(κ, `)

12k <(z−1)
∣∣∣∣∣∣ 1

Πh,k

J∏
j=1
�δj

(
ς̃j; τ̃j

)
− 1

∣∣∣∣∣∣
≤ exp

π∆(κ, `)
24

 ∑∑∑
n×s×t∈(ZJ≥0)3\(0,...,0)3

 J∏
j=1

p∗|δj |(sj, tj;nj)


× exp
− π J∑

j=1

gcd2(mj, `)
mj

(
Φ(λ∗j)sj + (1− λ∗j)tj + nj

)
� 1.

Together with the fact ∏h,k � 1 which follows from (13.3.3), we conclude that

Σ2 �
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

e2π%(n+ Ω
24 )
∫
ξh,k

1 dφ
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�
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

e2π%(n+ Ω
24 ) 1
kN

� e2π%(n+ Ω
24 ) = e

2π
N2 (n+ Ω

24 ).

Finally, we estimate the main contribution Σ1. Recall that

Σ1 =
∑

1≤k≤N
k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

e−
2πinh
k (−1)

∑J

j=1 δjλmj,rj (h,k)ω2
h,k Dh,kΠh,k

×
∫
ξh,k

exp
 π

12k (Ωz + ∆(κ, `)z−1)
e−2πinφe2πn% dφ.

We simply apply Lemma 11.5.1. The main contribution to Σ1 is

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

e−
2πinh
k (−1)

∑J

j=1 δjλmj,rj (h,k)ω2
h,k Dh,kΠh,k

× 2π
k

(
24n+ Ω
∆(κ, `)

)− 1
2

I−1

(
π

6k
√

∆(κ, `)(24n+ Ω)
)
.

The error term in Σ1 is bounded by

∑
1≤k≤N

k≡` mod L

∑
0≤h<k

gcd(h,k)=1
h≡κ mod `

e2π%(n+ Ω
24)

n+ Ω
24
� N2e

2π
N2 (n+ Ω

24)

n+ Ω
24

.

13.6 An Application

As an application, we confirm Tang’s inequalities in [167] in the asymptotic sense.
Here we will expand the infinite product as ∑n≥0 g(n)qn.

In general, to obtain an explicit asymptotic formula of g(n), we first compute L>0.
Next, we find the largest number among {

√
∆(κ, `)/k} with (κ, `) ∈ L>0 and k ≡ `

(mod L). Now one needs to check if the corresponding I-Bessel function vanishes for this
choice. If it is nonvanishing, then the asymptotic formula shall be obtained from the I-
Bessel term. Otherwise, we move to find the second largest number among {

√
∆(κ, `)/k}

and carry out the same program. Notice that if there are multiple choices of κ, ` and
k giving the same value of

√
∆(κ, `)/k, one should sum up all such I-Bessel terms and
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check if the summation vanishes or not.
Let ∑

n≥0
g(n)qn = (q2, q8; q10)∞(q4; q6; q10)2

∞
(q2, q3; q5)2

∞
.

Then m = {5, 10, 10}, r = {2, 2, 4} and δ = {−2, 1, 2}. Hence L = 10 and Ω = −8. We
compute that

L>0 = {(0, 1), (0, 3), (1, 3), (2, 3), (0, 5), (2, 5), (3, 5), (0, 7), (1, 7), (2, 7), (3, 7),

(4, 7), (5, 7), (6, 7), (0, 9), (1, 9), (2, 9), (3, 9), (4, 9), (5, 9), (6, 9), (7, 9),

(8, 9), (1, 10), (2, 10), (3, 10), (4, 10), (6, 10), (7, 10), (8, 10), (9, 10)}.

First, the assumption (13.1.3) is satisfied. We next find that the largest number among
{
√

∆(κ, `)/k} with (κ, `) ∈ L>0 and k ≡ ` (mod L) is 1√
5 . Here we have four choices:

(κ, `, k) = (0, 1, 1), (0, 5, 5), (2, 5, 5), (3, 5, 5).

When k = 1, the admissible (h, k) is (0, 1). We compute that the I-Bessel term is

√
2π√
15

sin
π

5

n− 1
3

−1/2

I−1

√2π√
15

√
n− 1

3

.
When k = 5, the admissible (h, k) are (2, 5) and (3, 5). We compute that, in total, the
I-Bessel term is

√
2π√
15

sin
2π

5
(
2n+ 1

)n− 1
3

−1/2

I−1

√2π√
15

√
n− 1

3

.
In total, we therefore have

√
2π√
15

 sin
(
π

5

)
+ sin

(
2π
5
(
2n+ 1

))n− 1
3

−1/2

I−1

√2π√
15

√
n− 1

3

.
Notice that sin

(
π
5

)
+ sin

(
2π
5 (2n+ 1)

)
vanishes only if n ≡ 1 (mod 5). Hence, we have

the following asymptotic formula.
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Theorem 13.6.1. For n 6≡ 1 (mod 5),

g(n) ∼
√

2π√
15

 sin
(
π

5

)
+ sin

(
2π
5
(
2n+ 1

))n− 1
3

−1/2

I−1

√2π√
15

√
n− 1

3


∼ 1

301/4

 sin
(
π

5

)
+ sin

(
2π
5
(
2n+ 1

))n−3/4 exp
√2π√

15
√
n

.
It follows that g(5n + 0, 2, 3) > 0 and g(5n + 4) < 0 for sufficiently large n. If we

further compute a number of lower I-Bessel terms, we still encounter the same vanishment
for n ≡ 1 (mod 5). This highly suggests that g(5n+ 1) = 0, which is, indeed, proved by
Tang using elementary techniques in [167].

All other inequalities conjectured by Tang can be proved in the same manner. We
omit the details here.
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Chapter 14 |

Nonmodular Infinite Products and a Conjecture of Seo
and Yee

This chapter comes from

• S. Chern, Nonmodular infinite products and a Conjecture of Seo and Yee, submitted. Available
at arXiv:1912.10341. (Ref. [61])

14.1 Introduction

In the previous three chapters, we have discussed the asymptotics for coefficients in
infinite products G(q) that are modular. Let q = e2πiτ with τ in the upper half complex
plane. If τ is replaced by T (τ) where T is a transformation belonging to some subgroup
of finite index of the modular group, then the resulting function remains essentially
invariant according to the modularity. This allows us to study the asymptotics of G(q)
when q is close to rational points on the unit circle. However, the story is different if the
infinite product is no longer modular.

The motivation of this chapter is a recent conjecture of Seo and Yee [161] in their
study of seaweed algebras. They proved that an earlier conjecture of Coll, A. Mayers
and N. Mayers [70] is equivalent to the following nonnegativity conjecture.

Conjecture 14.1.1. The series expansion of

1
(q,−q3; q4)∞

(14.1.1)

has nonnegative coefficients.

Notice that the above infinite product is no more modular. Hence, a Rademacher-type
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proof fails. Also, if we rewrite this product as

(q3; q4)∞
(q; q4)∞(q6; q8)∞

,

then the numerator (q3; q4)∞ causes the expiration of Meinardus’ powerful approach
[134]. One of the few works about asymptotics of nonmodular infinite products is due to
Grosswald [89], who absorbed ideas from Lehner [118] and Livingood [130]. In his paper,
the infinite product

1
(qa; qM)∞

(14.1.2)

with a prime modulus M is considered. However, a closer examination of Grosswald’s
paper reveals several mistakes, among which at least the calculation of the residue R3

on page 119 of [89] is not robust. Also, a natural question is about the case where the
modulus is composite.

Let M be a positive integer and a be any of 1, 2, . . . ,M . The first goal of this chapter
is to investigate the asymptotic behavior of

Φa,M(q) := log
(

1
(qa; qM)∞

)
(14.1.3)

when the complex variable q with |q| < 1 approaches the unit circle.

Theorem 14.1.1. Let X be a sufficiently large positive number. Let

q = e−τ+2πih/k (14.1.4)

where 1 ≤ h ≤ k ≤ b
√

2πXc =: N with (h, k) = 1 (throughout, (m,n) denotes the
greatest common divisor of integers m and n) and τ = X−1 + 2πiY with |Y | ≤ 1/(kN).
Let M be a positive integer and a be any of 1, 2, . . . ,M . If we denote by b the unique
integer between 1 and (k,M) such that b ≡ −ha (mod (k,M)) and write

b∗ =

(k,M)− b if b 6= (k,M),

(k,M) if b = (k,M),
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then

log
(

1
(qa; qM)∞

)
= 1
τ

(k,M)2

k2M

π2
(

b2

(k,M)2 −
b

(k,M) + 1
6

)

+ 2πi
(
−ζ ′

(
−1, b

(k,M)

)
+ ζ ′

(
−1, b∗

(k,M)

))+ E (14.1.5)

where
|<(E)| �a,M X1/2 logX. (14.1.6)

Remark 14.1.1. Let Qh/k be the set of q with respect to h/k defined in Theorem 14.1.1.
For any q with |q| = e−1/X , we are always able to find an h/k such that q ∈ Qh/k. This
is a direct consequence of the theory of Farey fractions. In fact, if h/k is a Farey fraction
of order N and ξ+ (resp. ξ−) denotes the distance from h/k to its right (resp. left)
neighboring mediant, then

1
2kN ≤ ξ± ≤

1
kN

.

Hence, R/Z can be covered by intervals

⋃
1≤h≤k≤N

(h,k)=1

[
h

k
− 1
kN

,
h

k
+ 1
kN

]
.

Equipped with Theorem 14.1.1, we almost arrive at a proof of Conjecture 14.1.1.

Theorem 14.1.2. Let

G(q) :=
∑
n≥0

g(n)qn = 1
(q,−q3; q4)∞

. (14.1.7)

We have, as n→∞,

g(n) ∼ π1/4Γ(1/4)
29/433/8n3/8 I−3/4

(
π

2

√
n

3

)
+ (−1)n π3/4Γ(3/4)

211/435/8n5/8 I−5/4

(
π

2

√
n

3

)
(14.1.8)

where Is(x) is the modified Bessel function of the first kind. Further, when n ≥ 2.4×1014,
we have g(n) > 0.

Unfortunately, my personal laptop did not support me to verify the coefficients g(n)
up to n = 2.4 × 1014. But I deeply believe the validity of their nonnegativity after
computing the first 10,000 terms.
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Throughout, ζ(s) and ζ(s, a) are respectively Riemann zeta function and Hurwitz
zeta function. We denote by ζ ′(s, a) the partial derivative of Hurwitz zeta function with
respect to s, namely,

ζ ′(s, a) = ∂

∂s
ζ(s, a).

Finally, Γ(s) is the gamma function and γ is the Euler–Mascheroni constant.

14.2 Theorem 14.1.1: Preparation

Recall that
Φa,M(q) = log

(
1

(qa; qM)∞

)
=

∑
m≥1

m≡a mod M

∑
`≥1

q`m

`
. (14.2.1)

Throughout, let us assume X ≥ 16 and N =
⌊√

2πX
⌋
. As in Theorem 14.1.1, we put

q = e−τe2πih/k (14.2.2)

where 1 ≤ h ≤ k ≤ N with (h, k) = 1 and

τ = X−1 + 2πiY (14.2.3)

with the restriction
|Y | ≤ 1

kN
. (14.2.4)

Now we are going to collect some bounds that will be frequently used in the sequel.
First, the assumptions of X and N imply that

0.9
√

2πX ≤ N ≤
√

2πX. (14.2.5)

Further, N ≤
√

2πX implies that

1
X
≤ 2π
N2 ≤

2π
kN

.

Hence,

|τ | ≤ 2
√

2π
kN

. (14.2.6)

Finally,
<
(1
τ

)
≥ 0.07k2. (14.2.7)
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This is because

<
( 1
k2τ

)
= X−1

k2(X−2 + 4π2Y 2)

≥ X−1

k2(X−2 + 4π2k−2N−2)

= X−1

k2X−2 + 4π2N−2

≥ X−1

N2X−2 + 4π2N−2

≥ X−1

(0.9
√

2πX)2X−2 + 4π2(0.9
√

2πX)−2

≥ 0.07.

Given any positive integer k, we write

K = k
M

(k,M) . (14.2.8)

Notice that M | K. Write in (14.2.1)

` = bk + µ (1 ≤ µ ≤ k)

and
m = cK + λ (1 ≤ λ ≤ K, λ ≡ a mod M).

Then
Φa,M(q) =

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k

e
2πihµλ

k

∑
b,c≥0

1
bk + µ

e−(bk+µ)(cK+λ)τ .

Applying the Mellin transform further gives

Φa,M(q) =
∑

1≤λ≤K
λ≡a mod M

∑
1≤µ≤k

e
2πihµλ

k

∑
b,c≥0

1
2πi

∫
(3/2)

Γ(s)
bk + µ

ds

(bk + µ)s(cK + λ)sτ s

=
∑

1≤λ≤K
λ≡a mod M

∑
1≤µ≤k

e
2πihµλ

k
1

2πi

∫
(3/2)

Γ(s)
τ sks+1Ks

ζ

(
s,
λ

K

)
ζ
(

1 + s,
µ

k

)
ds.

Here the path of integration (α) is from α− i∞ to α + i∞.
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Recall the functional equation of Hurwitz zeta function:

ζ

(
s,
λ

k

)
= 2Γ(1− s)(2πk)s−1

 sin πs2
∑

1≤ν≤k
cos 2πλν

k
ζ
(

1− s, ν
k

)

+ cos πs2
∑

1≤ν≤k
sin 2πλν

k
ζ
(

1− s, ν
k

). (14.2.9)

If we further put
z = τk

2π , (14.2.10)

then

Φa,M (q) = 1
4πikK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

cos 2πhµλ
k

cos 2πνλ
K

∫
(3/2)

ζ
(
1 + s, µk

)
ζ
(
1− s, νK

)
zs cos πs2

ds

+ 1
4πikK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

cos 2πhµλ
k

sin 2πνλ
K

∫
(3/2)

ζ
(
1 + s, µk

)
ζ
(
1− s, νK

)
zs sin πs

2
ds

+ 1
4πkK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

sin 2πhµλ
k

sin 2πνλ
K

∫
(3/2)

ζ
(
1 + s, µk

)
ζ
(
1− s, νK

)
zs sin πs

2
ds

+ 1
4πkK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

sin 2πhµλ
k

cos 2πνλ
K

∫
(3/2)

ζ
(
1 + s, µk

)
ζ
(
1− s, νK

)
zs cos πs2

ds.

(14.2.11)

Notice that 1 ≤ λ ≤ K. If hλ1 ≡ hλ2 (mod k), then by recalling h1 ≡ h2 ≡ a

(mod M) and the fact that (h, k) = 1, we conclude that λ1 ≡ λ2 (mod K). Hence, the
hλ’s give

K

M
= k

(k,M)

residue classes modulo k. For each λ, we denote by ρ = ρ(λ) the unique integer between
1 and k such that

ρ ≡ −hλ (mod k). (14.2.12)

Then the ρ’s are pairwise distinct. Further, if we put

M∗ = (k,M),

then for all ρ,
ρ ≡ −ha (mod M∗). (14.2.13)

296



Let us choose h′ so that
hh′ ≡ −1 (mod k).

This is always possible since (h, k) = 1. Notice that λ ≡ a (mod M). Hence, we have
the system λ ≡ h′ρ (mod k)

λ ≡ a (mod M)
. (14.2.14)

This system is solvable whenever h′ρ ≡ a (mod M∗). But this can be ensured by (14.2.13)
and the fact that hh′ ≡ −1 (mod M∗). We next find, using Euclid’s algorithm, integers
α and β such that

αk + βM = M∗. (14.2.15)

We therefore have (notice that lcm(k,M) = K)

λ ≡ a+ βM
h′ρ− a
M∗ = βh′

M

M∗ρ+ αa
k

M∗ (mod K). (14.2.16)

In (14.2.11), replacing s by −s, reversing the direction of integration path and shifting
the path back to (3/2), one has, with hλ replaced by −ρ,

Φa,M (q) = 1
4πikK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

cos 2πµρ
k

cos 2πνλ
K

∫
(3/2)

ζ
(
1− s, µk

)
ζ
(
1 + s, νK

)
z−s cos πs2

ds

− 1
4πikK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

cos 2πµρ
k

sin 2πνλ
K

∫
(3/2)

ζ
(
1− s, µk

)
ζ
(
1 + s, νK

)
z−s sin πs

2
ds

+ 1
4πkK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

sin 2πµρ
k

sin 2πνλ
K

∫
(3/2)

ζ
(
1− s, µk

)
ζ
(
1 + s, νK

)
z−s sin πs

2
ds

− 1
4πkK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

sin 2πµρ
k

cos 2πνλ
K

∫
(3/2)

ζ
(
1− s, µk

)
ζ
(
1 + s, νK

)
z−s cos πs2

ds

− 2πi(R1 +R2 +R3 +R4)

=: Υ1 + Υ2 + Υ3 + Υ4 − 2πi(R1 +R2 +R3 +R4) (14.2.17)

where R∗ comes from the sum of residues of the corresponding integrand inside the stripe
−3/2 < <(s) < 3/2.

In the next two sections, we shall evaluate the integrals Υ∗ and the residues R∗, re-
spectively. One may conclude Theorem 14.1.1 directly from (14.2.17) and the estimations
(14.3.15), (14.4.11), (14.4.13), (14.4.15), (14.4.17), (14.4.22) and (14.4.24).
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14.3 Theorem 14.1.1: The Integrals

14.3.1 An Auxiliary Function

Let us define an auxiliary function

Ψa,M(q) := log

 ∏
m≥1

m≡−ha mod M∗

1
1− e2πiαa/Mqm

 . (14.3.1)

where α is defined in (14.2.15). We further write

m = bk + ρ (1 ≤ ρ ≤ k, ρ ≡ −ha mod M∗).

Also, we put

q∗ := exp
(

2πiβh′
k

− 2π
Kz

)
(14.3.2)

where β is again defined in (14.2.15). Then

Ψa,M(q∗) = −
∑

1≤ρ≤k
ρ≡−ha mod M∗

∑
b≥0

log
1− exp

(
2πiβh′
k

ρ− 2π
Kz

(bk + ρ) + 2πiαa
M

).

It follows from (14.2.16) that

exp
(

2πiλ
K

)
= exp

(
2πiβh′M
KM∗ ρ+ 2πiαak

KM∗

)
= exp

(
2πiβh′
k

ρ+ 2πiαa
M

)
.

Hence,

Ψa,M(q∗) = −
∑

1≤ρ≤k
ρ≡−ha mod M∗

∑
b≥0

log
1− exp

(
− 2π
Kz

(bk + ρ) + 2πiλ
K

)
=

∑
1≤ρ≤k

ρ≡−ha mod M∗

∑
1≤ν≤K

∑
b,c≥0

1
cK + ν

× exp
(cK + ν)

(
− 2π
Kz

(bk + ρ) + 2πiλ
K

)
=

∑
1≤ρ≤k

ρ≡−ha mod M∗

∑
1≤ν≤K

e
2πiνλ
K

∑
b,c≥0

1
cK + ν

e−(bk+ρ)(cK+ν) 2π
Kz .
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If we substitute ρ back to λ and apply Mellin transform and the functional equation
of Hurwitz zeta function to Ψa,M(q∗), then

Ψa,M (q∗) = 1
4πikK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

cos 2πµρ
k

cos 2πνλ
K

∫
(3/2)

ζ
(
1− s, µk

)
ζ
(
1 + s, νK

)
z−s cos πs2

ds

+ 1
4πikK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

sin 2πµρ
k

cos 2πνλ
K

∫
(3/2)

ζ
(
1− s, µk

)
ζ
(
1 + s, νK

)
z−s sin πs

2
ds

+ 1
4πkK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

sin 2πµρ
k

sin 2πνλ
K

∫
(3/2)

ζ
(
1− s, µk

)
ζ
(
1 + s, νK

)
z−s sin πs

2
ds

+ 1
4πkK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

cos 2πµρ
k

sin 2πνλ
K

∫
(3/2)

ζ
(
1− s, µk

)
ζ
(
1 + s, νK

)
z−s cos πs2

ds

=: J1 + J2 + J3 + J4. (14.3.3)

Notice that

Υ1 = J1 and Υ3 = J3.

Further,
2(J1 + J3) = Ψa,M(q∗) + ΨM−a,M(q∗). (14.3.4)

14.3.2 Estimations Concerning Hurwitz Zeta Function

Recall (see, for instance, [27, (25.11.9)]) that for <(s) > 1 and 0 < α ≤ 1,

ζ(1− s, α) = 2Γ(s)
(2π)s

∞∑
n=1

1
ns

cos
(1

2πs− 2nπα
)
.

This implies that for 0 < α ≤ 1, we have a uniform bound

|ζ(−0.5 + it, α) | ≤ 2Γ(3/2)ζ(3/2) cosh(π|t|/2)
(2π)3/2 . (14.3.5)

It also follows from [26, Theorem 12.23] with some simple calculations that, uniformly
for |t| ≥ 3 and 0 < α ≤ 1,

|ζ(−0.5 + it, α) | ≤ 11|t|3/2. (14.3.6)
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Finally, we have, for 0 < α ≤ 1,

|ζ(2.5 + it, α) | ≤ α−5/2 + ζ(5/2). (14.3.7)

Lemma 14.3.1. Let z be a complex number with <(z) > 0. Let 0 < α, β ≤ 1. Define
integrals

I+(z) :=
∫

(3/2)
zsζ(1 + s, α) ζ(1− s, β)

 1
cos πs

2
+ 1
i sin πs

2

ds (14.3.8)

and

I−(z) :=
∫

(3/2)
zsζ(1 + s, α) ζ(1− s, β)

 1
cos πs

2
− 1
i sin πs

2

ds. (14.3.9)

Then if =(z) ≤ 0, we have

|I+(z)| ≤ 7.23|z|3/2
(
α5/2 + ζ(5/2)

)
, (14.3.10)

while if =(z) ≥ 0, we have

|I−(z)| ≤ 7.23|z|3/2
(
α5/2 + ζ(5/2)

)
. (14.3.11)

Proof. Let us write s = 3/2 + it as the path of integration is the vertical line <(s) = 3/2.
We have

|zs| = |z|3/2e−Arg(z)t.

Also, ∣∣∣∣∣ 1
cos πs

2
+ 1
i sin πs

2

∣∣∣∣∣ = 2e−π2 t
| sin(πs)| .

Hence, for z with =(z) ≤ 0 (recall that <(z) > 0 so that −π/2 < Arg(z) ≤ 0), we have

|zs|
∣∣∣∣∣ 1
cos πs

2
+ 1
i sin πs

2

∣∣∣∣∣ ≤ 2|z|3/2 e
π
2 |t|

| sin(πs)| .

It follows that

|I+(z)| ≤ 2|z|3/2
(
(α5/2 + ζ(5/2)

) ∫ ∞
−∞
|ζ(−0.5− it, β)| e

π
2 |t|

| sin(π(1.5 + it))|dt

≤ 7.23|z|3/2
(
α5/2 + ζ(5/2)

)
.
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Similar arguments also apply to I−(z) if =(z) ≥ 0.

14.3.3 Bounding the Integrals

Recall that
z = τk

2π .

For Υ2 and Υ4, we define

Υ∗ ± J∗ :=

Υ∗ + J∗ if =(z) ≥ 0,

Υ∗ − J∗ if =(z) < 0.
(14.3.12)

It follows from Lemma 14.3.1 that

|Υ∗ ± J∗| ≤
1

4πkK
kK

M

∑
1≤ν≤K

7.23 |z|3/2
(K

ν

)5/2
+ ζ

(5
2

)
≤ 1

4πM · 7.23 |z|3/2 · 2ζ(5/2)K5/2

≤ 7.23 ζ(5/2)
2πM

∣∣∣∣∣τk2π

∣∣∣∣∣
3/2 (

k
M

(k,M)

)5/2

≤ 7.23 ζ(5/2)
2πM

(√
2
N

)3/2 (
M

(k,M)

)5/2

N5/2 (by (14.2.6))

≤ 7.23 ζ(5/2) 23/4

2πM

(
M

(k,M)

)5/2√
2πX

≤ 6.51 M3/2

(k,M)5/2X
1/2

� X1/2. (14.3.13)

Finally, we bound

|<(Υ1 + Υ2 + Υ3 + Υ4)| ≤ |<(Υ1 + Υ3)|+ |<(Υ2 + Υ4)|

≤ |<(J1 + J3)|+ |<(J2 + J4)|+ |Υ2 ± J2|+ |Υ4 ± J4|

≤ |<(Ψa,M(q∗))|+ 2|<(J1 + J3)|+ |Υ2 ± J2|+ |Υ4 ± J4|

≤ 2|<(Ψa,M(q∗))|+ |<(ΨM−a,M(q∗))|

+ |Υ2 ± J2|+ |Υ4 ± J4|.
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Recall from (14.3.2) that

q∗ = exp
(

2πiβh′
k

− 2π
Kz

)
.

Hence,

|q∗| = exp
(
<
(
− 2π
Kz

))
= exp

(
−4π2 (k,M)

M
<
( 1
k2τ

))
.

By (14.2.7), we have

|q∗| ≤ exp
(
−4π2 (k,M)

M
· 0.07

)
� 1. (14.3.14)

We further have, by some simple partition-theoretic arguments that, for any a =
1, 2, . . . ,M ,

e|<(Ψa,M (q∗))| ≤
∏
m≥1

m≡−ha mod M∗

1
1− |q∗|m ≤

1
(|q∗|; |q∗|)∞

= exp
−∑

`≥1
log(1− |q∗|`)

 = exp
∑
`≥1

∑
m≥1

|q∗|`m

m


≤ exp

∑
n≥1

n|q∗|n
 = exp

(
|q∗|

(1− |q∗|)2

)
.

In consequence,

|<(Ψa,M(q∗))| ≤ e−0.28π2 (k,M)
M(

1− e−0.28π2 (k,M)
M

)2 � 1.

It turns out that

|<(Υ1 + Υ2 + Υ3 + Υ4)| ≤ 3 · e−0.28π2 (k,M)
M(

1− e−0.28π2 (k,M)
M

)2 + 2 · 6.51 M3/2

(k,M)5/2X
1/2

≤ 3e−0.28π2 (k,M)
M(

1− e−0.28π2 (k,M)
M

)2 + 13.02 M3/2

(k,M)5/2X
1/2

� X1/2. (14.3.15)
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14.4 Theorem 14.1.1: The Residues

14.4.1 Some Lemmas

We first require some finite summation formulas of Hurwitz zeta function, which
follow from the first two aligned formulas on page 587 of [38].

Lemma 14.4.1. For any θ = 1, 2, . . . , k,

∑
1≤α≤k

cos 2παθ
k

ζ
(

0, α
k

)
= −1

2 (14.4.1)

and

∑
1≤α≤k

cos 2παθ
k

ζ
(

2, α
k

)
= π2

6 (6θ2 − 6kθ + k2). (14.4.2)

For any θ = 1, 2, . . . , k − 1,

∑
1≤α≤k

sin 2παθ
k

ζ
(

0, α
k

)
= 1

2π

Γ′
Γ

(
1− θ

k

)
− Γ′

Γ

(
θ

k

) = 1
2 cot πθ

k
(14.4.3)

and

∑
1≤α≤k

sin 2παθ
k

ζ
(

2, α
k

)
= 2πk2

ζ ′ (−1, θ
k

)
− ζ ′

(
−1, 1− θ

k

). (14.4.4)

We also need three finite summation formulas of the digamma function due to Gauß
(cf. [164]).

Lemma 14.4.2. For any θ = 1, 2, . . . , k − 1,

∑
1≤α≤k

cos 2παθ
k

Γ′
Γ

(
α

k

)
= k log

(
2 sin πθ

k

)
(14.4.5)

and

∑
1≤α≤k

sin 2παθ
k

Γ′
Γ

(
α

k

)
= π

2 (2θ − k). (14.4.6)
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Further,

∑
1≤α≤k

Γ′
Γ

(
α

k

)
= −k(γ + log k). (14.4.7)

Next, it is easy to compute that

∑
|<(s)|≤3/2

Ress
ζ
(
1− s, µ

k

)
ζ
(
1 + s, ν

K

)
z−s cos πs

2
= Ress=0(∗) + Ress=−1(∗) + Ress=1(∗)

= − log z − Γ′
Γ

(
µ

k

)
+ Γ′

Γ

(
ν

K

)
+

2ζ
(
2, µ

k

)
ζ
(
0, ν

K

)
πz

−
2zζ

(
0, µ

k

)
ζ
(
2, ν

K

)
π

and

∑
|<(s)|≤3/2

Ress
ζ
(
1− s, µ

k

)
ζ
(
1 + s, ν

K

)
z−s sin πs

2
= Ress=0(∗)

= − π

12 −
(log z)2

π
− 2 log z

π

Γ′
Γ

(
µ

k

)
+ 2 log z

π

Γ′
Γ

(
ν

K

)

+ 2
π

Γ′
Γ

(
µ

k

) Γ′
Γ

(
ν

K

)
+ 2
π
γ1

(
µ

k

)
+ 2
π
γ1

(
ν

K

)

where γ1(α) is the generalized Stieltjes constant.
Finally, recall from (14.2.12) that ρ is the unique integer between 1 and k such that

ρ ≡ −hλ (mod k). Hence,
λ = K ⇐⇒ ρ = k. (14.4.8)

Further, (14.2.13) says ρ ≡ −ha (mod M∗). Recall also that b is the unique integer
between 1 and M∗ such that

b ≡ −ha (mod M∗). (14.4.9)

Then the following two summations represent the same thing:

∑
1≤λ≤K

λ≡a mod M

(∗) ≡
∑

1≤ρ≤k
ρ≡b mod M∗

(∗).

304



14.4.2 Evaluation of R1

We have

R1 = 1
4πikK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

cos 2πµρ
k

cos 2πνλ
K

×

2ζ
(
2, µ

k

)
ζ
(
0, ν

K

)
πz

−
2zζ

(
0, µ

k

)
ζ
(
2, ν

K

)
π

 .
First,

R11 := 1
z

1
2iπ2kK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k

cos 2πµρ
k

ζ
(

2, µ
k

) ∑
1≤ν≤K

cos 2πνλ
K

ζ
(

0, ν
K

)

= 1
z

1
2iπ2kK

∑
1≤ρ≤k

ρ≡b mod M∗

π2

6 (6ρ2 − 6kρ+ k2) ·
(
−1

2

)

= 1
z

1
2iπ2kK

· π
2

6
k

M∗ (6b
2 − 6bM∗ + (M∗)2) ·

(
−1

2

)
= −2π

τk

1
24iKM∗ (6b

2 − 6bM∗ + (M∗)2)

= −2π
τk

1
24ikM (6b2 − 6bM∗ + (M∗)2). (14.4.10)

Hence,
−2πiR11 = 1

τ

π2

6k2M
(6b2 − 6b(k,M) + (k,M)2). (14.4.11)

Also,

R12 := −z 1
2iπ2kK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k

cos 2πµρ
k

ζ
(

0, µ
k

) ∑
1≤ν≤K

cos 2πνλ
K

ζ
(

2, ν
K

)

= −z 1
2iπ2kK

∑
1≤λ≤K

λ≡a mod M

(
−1

2

)
· π

2

6 (6λ2 − 6kλ+ k2)

= −z 1
2iπ2kK

·
(
−1

2

)
· π

2

6
K

M
(6a2 − 6aM +M2)

= τk

2π
1

24ikM (6a2 − 6aM +M2)

= τ
1

48iπM (6a2 − 6aM +M2). (14.4.12)
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Hence, recalling that a = 1, 2, . . . ,M , we have

|−2πiR12| = |τ |
|6a2 − 6aM +M2|

24M

≤ 2
√

2π
kN

· M
2

24M

≤ 2
√

2π
k · 0.9

√
2πX

· M24 .

In consequence,
|−2πiR12| ≤ 0.17M

k
X−1/2 � X−1/2. (14.4.13)

14.4.3 Evaluation of R2

We have

R2 = − 1
4πikK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

cos 2πµρ
k

sin 2πνλ
K
· 2
π

Γ′
Γ

(
µ

k

) Γ′
Γ

(
ν

K

)
.

Hence, with (14.4.8),

R2 = − 1
2iπ2kK

∑
1≤λ<K

λ≡a mod M

∑
1≤µ≤k

cos 2πµρ
k

Γ′
Γ

(
µ

k

) ∑
1≤ν≤K

sin 2πνλ
K

Γ′
Γ

(
ν

K

)

= − 1
2iπ2kK

∑
1≤ρ<k

ρ≡b mod M∗

k log
(

2 sin πρ
k

)
· π2 (2λ−K)

= − 1
4iπK

∑
1≤ρ<k

ρ≡b mod M∗

(2λ−K) log
(

2 sin πρ
k

)
. (14.4.14)

Notice that for 0 ≤ x ≤ π/2, we have

|log(2 sin x)| ≤ π log 2
2x .

Hence,

|−2πiR2| ≤
1

2K · 2
∑

1≤ρ<k
K · π log 2

2
k

πρ

= log 2
2 k

∑
1≤ρ<k

1
ρ
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≤ log 2
2 k(log k + γ)

≤ log 2
2 N(logN + γ)

≤ log 2
2
√

2πX(log
√

2πX + γ).

In consequence,

|−2πiR2| ≤ 1.3X1/2 + 0.44X1/2 logX � X1/2 logX. (14.4.15)

14.4.4 Evaluation of R3

We have

R3 = 1
4πkK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

sin 2πµρ
k

sin 2πνλ
K
· 2
π

Γ′
Γ

(
µ

k

) Γ′
Γ

(
ν

K

)
.

Hence, with (14.4.8),

R3 = 1
2π2kK

∑
1≤λ<K

λ≡a mod M

∑
1≤µ≤k

sin 2πµρ
k

Γ′
Γ

(
µ

k

) ∑
1≤ν≤K

sin 2πνλ
K

Γ′
Γ

(
ν

K

)

= 1
2π2kK

∑
1≤ρ<k

ρ≡b mod M∗

π

2 (2ρ− k) · π2 (2λ−K)

= 1
8kK

∑
1≤ρ<k

ρ≡b mod M∗

(2ρ− k)(2λ−K). (14.4.16)

In consequence,

|−2πiR3| ≤ 2π · 1
8kK ·

k

M∗kK = πk

4M∗ ≤
πN

4M∗ ≤
π
√

2πX
4M∗ .

Namely,
|−2πiR3| ≤

1.97
(k,M)X

1/2 � X1/2. (14.4.17)
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14.4.5 Evaluation of R4

We have

R4 = − 1
4πkK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k
1≤ν≤K

sin 2πµρ
k

cos 2πνλ
K

×

2ζ
(
2, µ

k

)
ζ
(
0, ν

K

)
πz

−
2zζ

(
0, µ

k

)
ζ
(
2, ν

K

)
π

 .
First,

R41 := −1
z

1
2π2kK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k

sin 2πµρ
k

ζ
(

2, µ
k

) ∑
1≤ν≤K

cos 2πνλ
K

ζ
(

0, ν
K

)

= −1
z

1
2π2kK

∑
1≤ρ<k

ρ≡b mod M∗

2πk2

ζ ′ (−1, ρ
k

)
− ζ ′

(
−1, 1− ρ

k

) · (−1
2

)

= 1
z

k

2πK
∑

1≤ρ<k
ρ≡b mod M∗

ζ ′ (−1, ρ
k

)
− ζ ′

(
−1, 1− ρ

k

).

If b = M∗, then both ρ and k− ρ run through all multiples of M∗ within the range [1, k),
and hence

R41 = 0. (14.4.18)

We further notice that if d | k and 1 ≤ c ≤ d, then for any s 6= 1,

∑
1≤`≤k

`≡c mod d

ζ

(
s,
`

k

)
=
(
k

d

)s
ζ
(
s,
c

d

)
(14.4.19)

Hence,

∑
1≤`<k

`≡c mod d

ζ ′
(
s,
`

k

)
=
(
k

d

)s
ζ
(
s,
c

d

)
log(k/d) +

(
k

d

)s
ζ ′
(
s,
c

d

)
. (14.4.20)

Since M∗ = (k,M) divides k, it follows that if b 6= M∗ (and hence ρ 6= k), then

R41 = 1
z

k

2πK

(M∗

k

)
ζ

(
−1, b

M∗

)
log k

M∗ +
(
M∗

k

)
ζ ′
(
−1, b

M∗

)
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−
(
M∗

k

)
ζ

(
−1, M

∗ − b
M∗

)
log k

M∗ −
(
M∗

k

)
ζ ′
(
−1, M

∗ − b
M∗

)
= 1
z

(k,M)2

M

1
2πk

ζ ′ (−1, b

M∗

)
− ζ ′

(
−1, M

∗ − b
M∗

)
= 1
τ

(k,M)2

M

1
k2

ζ ′ (−1, b

(k,M)

)
− ζ ′

(
−1, (k,M)− b

(k,M)

). (14.4.21)

It turns out that

−2πiR41 =


0 if b = (k,M),

− 1
τ

(k,M)2

M
2πi
k2

ζ ′ (−1, b
(k,M)

)
− ζ ′

(
−1, (k,M)−b

(k,M)

) if b 6= (k,M).

(14.4.22)
Also,

R42 := z
1

2π2kK

∑
1≤λ≤K

λ≡a mod M

∑
1≤µ≤k

sin 2πµρ
k

ζ
(

0, µ
k

) ∑
1≤ν≤K

cos 2πνλ
K

ζ
(

2, ν
K

)

= z
1

2π2kK

∑
1≤λ<K

λ≡a mod M

1
2 cot πρ

k
· π

2

6 (6λ2 − 6Kλ+K2)

= z
1

24kK
∑

1≤ρ<k
ρ≡b mod M∗

(6λ2 − 6Kλ+K2) cot πρ
k

= τ
1

48πK
∑

1≤ρ<k
ρ≡b mod M∗

(6λ2 − 6Kλ+K2) cot πρ
k
. (14.4.23)

Notice that for 1 ≤ λ ≤ K,

|6λ2 − 6Kλ+K2| ≤ K2

and for 0 < x ≤ π/2,
| cotx| ≤ 1

x
.

Hence,

|−2πiR42| = |τ |
1

24K

∣∣∣∣∣∣∣∣
∑

1≤ρ<k
ρ≡b mod M∗

(6λ2 − 6Kλ+K2) cot πρ
k

∣∣∣∣∣∣∣∣
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≤ 2
√

2π
kN

1
24K · 2K

2 ∑
1≤`<k

k

π`

=
√

2
6N

kM

(k,M)(log k + γ)

≤
√

2
6N

NM

(k,M)(logN + γ)

≤
√

2
6

M

(k,M)(log
√

2πX + γ).

In consequence,

|−2πiR42| ≤ 0.12 M

(k,M) logX + 0.36 M

(k,M) � logX. (14.4.24)

14.5 Explicit Bounds of G(q)

Recall that
G(q) = (q3; q4)∞

(q; q4)∞(q6; q8)∞
.

The goal of this section is the following uniform bound of |G(q)| when q is away from ±1.

Theorem 14.5.1. Let Qh/k be as in Remark 14.1.1. For any q (with |q| = e−1/X) not
in Q1/1 and Q1/2, we have, if X ≥ 3.4× 107, then

|G(q)| ≤ exp
(π2

48 −
1

100

)
X

. (14.5.1)

Further, if q = e−τ+2πih/k with τ = X−1 + 2πiY is in Q1/1 or Q1/2, then (14.5.1) still
holds under the assumption X ≥ 3.4× 107 provided that |Y | ≥ 1/(2πX).

Notice that τ = X−1 + 2πiY . Hence,

τ−1 = X−1

X−2 + 4π2Y 2 − i
2πY

X−2 + 4π2Y 2 . (14.5.2)

In the sequel, we write b as b(h, a, k,M) to avoid confusion. We also write for convenience

Ma,M := 1
τ

(k,M)2

k2M

π2
(

b2

(k,M)2 −
b

(k,M) + 1
6

)
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+ 2πi
(
−ζ ′

(
−1, b

(k,M)

)
+ ζ ′

(
−1, b∗

(k,M)

)), (14.5.3)

which is the main term in (14.1.5). Further,

MG := M1,4 −M3,4 + M6,8 (14.5.4)

denotes the main term of logG(q) whereas

EG := logG(q)−MG (14.5.5)

denotes the error term.

14.5.1 Case 1: k ∈ 2Z + 1

Notice that (k, 4) = 1. Hence, we always have b(h, 1, k, 4) = b(h, 3, k, 4) = 1. Also,
(k, 8) = 1. Then b(h, 6, k, 8) = 1. It is not hard to compute that

MG = 1
τ

π2

48k2 . (14.5.6)

It follows from (14.5.2) that

<(MG) ≤ π2

48k2X. (14.5.7)

We may also compute from the bounds (14.3.15), (14.4.13), (14.4.15), (14.4.17) and
(14.4.24) that

|<(EG)| ≤ 1.32X1/2 logX + 512.74X1/2 + 1.92 logX + 42.74 + 2.72X−1/2. (14.5.8)

14.5.2 Case 2: k ∈ 4Z + 2

Notice that (k, 4) = 2. Since (h, k) = 1, so h is odd. Hence, we always have
b(h, 1, k, 4) = b(h, 3, k, 4) = 1. Also, (k, 8) = 1. We have b(h, 6, k, 8) = 2. It is not hard
to compute that

MG = 1
τ

π2

12k2 . (14.5.9)

It follows from (14.5.2) that

<(MG) ≤ π2

12k2X. (14.5.10)
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For the error term EG, we have

|<(EG)| ≤ 1.32X1/2 logX + 95.77X1/2 + 0.96 logX + 11.61 + 2.72X−1/2. (14.5.11)

14.5.3 Case 3: k ∈ 8Z + 4

Notice that (k, 4) = 4. If h ≡ 1 (mod 4), then b(h, 1, k, 4) = 3 and b(h, 3, k, 4) = 1. If
h ≡ 3 (mod 4), then b(h, 1, k, 4) = 1 and b(h, 3, k, 4) = 3. Hence,

M1,4 −M3,4 = 1
τ

16πiχ(h)
k2

(
ζ ′
(
−1, 1

4

)
− ζ ′

(
−1, 3

4

))

where

χ(h) =

1 if h ≡ 1 (mod 4),

−1 if h ≡ 3 (mod 4).

Also, (k, 8) = 4. Since (h, k) = 1, so h is odd. Hence, we have b(h, 6, k, 8) = 2. It follows
that

M6,8 = −1
τ

π2

6k2 .

Hence,

MG = 1
τ

− π2

6k2 + 16πiχ(h)
k2

(
ζ ′
(
−1, 1

4

)
− ζ ′

(
−1, 3

4

)). (14.5.12)

It follows from (14.5.2) that

<(MG) = − π2

6k2
X−1

X−2 + 4π2Y 2

+ 16πχ(h)
k2

(
ζ ′
(
−1, 1

4

)
− ζ ′

(
−1, 3

4

)) 2πY
X−2 + 4π2Y 2

≤ 1
k2 ·
−π2

6 X
−1 + 16π

(
ζ ′
(
−1, 1

4

)
− ζ ′

(
−1, 3

4

))
2π|Y |

X−2 + 4π2|Y |2

= π2

6k2 ·
−X−1 + 192

(
ζ ′
(
−1, 1

4

)
− ζ ′

(
−1, 3

4

))
|Y |

X−2 + 4π2|Y |2
.

We next show that

<(MG) ≤ 2.94
k2 X. (14.5.13)
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It suffices to prove that

π2

6k2 ·
−X−1 + 192

(
ζ ′
(
−1, 1

4

)
− ζ ′

(
−1, 3

4

))
|Y |

X−2 + 4π2|Y |2
≤ 2.94

k2 X.

Namely,

70.56X|Y |2 − 192
(
ζ ′
(
−1, 1

4

)
− ζ ′

(
−1, 3

4

))
|Y |+

(17.64
π2 + 1

)
X−1 ≥ 0.

Notice that on the left-hand side if we replace |Y | by t and treat it as a quadratic function
of real t, then it reaches the minimum when

t =
192

(
ζ ′
(
−1, 1

4

)
− ζ ′

(
−1, 3

4

))
2× 70.56X .

Further, the minimum is

−70.56X ×
192

(
ζ ′
(
−1, 1

4

)
− ζ ′

(
−1, 3

4

))
2× 70.56X

2

+
(17.64

π2 + 1
)
X−1 ≥ 0.01X−1 ≥ 0.

Hence, (14.5.13) holds.
For the error term EG, we have

|<(EG)| ≤ 1.32X1/2 logX + 21.1X1/2 + 0.48 logX + 3.22 + 2.72X−1/2. (14.5.14)

14.5.4 Case 4: k ∈ 8Z

As in Case 3, we still have

M1,4 −M3,4 = 1
τ

16πiχ(h)
k2

(
ζ ′
(
−1, 1

4

)
− ζ ′

(
−1, 3

4

))
.

Also, (k, 8) = 8. If h ≡ 1 (mod 4), then b(h, 6, k, 8) = 2. If h ≡ 3 (mod 4), then
b(h, 6, k, 8) = 6. Hence,

M6,8 = 1
τ

− π2

6k2 −
16πiχ(h)

k2

(
ζ ′
(
−1, 1

4

)
− ζ ′

(
−1, 3

4

)).
In consequence,

MG = −1
τ

π2

6k2 . (14.5.15)
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Further,
<(MG) < 0. (14.5.16)

For the error term EG, we have

|<(EG)| ≤ 1.32X1/2 logX + 13.27X1/2 + 0.36 logX + 1.73 + 2.72X−1/2. (14.5.17)

Proof of Theorem 14.5.1. We have

log |G(q)| = <(logG(q)) ≤ <(MG) + |<(EG)|.

The first part simply follows from some direct computation by taking into account of the
bounds for <(MG) and |<(EG)|. For the second part, we notice by (14.5.2) that, when
|Y | ≥ 1/(2πX),

<(τ−1) ≤ X

2 .

Whenever q is in Q1/1 or Q1/2, we apply (14.5.6) and (14.5.9) to obtain the bound

<(MG) ≤ π2

48
X

2 .

Hence, (14.5.1) follows by inserting the contribution of the error term and carrying on
the routine computation.

14.6 Precise Approximations of G(q) Near the Dominant Poles

Recall that

G(q) = 1
(q,−q3; q4)∞

. (14.6.1)

From the analysis in the previous section, we know that G(q) indeed has dominant poles at
q = ±1. In fact, if q = e−τ+2πih/k is in Q1/1 or Q1/2, then (14.5.6) and (14.5.9) tell us that
logG(q) is dominated by π2/(48τ) while the coefficient π2/48 is the largest comparing
with that for other Qh/k. Now we want to give some more precise approximations of
logG(q) near the dominant poles.

Theorem 14.6.1. Let τ = X−1 + 2πiY with |Y | ≤ 1/(2πX). Then

logG(e−τ ) = π2

48
1
τ
− 1

4 log τ − 3
4 log 2− 1

2 log π + log Γ
(1

4

)
+ E+ (14.6.2)
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where
|E+| ≤ 0.66X−3/4. (14.6.3)

Further,

logG(−e−τ ) = π2

48
1
τ

+ 1
4 log τ − 1

4 log 2− 1
2 log π + log Γ

(3
4

)
+ E− (14.6.4)

where
|E−| ≤ 0.82X−3/4. (14.6.5)

Proof. We deduce from (14.6.1) with the help of Mellin transform that

logG(e−τ ) =
∑
m≥0

∑
`≥1

e−(4m+1)`τ

`
+ (−1)`e−(4m+3)`τ

`


= 1

2πi

∫
(3/2)

τ−sΓ(s)
∑
m≥0

∑
`≥1

`−s−1

 1
(4m+ 1)s + (−1)`

(4m+ 3)s

ds
= 1

2πi

∫
(3/2)

(4τ)−sΓ(s)ζ(s+ 1)
ζ(s, 1

4

)
− (1− 2−s)ζ

(
s,

3
4

)ds
=: 1

2πi

∫
(3/2)

Θ+(s)ds.

Now one may shift the path of integration to (−3/4) by taking into consideration of the
residues of Θ+(s) inside the stripe −3/4 < <(s) < 3/2. Hence,

logG(e−τ ) =
∑

−3/4<<(s)<3/2
Ress Θ+(s) + 1

2πi

∫
(−3/4)

Θ+(s)ds.

Notice that Θ+(s) has two singularities respectively at s = 0 and 1 when −3/4 < <(s) <
3/2. We compute that

Ress=1 Θ+(s) = π2

48
1
τ

and

Ress=0 Θ+(s) = −1
4 log(4τ) + ζ ′

(
0, 1

4

)
− (log 2)ζ

(
0, 3

4

)
= −1

4 log(4τ) + log Γ
(1

4

)
− 1

2 log(2π) + 1
4 log 2

= −1
4 log τ − 3

4 log 2− 1
2 log π + log Γ

(1
4

)
.
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Further, recalling that τ = X−1 + 2πiY where |Y | ≤ 1/(2πX), we have |Arg(τ)| ≤ π/4.
Since for <(s) = −3/4,

|τ−s| = exp
(3

4 log |τ |+ =(s) Arg(τ)
)
≤ |τ |3/4e|=(s)|π/4,

it follows that

|E+| =
∣∣∣∣∣ 1
2πi

∫
(−3/4)

Θ+(s)ds
∣∣∣∣∣

=

∣∣∣∣∣∣ 1
2πi

∫
(−3/4)

(4τ)−sΓ(s)ζ(s+ 1)
ζ(s, 1

4

)
− (1− 2−s)ζ

(
s,

3
4

)ds
∣∣∣∣∣∣

≤ |τ |3/4 · 1
2π

∫ ∞
−∞

43/4e|t|π/4
∣∣∣∣Γ(−3

4 + it
)∣∣∣∣ ∣∣∣∣ζ (1

4 + it
)∣∣∣∣

×

 ∣∣∣∣ζ(−3
4 + it,

1
4

)∣∣∣∣+ (1 + 23/4)
∣∣∣∣ζ(−3

4 + it,
3
4

)∣∣∣∣
dt

≤ 0.507|τ |3/4.

We also have
|τ | =

√
X−2 + 4π2Y 2 ≤

√
2X−1.

Hence,
|E+| ≤ 0.66X−3/4.

For logG(−e−τ ), we simply notice that

logG(−e−τ ) = 1
2πi

∫
(3/2)

(4τ)−sΓ(s)ζ(s+ 1)
ζ(s, 3

4

)
− (1− 2−s)ζ

(
s,

1
4

)ds.
The rest follows from similar calculations.

14.7 Applying the Circle Method

The proof of Theorem 14.1.2 is simply an exercise of the circle method. We first put

X =
√

48n
π2 . (14.7.1)
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Since it is assumed that X ≥ 3.4× 107 as in Theorem 14.5.1, one has

n ≥ 2.4× 1014. (14.7.2)

Recall that Cauchy’s integral formula indicates that

g(n) = 1
2πi

∫
|q|=e−1/X

G(q)
qn+1 dq

= en/X
∫ 1− 1

2πX

− 1
2πX

G
(
e−(X−1+2πit)

)
e2πint dt. (14.7.3)

Now we separate the interval [− 1
2πX , 1− 1

2πX ] into three (disjoint) subintervals:

I1 :=
[
− 1

2πX ,
1

2πX

]
,

I2 :=
[1
2 −

1
2πX ,

1
2 + 1

2πX

]

and

I3 :=
[
− 1

2πX , 1− 1
2πX

]
− I1 − I2.

Before evaluating (14.7.3) for each subinterval, we fix the notation that O(x) means an
expression E such that |E| ≤ x. We also write for j = 1, 2, 3,

gj(n) := en/X
∫
Ij
G
(
e−(X−1+2πit)

)
e2πint dt.

First,

g1(n) = en/X
∫ 1

2πX

− 1
2πX

G
(
e−(X−1+2πit)

)
e2πint dt

= 1
2πi

∫ 1
X

+i 1
X

1
X
−i 1

X

enτG(e−τ ) dτ.

Notice that for |x| ≤ 1,
ex = 1 + O(2|x|).

Applying (14.6.2) yields

g1(n) =

(
1 + O(1.32X−3/4)

)
Γ(1/4)

23/4π1/2
1

2πi

∫ 1
X

+i 1
X

1
X
−i 1

X

τ−
1
4 exp

(
π2

48
1
τ

+ nτ

)
dτ. (14.7.4)
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We then separate the integral as

1
2πi

∫ 1
X

+i 1
X

1
X
−i 1

X

τ−
1
4 exp

(
π2

48
1
τ

+ nτ

)
dτ

= 1
2πi

∫
Γ
−
∫ 1

X
−i 1

X

−∞−i 1
X

+
∫ 1

X
+i 1

X

−∞+i 1
X

τ− 1
4 exp

(
π2

48
1
τ

+ nτ

)
dτ

=: J11 + J12 + J13

where

Γ := (−∞− iX−1)→ (X−1 − iX−1)→ (X−1 + iX−1)→ (−∞+ iX−1) (14.7.5)

is a Hankel contour. To evaluate J11, we make the change of variables

τ =
√
π2

48nw.

Then

J11 =
(
π2

48n

)3/8 1
2πi

∫
Γ̃
w−

1
4 exp

√π2n

48

( 1
w

+ w
) dw

where Γ̃ is the new contour. Recalling the contour integral representation of Is(x):

Is(x) = 1
2πi

∫
Γ̃
w−s−1e

x
2 (w+ 1

w) dw,

we conclude
J11 = π3/4

23/233/8n3/8 I−3/4

(
π

2

√
n

3

)
.

To bound J12, we put τ = x− iX−1. Then

J12 = 1
2πi

∫ X−1

−∞
τ−

1
4 exp

(
π2

48
1
τ

+ nτ

)
dx.

Since |τ | ≥ X−1, we have
|τ |−1/4 ≤ X1/4.

Also,
|enτ | = enx.
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Further, ∣∣∣∣eπ2
48

1
τ

∣∣∣∣ = e
π2
48

x
x2+X−2 ≤ e

π2
96X .

Hence,

|J12| ≤
1

2π ·X
1/4e

π2
96X

∫ X−1

−∞
enx dx

= 1
2π ·X

1/4e
π2
96X · 1

n
en/X

= 31/8

21/2π5/4n7/8 exp
(3π

8

√
n

3

)
.

One may carry out a similar argument to obtain

|J13| ≤
31/8

21/2π5/4n7/8 exp
(3π

8

√
n

3

)
.

In consequence,

1
2πi

∫ 1
X

+i 1
X

1
X
−i 1

X

τ−
1
4 exp

(
π2

48
1
τ

+ nτ

)
dτ = π3/4

23/233/8n3/8 I−3/4

(
π

2

√
n

3

)

+ O

 21/231/8

π5/4n7/8 exp
(3π

8

√
n

3

).
Recalling (14.7.4), we have

g1(n) = π1/4Γ(1/4)
29/433/8n3/8 I−3/4

(
π

2

√
n

3

)
+ Eg1 (14.7.6)

where

|Eg1| ≤
Γ(1/4)
23/4π1/2

 1.32π3/2

2333/4n3/4 I−3/4

(
π

2

√
n

3

)

+
(

1 + 1.32π3/4

23/233/8n3/8

)
21/231/8

π5/4n7/8 exp
(3π

8

√
n

3

)
� n−3/4I−3/4

(
π

2

√
n

3

)
. (14.7.7)

On the other hand,

g2(n) = (−1)nen/X
∫ 1

2πX

− 1
2πX

G
(
−e−(X−1+2πit)

)
e2πint dt
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= (−1)n
2πi

∫ 1
X

+i 1
X

1
X
−i 1

X

enτG(−e−τ ) dτ.

It follows from (14.6.4) that

g2(n) = (−1)n
(
1 + O(1.64X−3/4)

)
Γ(3/4)

21/4π1/2
1

2πi

∫ 1
X

+i 1
X

1
X
−i 1

X

τ
1
4 exp

(
π2

48
1
τ

+ nτ

)
dτ. (14.7.8)

Similarly, we separate the integral as

1
2πi

∫ 1
X

+i 1
X

1
X
−i 1

X

τ
1
4 exp

(
π2

48
1
τ

+ nτ

)
dτ

= 1
2πi

∫
Γ
−
∫ 1

X
−i 1

X

−∞−i 1
X

+
∫ 1

X
+i 1

X

−∞+i 1
X

τ 1
4 exp

(
π2

48
1
τ

+ nτ

)
dτ

=: J21 + J22 + J23

where the Hankel contour Γ is as in (14.7.5). One may compute by the same argument
that

J21 = π5/4

25/235/8n5/8 I−5/4

(
π

2

√
n

3

)
.

To bound J22, we still put τ = x− iX−1. Noticing that

|τ |1/4 = (x2 +X−2)1/8 ≤ |x|1/4 +X−1/4,

we have

|J22| ≤
1

2π · e
π2
96X

∫ X−1

−∞
enx

(
|x|1/4 +X−1/4

)
dx

≤ 1
2π · e

π2
96X

∫ 0

−∞
enx(−x)1/4 dx+ 1

2π · e
π2
96X

∫ X−1

−∞
enx · 2X−1/4 dx

= Γ(5/4)
2πn5/4 exp

(
π

8

√
n

3

)
+ 1

21/231/8π3/4n9/8 exp
(3π

8

√
n

3

)
.

Likewise,

|J23| ≤
Γ(5/4)
2πn5/4 exp

(
π

8

√
n

3

)
+ 1

21/231/8π3/4n9/8 exp
(3π

8

√
n

3

)
.
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In consequence,

g2(n) = (−1)n π3/4Γ(3/4)
211/435/8n5/8 I−5/4

(
π

2

√
n

3

)
+ Eg2 (14.7.9)

where

|Eg2| ≤
Γ(3/4)
21/4π1/2

1.64π2

2431n
I−5/4

(
π

2

√
n

3

)

+
(

1 + 1.64π3/4

23/233/8n3/8

)

× 2
(

Γ(5/4)
2πn5/4 exp

(
π

8

√
n

3

)
+ 1

21/231/8π3/4n9/8 exp
(3π

8

√
n

3

))
� n−1I−5/4

(
π

2

√
n

3

)
. (14.7.10)

Remark 14.7.1. It is necessary to point out that g2(n) has an absolute size of

constant× n−5/8I−5/4

(
π

2

√
n

3

)
,

while from (14.7.7),
Eg1 � n−3/4I−3/4

(
π

2

√
n

3

)
.

Since the two I-Bessel functions have the same order, we conclude that Eg1 is negligible
comparing with g2(n).

Finally,

g3(n) := en/X
∫
I3
G
(
e−(X−1+2πit)

)
e2πint dt.

Hence, by Theorem 14.5.1,

|g3(n)| ≤ en/X
∫
I3

exp
(π2

48 −
1

100

)
X

 dt

≤ exp
 n

X
+
(
π2

48 −
1

100

)
X

.
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Namely,

|g3(n)| ≤ exp
(
π

2

√
n

3 −
√

3n
25π

)
. (14.7.11)

The asymptotic formula (14.1.8) follows from (14.7.6), (14.7.9) and (14.7.11). Further,
a simple calculation reveals that when n ≥ 2.4× 1014, the sign of g(n) depends only on
the leading term

π1/4Γ(1/4)
29/433/8n3/8 I−3/4

(
π

2

√
n

3

)
,

which is of course positive.
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The World of patterns
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Outline

• Chapter 15 is devoted to Lin and Ma’s conjecture on 0012-avoiding inversion sequences.

• Chapter 16 is devoted to Lin’s conjecture on the avoidance of triples of binary relations
with the ascent statistic considered.
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Chapter 15 |

Lin and Ma’s Conjecture on 0012-Avoiding Inversion Se-
quences

This chapter comes from

• S. Chern, On 0012-avoiding inversion sequences and a Conjecture of Lin and Ma, submitted.
Available at arXiv:2006.04318. (Ref. [62])

15.1 Introduction

Our starting point is a recent paper of Yan and Lin [174], in which they proved a
conjecture due to Martinez and Savage [132] that claims

|In(021, 120)| = 1 +
n−1∑
i=1

(
2i
i− 1

)
. (15.1.1)

This sequence is registered as A279561 in OEIS [163]. Lin and Yan also showed that this
sequence as well enumerates |In(102, 110)| and |In(102, 120)|. This therefore establishes
the Wilf-equivalences

In(021, 120) ∼ In(102, 110) ∼ In(102, 120). (15.1.2)

At the end of [174], a conjecture of Zhicong Lin and Jun Ma discovered in 2019 is
recorded.

Conjecture 15.1.1 (Lin and Ma). For n ≥ 1,

|In(0012)| = 1 +
n−1∑
i=1

(
2i
i− 1

)
. (15.1.3)

In other words, one may extend the balanced Wilf-equivalences (15.1.2) as the following
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unbalanced ones:

In(0012) ∼ In(021, 120) ∼ In(102, 110) ∼ In(102, 120).

It is also worth pointing out that the consideration of length-four pattern avoidance in
inversion sequences appears novel in the literature.

The object of this chapter is to confirm the above conjecture of Lin and Ma.

Theorem 15.1.1. Conjecture 15.1.1 is true.

Let us fix some notation. Given e = e1e2 · · · en ∈ In(0012), we define

R(e) := {m : ∃ i 6= j such that ei = ej = m}.

In other words, R(e) is the set of letters that appear more than once in e. We further
define

srpt(e) := minR(e),

that is, the smallest number in R(e) — here srpt stands for “smallest repeated.” Notice
that there is only one sequence 01 · · · (n − 1) in which none of the letters repeat. For
this sequence, we assign that

srpt(01 · · · (n− 1)) := n− 1.

Finally, we define
last(e) := en,

the last entry of e.

15.2 Combinatorial Observations

We collect some combinatorial observations about inversion sequences in In(0012).

Lemma 15.2.1. For n ≥ 1 and e ∈ In(0012), if srpt(e) = k, then for 1 ≤ i ≤ k + 1, we
have ei = i− 1.

Proof. If srpt(e) = n − 1, then e = 01 · · · (n − 1) and hence the lemma is true. Let
srpt(e) 6= n− 1. If in this case the lemma is not true, then since 0 ≤ ei ≤ i− 1 for each i,
there must exist some k1 < k = srpt(e) that appears more than once among e1, e2, . . . ,
ek+1. This violates the assumption that srpt(e) = k.
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Lemma 15.2.2. For n ≥ 2 and e = e1e2 · · · en ∈ In(0012), let γ(e) = e1e2 · · · en−1. We
further assume that e 6= 01 · · · (n− 1). Then

(a). if last(e) > srpt(γ(e)), then

srpt(e) = srpt(γ(e));

(b). if last(e) ≤ srpt(γ(e)), then
srpt(e) = last(e).

Proof. A simple observation is that γ(e) ∈ In−1(0012). Below let us assume that
last(e) = `, srpt(e) = k and srpt(γ(e)) = k′.

First, if R(γ(e)) = ∅, then for each 0 ≤ i ≤ n− 1, ei = i− 1. Since e 6= 01 · · · (n− 1),
we have last(e) = ` ≤ n− 2 = srpt(γ(e)). This fits into Case (b). Further, we find that
R(e) = {`} and hence srpt(e) = `. This implies that srpt(e) = last(e).

Now we assume that R(γ(e)) 6= ∅. Notice that Case (a) is trivial. For Case (b),
we first deduce from R(γ(e)) 6= ∅ that k′ ≤ n− 3. By Lemma 15.2.1, we find that for
1 ≤ i ≤ k′ + 1, ei = i− 1. If last(e) = ` ≤ k′, then we know that e`+1 = ` = en. Also, we
notice that the indices satisfy `+ 1 ≤ k′ + 1 ≤ n− 2 < n. Hence, ` ∈ R(e). Therefore,
srpt(e) = min{`, k′} = ` = last(e).

Corollary 15.2.3. For e ∈ In(0012),

0 ≤ srpt(e) ≤ last(e) ≤ n− 1.

Proof. If e = 01 · · · (n−1), the above inequalities are trivial since srpt(e) = last(e) = n−1.
If e 6= 01 · · · (n− 1), the inequalities are direct consequences of Lemma 15.2.2 and the
fact that srpt(e) ≥ 0 and last(e) ≤ n− 1.

Lemma 15.2.4. For n ≥ 2 and e = e1e2 · · · en ∈ In(0012), let e be such that srpt(e) =
last(e) = k with 0 ≤ k ≤ n− 2. Then

(a). for 1 ≤ i ≤ k + 1,
ei = i− 1;

(b). if we denote e′ = e′1e
′
2 · · · e′n−k by the sequence obtained via e′i = ek+i − k for each

1 ≤ i ≤ n− k, then e′ ∈ In−k(0012) such that

srpt(e′) = last(e′) = 0.
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Proof. Part (a) simply comes from Lemma 15.2.1. Also, we know from Part (a) that for
k + 1 ≤ i ≤ n, it holds that ei ≥ k. On the other hand, ei ≤ i − 1. Hence, e′ is still
an inversion sequence. Further, it is trivial to see that e′ still avoids the pattern 0012.
Finally, we have e′1 = ek+1 − k = k − k = 0 and last(e′) = e′n−k = en − k = k − k = 0.
Since n− k ≥ 2 > 1, we have 0 ∈ R(e′) and hence srpt(e′) = 0.

15.3 Recurrences

Let

fn(k, `) :=

 the number of sequences e ∈ In(0012) with
srpt(e) = k and last(e) = `

 .
We will establish the following recurrences.

Lemma 15.3.1. We have

(a). for n ≥ 1,
fn(n− 1, n− 1) = 1;

(b). for n ≥ 2,
fn(n− 2, n− 1) = 0;

(c). for n ≥ 2 and 0 ≤ k ≤ n− 3,

fn(k, n− 1) =
n−2∑
k′=k

fn−1(k′, n− 2);

(d). for n ≥ 2 and 0 ≤ ` ≤ n− 2,

fn(`, `) =
n−2∑
`′=`

`′∑
k′=`

fn−1(k′, `′);

(e). for n ≥ 2 and 0 ≤ k < ` ≤ n− 2,

fn(k, `) =
∑̀
k′=k

fn−1(k′, `) +
n−2∑
`′=`

fn−1(k, `′).

Proof. Cases (a) and (b) are trivial. In particular, Case (a) enumerates the only inversion
sequence 01 · · · (n− 1) in which none of the letters repeat. Below we always assume that
e = e1e2 · · · en ∈ In(0012). Let γ(e) be as in Lemma 15.2.2.
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For Case (c), let e be such that srpt(e) = k ≤ n − 3 and last(e) = n − 1. We first
notice that en−1 = last(γ(e)) ≥ srpt(γ(e)) by Corollary 15.2.3. Also, it is easy to see
that srpt(γ(e)) = srpt(e) = k since last(e) = n − 1 > k. Now we claim that en−1 = k.
Otherwise, namely, if en−1 > k, we may find i < j < n− 1 such that ei = ej = k. Hence,
eiejen−1en has the reduction 0012, which contradicts the assumption that e ∈ In(0012).
We therefore have a bijection

e = e1e2 · · · en−2(k)(n− 1)←→ e1e2 · · · en−2(n− 2) = e′.

Notice that e′ is still an inversion sequence avoiding the pattern 0012. Also, srpt(e′) ≥ k.
Otherwise, there exists some k′ < k that appears more than once among e1, e2, . . . , en−2

and therefore srpt(e) < k, which leads to a contradiction. Finally, to prove Case (c), it
suffices to show that e′ could be any inversion sequence in In−1(0012) with last(e′) = n−2
(which is of course true) and srpt(e′) ≥ k. Let e′ be such a sequence and assume that
srpt(e′) = k′ ≥ k. By Lemma 15.2.1, we have ek+1 = k. Pulling back to e, we have
ek+1 = en−1 = k with the indices k + 1 ≤ n− 2 < n− 1. Therefore, for this e, we have
k ∈ R(e) and hence srpt(e) = min{k′, k} = k.

For Case (d), let e be such that srpt(e) = last(e) = ` with 0 ≤ ` ≤ n− 2. We first
find that srpt(γ(e)) ≥ srpt(e) = `. On the other hand, let e′ = e′1e

′
2 · · · e′n−1 ∈ In−1(0012)

be such that srpt(e′) ≥ `. By Lemma 15.2.1, e′`+1 = `. Hence, by appending ` to the end
of e′, we obtain a sequence with both srpt and last equal to `. We therefore arrive at a
bijection between e and e′,

e = e1e2 · · · en−1(`)←→ e1e2 · · · en−1 = e′,

and the desired relation follows.
For Case (e), let e be such that srpt(e) = k and last(e) = ` with 0 ≤ k < ` ≤ n− 2.

Notice that en−1 ≥ k. Otherwise, we assume that en−1 = k′ < k. Then by Lemma 15.2.1,
ek′+1 = k′ = en−1. However, k′ + 1 < k + 1 < n − 1 and hence k′ ∈ R(e). But this
violates the fact that k = minR(e). Now we have two cases.

I en−1 < en. We claim that en−1 = k. Otherwise, we may find i < j < n− 1 such that
ei = ej = k. Hence, eiejen−1en has the reduction 0012, which violates the assumption
that e ∈ In(0012). Now we have a bijection between e and e′ ∈ In−1(0012) such that
srpt(e′) ≥ k and last(e′) = ` by

e = e1e2 · · · en−2(k)(`)←→ e1e2 · · · en−2(`) = e′.

330



The argument is similar to that for Case (c). This bijection leads to the first term in
the right-hand side of the recurrence relation in Case (e).

I en−1 ≥ en. We have a bijection between e and e′ ∈ In−1(0012) such that srpt(e′) = k

and last(e′) ≥ ` by

e = e1e2 · · · en−1(`)←→ e1e2 · · · en−1 = e′.

The argument is similar to that for Case (d). This bijection leads to the second term
in the right-hand side of the recurrence relation in Case (e).

The proof of the lemma is therefore complete.

We may therefore determine the support of fn(k, `).

Corollary 15.3.2. For n ≥ 1, fn(k, `) is supported on

{(k, `) ∈ N2 : 0 ≤ k ≤ ` ≤ n− 1}\{(n− 2, n− 1)}.

Proof. By Corollary 15.2.3, fn(k, `) = 0 if

(k, `) 6∈ {(k, `) ∈ N2 : 0 ≤ k ≤ ` ≤ n− 1}.

Also, fn(n− 2, n− 1) = 0 by Lemma 15.3.1(b). Finally, for the remaining (k, `), we have
fn(k, `) 6= 0 with the help of the recurrences in Lemma 15.3.1.

Finally, we have another recurrence.

Lemma 15.3.3. We have, for n ≥ 2 and 0 ≤ k ≤ n− 2,

fn(k, k) = fn−k(0, 0).

Proof. This is an immediate consequence of Lemma 15.2.4.

In the sequel, we require three auxiliary functions with q within a sufficiently small
neighborhood of 0:

L(x; q) =
∑
n≥1

Ln(x)qn :=
∑
n≥1

(
n−1∑
k=0

fn(k, n− 1)xk
)
qn,

D(x; q) =
∑
n≥1

Dn(x)qn :=
∑
n≥1

(
n−2∑
`=0

fn(`, `)x`
)
qn,
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F(x, y; q) =
∑
n≥1

Fn(x, y)qn :=
∑
n≥1

(
n−1∑
`=0

∑̀
k=0

fn(k, `)xky`
)
qn.

Notice that L1(x) = 1, D1(x) = 0 and F1(x, y) = 1. Also, since fn(n− 1, n− 1) = 1, we
have

n−1∑
`=0

fn(`, `)x` = Dn(x) + xn−1.

15.4 001-Avoidance and a Result of Corteel et al.

The following result on 001-avoidance was shown by Corteel et al. [73].

Theorem 15.4.1 (Corteel et al.). For n ≥ 1,

|In(001)| = 2n−1. (15.4.1)

One readily observes that, for n ≥ 2, there is a natural bijection between 001-avoiding
inversion sequences of length n− 1 and 0012-avoiding inversion sequences of length n
in which the last entry equals n− 1. Such a bijection could be simply constructed by
appending n− 1 to the end of the 001-avoiding inversion sequences. Therefore, we have
an enumeration result as follows.

Corollary 15.4.2. For n ≥ 1,

|{e ∈ In(0012) : last(e) = n− 1}| =

1 if n = 1,

2n−2 if n ≥ 2.
(15.4.2)

Notice that Corollary 15.4.2 is equivalent to

L(1; q) =
∑
n≥1

(
n−1∑
k=0

fn(k, n− 1)
)
qn

= q + q2 + 2q3 + 4q4 + 8q5 + 16q6 + · · ·

= q(1− q)
1− 2q .

Now we prove a bivariate strengthening of the above that will be utilized in our proof of
Theorem 15.1.1.
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Theorem 15.4.3. We have

L(x; q) = q(1− q)2

(1− 2q)(1− xq) . (15.4.3)

Proof. For n ≥ 2, it follows from (a), (b) and (c) of Lemma 15.3.1 that

n−1∑
k=0

fn(k, n− 1)xk = xn−1 +
n−3∑
k=0

n−2∑
k′=k

fn−1(k′, n− 2)xk

= xn−1 +
n−3∑
k′=0

fn−1(k′, n− 2)
k′∑
k=0

xk + fn−1(n− 2, n− 2)
n−3∑
k=0

xk

= xn−1 +
n−3∑
k′=0

fn−1(k′, n− 2)1− xk′+1

1− x + 1− xn−2

1− x .

Therefore,

Ln(x) = xn−1 + 1
1− x

(
Ln−1(1)− xLn−1(x)

)
− 1− xn−1

1− x + 1− xn−2

1− x .

Multiplying the above by qn and summing over n ≥ 2, we have

L(x; q)− q = q

1− xL(1; q)− xq

1− xL(x; q)− q2(1− x)
1− xq ,

or

(1− xq)(1− x+ xq)L(x; q) = q(1− xq)L(1; q) + q(1− q)(1− x). (15.4.4)

Applying the kernel method yields
1− x+ xq = 0,

q(1− xq)L(1; q) + q(1− q)(1− x) = 0.

Solving the first equation of the system for x gives

x = 1
1− q .

Substituting the above into the second equation of the system, we have

L(1; q) = q(1− q)
1− 2q .
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Substituting the above back to (15.4.4), we arrive at (15.4.3).

15.5 Proof of Theorem 15.1.1

We first establish two relations concerning D(x; q).

Lemma 15.5.1. We have

D(x; q) = 1
1− xqD(0; q) (15.5.1)

= q

1− xqF(1, 1; q). (15.5.2)

Proof. We know from Lemma 15.3.3 that

∑
n≥2

n−2∑
k=0

fn(k, k)xkqn =
∑
n≥2

n−2∑
k=0

fn−k(0, 0)xkqn

(with n′ = n− k) =
∑
n′≥2

∑
n≥n′

fn′(0, 0)xn−n′qn

=
∑
n′≥2

fn′(0, 0)x−n′
∑
n≥n′

(xq)n

= 1
1− xq

∑
n′≥2

fn′(0, 0)qn′ .

Noticing that D1(x) = 0, we have

D(x; q) = 1
1− xqD(0; q),

which is the first part of the lemma. For the second part, we deduce from Lemma
15.3.1(d) that

D(0; q) =
∑
n≥2

fn(0, 0)qn

=
∑
n≥2

n−2∑
`′=0

`′∑
k′=0

fn−1(k′, `′)qn

= qF(1, 1; q).

Therefore, (15.5.2) follows.

Next, we show a relation between F(x, 1; q) and F(1, 1; q).
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Lemma 15.5.2. We have

F(x, 1; q) = 1− q
1− xqF(1, 1; q). (15.5.3)

Proof. For n ≥ 2, it follows from Lemma 15.3.1(d) that

Dn(x) =
n−2∑
`=0

fn(`, `)x`

=
n−2∑
`=0

n−2∑
`′=`

`′∑
k′=`

fn−1(k′, `′)x`

=
n−2∑
`′=0

`′∑
k′=0

fn−1(k′, `′)
k′∑
k=0

x`

=
n−2∑
`′=0

`′∑
k′=0

fn−1(k′, `′)1− xk′+1

1− x

= 1
1− x

(
Fn−1(1, 1)− xFn−1(x, 1)

)
.

Therefore,
D(x; q) = q

1− x
(
F(1, 1; q)− xF(x, 1; q)

)
.

Substituting (15.5.2) into the above yields

q

1− xqF(1, 1; q) = q

1− x
(
F(1, 1; q)− xF(x, 1; q)

)
,

from which (15.5.3) follows.

We then construct a functional equation for F(x, y; q).

Lemma 15.5.3. We have(
1 + xq

1− x + yq

1− y

)
F(x, y; q)

= q

1− xF(1, y; q) + q(1− q)
(1− y)(1− xyq)F(1, 1; q) + q(1− q − 2yq + 2yq2 + y2q2)

(1− 2yq)(1− xyq) .

(15.5.4)

Proof. We first observe that

n−2∑
`=0

fn(`, `)x`y` +
n−2∑
`=1

`−1∑
k=0

fn(k, `)xky` = Fn(x, y)−
n−1∑
k=0

fn(k, n− 1)xkyn−1
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= Fn(x, y)− yn−1Ln(x). (15.5.5)

Notice also that
n−2∑
`=0

fn(`, `)x`y` = Dn(xy). (15.5.6)

Now, by Lemma 15.3.1(e), we may separate

n−2∑
`=1

`−1∑
k=0

fn(k, `)xky` =
n−2∑
`=1

`−1∑
k=0

∑̀
k′=k

fn−1(k′, `)xky`

+
n−2∑
`=1

`−1∑
k=0

n−2∑
`′=`

fn−1(k, `′)xky`.

We further notice that the first term on the right-hand side can be separated as

n−2∑
`=1

`−1∑
k=0

∑̀
k′=k

fn−1(k′, `)xky` =
n−2∑
`=1

`−1∑
k=0

`−1∑
k′=k

fn−1(k′, `)xky` +
n−2∑
`=1

`−1∑
k=0

fn−1(`, `)xky`.

We have

n−2∑
`=1

`−1∑
k=0

`−1∑
k′=k

fn−1(k′, `)xky`

=
n−2∑
`=1

`−1∑
k′=0

fn−1(k′, `)y`
k′∑
k=0

xk

=
n−2∑
`=1

`−1∑
k′=0

fn−1(k′, `)y`1− x
k′+1

1− x

=
n−2∑
`=0

∑̀
k′=0

fn−1(k′, `)y`1− x
k′+1

1− x −
n−2∑
`=0

fn−1(`, `)y`1− x
`+1

1− x

= 1
1− x

(
Fn−1(1, y)− xFn−1(x, y)

)
− 1

1− x
(
Dn−1(y) + yn−2 − xDn−1(xy)− xn−1yn−2

)
.

Also,

n−2∑
`=1

`−1∑
k=0

fn−1(`, `)xky` =
n−2∑
`=1

fn−1(`, `)y`1− x
`

1− x

=
n−2∑
`=0

fn−1(`, `)y`1− x
`

1− x
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= 1
1− x

(
Dn−1(y) + yn−2 −Dn−1(xy)− xn−2yn−2

)
.

On the other hand,

n−2∑
`=1

`−1∑
k=0

n−2∑
`′=`

fn−1(k, `′)xky` =
n−2∑
`′=1

`′−1∑
k=0

fn−1(k, `′)xk
`′∑

`=k+1
y`

=
n−2∑
`′=1

`′−1∑
k=0

fn−1(k, `′)xk y
k+1 − y`′+1

1− y

=
n−2∑
`′=0

`′∑
k=0

fn−1(k, `′)xk y
k+1 − y`′+1

1− y

= y

1− y
(
Fn−1(xy, 1)− Fn−1(x, y)

)
.

Therefore,

n−2∑
`=1

`−1∑
k=0

fn(k, `)xky`

= 1
1− x

(
Fn−1(1, y)− xFn−1(x, y)

)
+ y

1− y
(
Fn−1(xy, 1)− Fn−1(x, y)

)
−Dn−1(xy)− xn−2yn−2. (15.5.7)

It follows from (15.5.5), (15.5.6) and (15.5.7) that

Fn(x, y)− yn−1Ln(x)

= Dn(xy) + 1
1− x

(
Fn−1(1, y)− xFn−1(x, y)

)
+ y

1− y
(
Fn−1(xy, 1)− Fn−1(x, y)

)
−Dn−1(xy)− xn−2yn−2.

Therefore,

F(x, y; q)− y−1L(x; yq)

= D(xy; q) + q

1− x
(
F(1, y; q)− xF(x, y; q)

)
+ yq

1− y
(
F(xy, 1; q)−F(x, y; q)

)
− qD(xy; q)− q2

1− xyq .

Applying (15.4.3), (15.5.2) and (15.5.3) gives the desired result.

With the assistance of the kernel method, we may deduce a functional equation
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satisfied by F(1, y; q).

Lemma 15.5.4. We have

F(1, y; q) = q

1− y + y2q
F(1, 1; q) + q(1− y)(1− q − 2yq + 2yq2 + y2q2)

(1− q)(1− 2yq)(1− y + y2q) . (15.5.8)

Proof. We multiply both sides of (15.5.4) by (1− x)(1− y). Then

(
(1− y + yq)− x(1− y − q + 2yq)

)
F(x, y; q)

= q(1− y)F(1, y; q) + q(1− q)(1− x)
1− xyq F(1, 1; q)

+ q(1− x)(1− y)(1− q − 2yq + 2yq2 + y2q2)
(1− 2yq)(1− xyq) .

We treat the kernel polynomial as a function in x and solve

(1− y + yq)− x(1− y − q + 2yq) = 0

so that
x = 1− y + yq

1− y − q + 2yq .

Substituting the above into

0 = q(1− y)F(1, y; q) + q(1− q)(1− x)
1− xyq F(1, 1; q)

+ q(1− x)(1− y)(1− q − 2yq + 2yq2 + y2q2)
(1− 2yq)(1− xyq) ,

we arrive at (15.5.8) after simplification.

Finally, we are ready to complete the proof of Theorem 15.1.1.

Proof of Theorem 15.1.1. It is known that (cf. [163, A279561])

1 +
∑
n≥1

1 +
n−1∑
i=1

(
2i
i− 1

)qn = 1− 4q + (1− 2q)
√

1− 4q
2(1− q)(1− 4q) . (15.5.9)

We then rewrite (15.5.8) as

(1− y + y2q)F(1, y; q) = qF(1, 1; q) + q(1− y)(1− q − 2yq + 2yq2 + y2q2)
(1− q)(1− 2yq) .
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We treat the kernel polynomial as a function in y and solve

1− y + y2q = 0.

Then
y1,2 = 1∓

√
1− 4q

2q .

We choose the solution
y1 = 1−

√
1− 4q

2q
since y1 = 1 + q +O(q2) as q → 0. Substituting y = y1 into

0 = qF(1, 1; q) + q(1− y)(1− q − 2yq + 2yq2 + y2q2)
(1− q)(1− 2yq) ,

we find that

F(1, 1; q) = −(1− 2q)(1− 4q) + (1− 2q)
√

1− 4q
2(1− q)(1− 4q)

= 1− 4q + (1− 2q)
√

1− 4q
2(1− q)(1− 4q) − 1. (15.5.10)

This implies that for n ≥ 1,

1 +
n−1∑
i=1

(
2i
i− 1

)
=

n−1∑
`=0

∑̀
k=0

fn(k, `) = |In(0012)|.

Therefore, Conjecture 15.1.1 is true.
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Chapter 16 |

Lin’s Conjecture on Inversion Sequences Avoiding Pat-
terns of Relation Triples

This chapter comes from

• G. E. Andrews and S. Chern, A proof of Lin’s conjecture on inversion sequences avoiding patterns
of relation triples, J. Combin. Theory Ser. A 179 (2021), 105388, 20 pp. (Ref. [22])

16.1 Introduction

Apart from the usual pattern avoidance with fixed patterns, Martinez and Savage
[132] also considered the following variation.

Definition 16.1.1 (Martinez and Savage [132]). We denote by In(ρ1, ρ2, ρ3) where
ρ1, ρ2, ρ3 ∈ {<,>,≤,≥,=, 6=,−} the set of inversion sequences e = e1e2 · · · en ∈ In such
that there are no indices 1 ≤ i < j < k ≤ n with

ei ρ1 ej, ej ρ2 ek and ei ρ3 ek.

Here the binary relation “−” stands for “no restriction”, that is, if ei−ej , then we assume
that there is no restriction on the order of ei and ej.

Since the work of Martinez and Savage, the enumerations of such sequences have been
investigated extensively. In particular, a handful of Wilf equivalences among the 343
possible sets of inversion sequences avoiding patterns of relation triples were conjectured
in [132] and proved later in [37,39,45,90,113,126,127,175].

A further direction for the study of pattern avoidance is to take account of various
statistics and investigate their distribution over pattern avoiding sequences; see, for
instance, [45, 113,127,132]. Along this road, in [127], Lin conjectured a curious identity
concerning the ascent statistic over In(≥, 6=, >) and In(>, 6=,≥).

We first recall that the ascent statistic is defined as follows.
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Definition 16.1.2. Let e = e1e2 · · · en ∈ In. We define, asc(e) := #{i ∈ [n − 1] : ei <
ei+1}, that is, the number of ascents of e.

Conjecture 16.1.1 (Lin [127, Conjecture 2.4]). For n ≥ 1,

∑
e∈In(≥, 6=,>)

zasc(e) =
∑

e∈In(>, 6=,≥)
zn−1−asc(e). (16.1.1)

Below are the expressions of (16.1.1) for 1 ≤ n ≤ 6:

1,

1 + z,

1 + 4z + z2,

1 + 10z + 11z2 + z3,

1 + 20z + 55z2 + 25z3 + z4,

1 + 35z + 188z2 + 220z3 + 50z4 + z5.

It is notable that the Wilf equivalence of In(≥, 6=, >) and In(>, 6=,≥) was first
conjectured by Martinez and Savage [132] and later proved bijectively by Lin [127].
However, Lin’s bijection, although preserves other statistics, does not imply his conjecture.

Our objective of this chapter is to confirm Conjecture 16.1.1. More precisely, what
we are going to show is the following equivalent form.

Theorem 16.1.1. For n ≥ 1,

∑
e∈In(>, 6=,≥)

zasc(e) =
∑

e∈In(≥,6=,>)
zn−1−asc(e). (16.1.2)

One will see that by replacing z with z−1 in (16.1.2) and then multiplying zn−1 on
both sides, the identity (16.1.1) follows.

Our proof of Theorem 16.1.1 is algebraic with the application of the kernel method.
But as commented in [127], a bijective proof of Conjecture 16.1.1 would be more intriguing.
Such a proof still remains mysterious.

16.2 Sequences in In(>, 6=,≥) and In(≥, 6=, >)

In this section, we prove some combinatorial properties of sequences in In(>, 6=,≥)
and In(≥, 6=, >). In particular, we are interested in the behavior of the subsequence
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from the left-most appearance of the largest entry to the last entry. The study of such
subsequences will lead to useful recurrences concerning these inversion sequences which
will be presented in the next section.

Definition 16.2.1. Let e = e1e2 · · · en be a sequence of natural numbers in which e` is
the left-most appearance of the largest entry. We call the subsequence e`e`+1 · · · en the
tail of e, denoted by τ(e). For example,

τ(0, 1, 0, 3, 1, 3, 5, 3, 3, 3, 6, 5, 7, 8, 8, 6, 8, 6, 8) = (8, 8, 6, 8, 6, 8).

Definition 16.2.2. We use a≥k to denote a sequence of consecutive a’s appearing at
least k times, that is,

aa · · · a︸ ︷︷ ︸
≥k times

.

16.2.1 Sequences in In(>, 6=,≥)

Lemma 16.2.1. Let e ∈ In(>, 6=,≥). Then the tail of e has the form

a≥1 b≥0 (with a > b),

that is, a sequence of at least one a followed by several b’s while the subsequence of b
might be empty.

Proof. Recall that for any e ∈ In(>, 6=,≥), we cannot find indices i < j < k such that

ei > ej, ej 6= ek and ei ≥ ek. (16.2.1)

Let e` = a be the left-most appearance of the largest entry in e. We first claim that
among e`+1, . . . , en, there do not exist two distinct entries both of which are smaller than
a. Otherwise, if we have such two entries ej and ek (with `+ 1 ≤ j < k ≤ n), then e`ejek
satisfies (16.2.1), which is not allowed. The above indicates that e`+1, . . . , en ∈ {a, b} for
some b < a.

Further, if we have e`′ = a for some `+ 1 ≤ `′ ≤ n, then we must have ej = a for all
`+ 1 ≤ j ≤ `′. Otherwise, if there exists one such index j with ej = b, then e`eje`′ = aba

satisfies (16.2.1).
The desired lemma therefore follows.
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Equipped with Lemma 16.2.1, we may categorize In(>, 6=,≥) into four disjoint types.
(Below we always assume that a > b.)

I Type I.
The tail of e ∈ In(>, 6=,≥) is of the form

a≥2 or a≥1 b≥2;

I Type II.
The tail of e is of the form

a;

I Type III.
The tail of e is of the form

a≥2 b;

I Type IV.
The tail of e is of the form

a b.

16.2.2 Sequences in In(≥, 6=, >)

Lemma 16.2.2. Let e ∈ In(≥, 6=, >). Then the tail of e has the form

a b≥0 a≥0 (with a > b),

that is, a sequence of one a followed by several b’s and then by several a’s while the
subsequence of b and the second subsequence of a might be empty.

Proof. Recall that for any e ∈ In(≥, 6=, >), we cannot find indices i < j < k such that

ei ≥ ej, ej 6= ek and ei > ek. (16.2.2)

Let e` = a be the left-most appearance of the largest entry in e. We first claim that
among e`+1, . . . , en, there do not exist two distinct entries both of which are smaller than
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a. Otherwise, if we have such two entries ej and ek (with `+ 1 ≤ j < k ≤ n), then e`ejek
satisfies (16.2.1), which is not allowed. The above indicates that e`+1, . . . , en ∈ {a, b} for
some b < a.

Further, if we have e`′ = b for some `+ 1 ≤ `′ ≤ n, then we must have ej = b for all
`+ 1 ≤ j ≤ `′. Otherwise, if there exists one such index j with ej = a, then e`eje`′ = aab

satisfies (16.2.1).
Also, if we have e`′′ = a for some ` + 1 ≤ `′′ ≤ n, then we must have ek = a for all

`′′ ≤ k ≤ n. Otherwise, if there exists one such index k with ek = b, then e`e`′′ek = aab

satisfies (16.2.1).
The desired lemma therefore follows.

Analogously, we categorize In(≥, 6=, >) into four disjoint types. (Below we also assume
that a > b.)

I Type I.
The tail of e ∈ In(≥, 6=, >) is of the form

a≥2 or a b≥2 or a b≥1 a≥2;

I Type II.
The tail of e is of the form

a;

I Type III.
The tail of e is of the form

a b≥1 a;

I Type IV.
The tail of e is of the form

a b.

345



16.3 Recurrences and Generating Functions

16.3.1 Recurrences

For 1 ≤ i ≤ 4, let

In,i(>, 6=,≥) := {e ∈ In(>, 6=,≥) : e is of Type i}

and

I(Λ)
n,i (>, 6=,≥) := {e ∈ In,i(>, 6=,≥) : the largest entry of e is Λ}.

We further write

fi(n,Λ) :=
∑

e∈I(Λ)
n,i (>, 6=,≥)

zasc(e). (16.3.1)

Notice that the initial values of the fi’s are

f1(1,Λ) = f3(1,Λ) = f4(1,Λ) = 0 for all Λ ≥ 0, (16.3.2)

f2(1,Λ) =

1 for Λ = 0,

0 otherwise,
(16.3.3)

and

f3(2,Λ) = 0 for all Λ ≥ 0. (16.3.4)

Lemma 16.3.1. For n ≥ 2, we have

(a). for Λ ≥ 0,

f1(n,Λ) = f1(n− 1,Λ) + f2(n− 1,Λ) + f3(n− 1,Λ) + f4(n− 1,Λ);

(b). for Λ = 0 and Λ ≥ n,
f2(n,Λ) = 0,
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and for 1 ≤ Λ ≤ n− 1,

f2(n,Λ) =
∑

0≤Λ′<Λ

(
zf1(n− 1,Λ′) + zf2(n− 1,Λ′)

+ zf3(n− 1,Λ′) + zf4(n− 1,Λ′)
)
;

(c). for Λ ≥ 0,
f3(n,Λ) = f3(n− 1,Λ) + f4(n− 1,Λ);

(d). for Λ = 0 and Λ ≥ n− 1,
f4(n,Λ) = 0,

and for 1 ≤ Λ ≤ n− 2,

f4(n,Λ) =
∑

0≤Λ′<Λ

(
zf1(n− 1,Λ′) + f2(n− 1,Λ′)

+ zf3(n− 1,Λ′) + zf4(n− 1,Λ′)
)
.

Further,

(b’). for 1 ≤ Λ ≤ n− 1,

f2(n,Λ)− f2(n,Λ− 1) = zf1(n,Λ− 1);

(d’). for 1 ≤ Λ ≤ n− 2,

f4(n,Λ)− f4(n,Λ− 1) = f2(n− 1,Λ) + zf3(n,Λ− 1).

Proof. To prove (a), (b), (c) and (d) of the lemma, we need to bijectively construct
sequences in the desired subset of In−1(>, 6=,≥) for each type of sequences in I(Λ)

n (>, 6=,≥).
Such constructions will be presented explicitly below by deleting one paticular element
from each sequence in I(Λ)

n (>, 6=,≥) of a fixed type. The inverse constructions from the
desired subset of In−1(>, 6=,≥) to each type of sequences in I(Λ)

n (>, 6=,≥) will not be
explicitly given but they are simply done by adding the paticular element to where it is
deleted. In the sequel, we always write e = e1e2 · · · en ∈ I(Λ)

n (>, 6=,≥).
Case 1. If e is of Type I, then we observe that en−1 = en. By deleting the last entry en,
we obtain an inversion sequence e′ of length n− 1. Apparently, e′ ∈ In−1(>, 6=,≥). Also,
we claim that e′ can be any of the four types. For example, if τ(e) = Λ Λ, then τ(e′) = Λ
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and hence e′ is of Type II. For other cases, we may carry on similar arguments. Further,
the largest entry in e′ is still Λ. Finally, we observe that asc(e) = asc(e′).
Case 2. If e is of Type II, then by deleting the last entry en = Λ, we obtain an inversion
sequence e′ of length n − 1. Again, we notice that e′ ∈ In−1(>, 6=,≥) can be any of
the four types. However, in this case, the largest entry in e′ is smaller than Λ. This is
because en = Λ is the only largest entry in e, but it is deleted. Finally, we observe that
asc(e) = asc(e′) + 1.
Case 3. If e is of Type III, then τ(e) is of the form Λ≥2 b for some b < Λ. By deleting
one of the Λ’s, the resulting sequence e′ is in I(Λ)

n−1(>, 6=,≥) with largest entry still equal
to Λ. Also, τ(e′) is either of the form Λ≥2 b or of the form Λ b. Therefore, e′ is of either
Type III or Type IV. Finally, we observe that asc(e) = asc(e′).
Case 4. If e is of Type IV, then τ(e) = Λ b for some b < Λ. We delete Λ from e to get e′.
It is not hard to verify that e′ ∈ In−1(>, 6=,≥) with largest entry smaller than Λ. We
have three subcases as follows.

• b = en = en−2. Then e′ is of Type I and in this case asc(e) = asc(e′) + 1.

• b = en > en−2. Then b > max{e1, e2, . . . , en−2}. Otherwise, there exists some
ei in e1e2 · · · en−3 such that ei ≥ b = en. Now the subsequence eien−2en satisfies
ei ≥ en > en−2, which is not allowed. It is then obvious that e′ is of Type II and
asc(e) = asc(e′).

• b = en < en−2. Then τ(e1e2 · · · en−2) must be of the form a≥1. Otherwise, there exists
some ei > en−2 with i < n−2. Hence, the subsequence eien−2en satisfies ei > en−2 > en

and thus satisfies (16.2.1). But this is not allowed. Now if τ(e1e2 · · · en−2) is of the
form a≥2, then e′ is of Type III and asc(e) = asc(e′) + 1; if τ(e1e2 · · · en−2) is of the
form a, then e′ is of Type IV and as well asc(e) = asc(e′) + 1.

Now (a), (b), (c) and (d) of the lemma are proved. Next, we show (b’) and (d’). For
(b’), we simply notice that

f2(n,Λ)− f2(n,Λ− 1)

= zf1(n− 1,Λ− 1) + zf2(n− 1,Λ− 1) + zf3(n− 1,Λ− 1) + zf4(n− 1,Λ− 1)

= zf1(n,Λ− 1),

where we make use of (a) in the last equality. For (d’),

f4(n,Λ)− f4(n,Λ− 1)
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= zf1(n− 1,Λ− 1) + f2(n− 1,Λ− 1) + zf3(n− 1,Λ− 1) + zf4(n− 1,Λ− 1)

=
(
zf1(n− 1,Λ− 1) + f2(n− 1,Λ− 1)

)
+ z

(
f3(n− 1,Λ− 1) + f4(n− 1,Λ− 1)

)
= f2(n− 1,Λ) + zf3(n,Λ− 1),

where we utilize (b’) and (c) in the last equality.

Proposition 16.3.2. For n ≥ 1,

f1(n,Λ) = 0, if Λ > n− 2,

f2(n,Λ) = 0, if Λ > n− 1,

f3(n,Λ) = 0, if Λ > n− 3,

f4(n,Λ) = 0, if Λ > n− 2.

Proof. The equalities for f2 and f4 come from Lemma 16.3.1(b) and (d). The equalities
for f1 and f3 can be proved jointly by a simple induction on n.

On the other hand, for 1 ≤ i ≤ 4, let

In,i(≥, 6=, >) := {e ∈ In(≥, 6=, >) : e is of Type i}

and

I(Λ)
n,i (≥, 6=, >) := {e ∈ In,i(≥, 6=, >) : the largest entry of e is Λ}.

We further write

hi(n,Λ) :=
∑

e∈I(Λ)
n,i (≥,6=,>)

zasc(e). (16.3.5)

Notice that the initial values of the hi’s are

h1(1,Λ) = h3(1,Λ) = h4(1,Λ) = 0 for all Λ ≥ 0,

h2(1,Λ) =

1 for Λ = 0,

0 otherwise,
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and

h3(2,Λ) = 0 for all Λ ≥ 0.

Lemma 16.3.3. For n ≥ 2, we have

(a). for Λ ≥ 0,

h1(n,Λ) = h1(n− 1,Λ) + h2(n− 1,Λ) + h3(n− 1,Λ) + h4(n− 1,Λ);

(b). for Λ = 0 and Λ ≥ n,
h2(n,Λ) = 0,

and for 1 ≤ Λ ≤ n− 1,

h2(n,Λ) =
∑

0≤Λ′<Λ

(
zh1(n− 1,Λ′) + zh2(n− 1,Λ′)

+ zh3(n− 1,Λ′) + zh4(n− 1,Λ′)
)
;

(c). for Λ ≥ 0,
h3(n,Λ) = h3(n− 1,Λ) + zh4(n− 1,Λ);

(d). for Λ = 0 and Λ ≥ n− 1,
h4(n,Λ) = 0,

and for 1 ≤ Λ ≤ n− 2,

h4(n,Λ) =
∑

0≤Λ′<Λ

(
zh1(n− 1,Λ′) + h2(n− 1,Λ′)

+ h3(n− 1,Λ′) + zh4(n− 1,Λ′)
)
.

Further,

(b’). for 1 ≤ Λ ≤ n− 1,

h2(n,Λ)− h2(n,Λ− 1) = zh1(n,Λ− 1);

(d’). for 1 ≤ Λ ≤ n− 2,

h4(n,Λ)− h4(n,Λ− 1) = h2(n− 1,Λ) + h3(n,Λ− 1).
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Proof. In analogy to the proof of Lemma 16.3.1, we construct bijective maps between
each type of sequences in I(Λ)

n (≥, 6=, >) and the desired subset of In−1(≥, 6=, >) while still
only one side of the maps will be explicitly stated. For (a) and (b), we use the same way
as that for Lemma 16.3.1(a) and (b) to reduce e ∈ I(Λ)

n (≥, 6=, >) to e′ ∈ In−1(≥, 6=, >)
and hence the details are omitted. Now let us treat the rest two cases. We as well write
e = e1e2 · · · en ∈ I(Λ)

n (≥, 6=, >).
Case 3. If e is of Type III, then τ(e) is of the form Λ b≥1 Λ for some b < Λ. We distinguish
it into two subcases. It should be pointed out in advance that the largest entry of the
resulting sequence e′ in both cases is still Λ.

• τ(e) = Λ bΛ. Then we delete the last Λ to get e′. We see that e′ ∈ I(Λ)
n−1(≥, 6=, >) is of

Type IV. Also asc(e) = asc(e′) + 1.

• τ is of the form Λ b≥2 Λ. Then we delete one of the b’s to get some e′ ∈ I(Λ)
n−1(≥, 6=, >).

This time e′ is of Type III and asc(e) = asc(e′).

Case 4. If e is of Type IV, then τ(e) = Λ b for some b < Λ. We as well delete Λ from e

to get e′. Notice that we also have e′ ∈ In−1(>, 6=,≥) with largest entry smaller than Λ.
We have three subcases as follows.

• b = en = en−2. Then e′ is of Type I and in this case asc(e) = asc(e′) + 1.

• b = en > en−2. Then b ≥ max{e1, e2, . . . , en−2}. Otherwise, there exists some
ei in e1e2 · · · en−3 such that ei > b = en. Now the subsequence eien−2en satisfies
ei > en > en−2, which is not allowed. If b > max{e1, e2, . . . , en−2}, then e′ is of Type
II and asc(e) = asc(e′); if b = max{e1, e2, . . . , en−2}, then τ(e1e2 · · · en−2) must be of
the form b c≥1 where c = en−2 < b and hence e′ is of Type III and asc(e) = asc(e′).

• b = en < en−2. Then τ(e1e2 · · · en−2) must be of the form a. Otherwise, there
exists some ei ≥ en−2 with i < n − 2. Hence, the subsequence eien−2en satisfies
ei ≥ en−2 > en and thus satisfies (16.2.2). But this is not allowed. Thus, e′ is of Type
IV and asc(e) = asc(e′) + 1.

The proofs of (b’) and (d’) are also similar to those for Lemma 16.3.1.

Finally, we define, for 1 ≤ i ≤ 4,

gi(n,Λ) :=
∑

e∈I(Λ)
n,i (≥,6=,>)

zn−1−asc(e). (16.3.6)
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Then in view of (16.3.5),

gi(n,Λ) = zn−1
[
hi(n,Λ)

]
z 7→z−1

and conversely,

hi(n,Λ) = zn−1
[
gi(n,Λ)

]
z 7→z−1

.

Thus, the initial values of the gi’s are

g1(1,Λ) = g3(1,Λ) = g4(1,Λ) = 0 for all Λ ≥ 0,

g2(1,Λ) =

1 for Λ = 0,

0 otherwise,

and

g3(2,Λ) = 0 for all Λ ≥ 0.

Also, the recurrences for the gi’s can be translated with no difficulty from those for the
hi’s.

Lemma 16.3.4. For n ≥ 2, we have

(a). for Λ ≥ 0,

g1(n,Λ) = zg1(n− 1,Λ) + zg2(n− 1,Λ) + zg3(n− 1,Λ) + zg4(n− 1,Λ);

(b). for Λ = 0 and Λ ≥ n,
g2(n,Λ) = 0,

and for 1 ≤ Λ ≤ n− 1,

g2(n,Λ) =
∑

0≤Λ′<Λ

(
g1(n− 1,Λ′) + g2(n− 1,Λ′)

+ g3(n− 1,Λ′) + g4(n− 1,Λ′)
)
;

(c). for Λ ≥ 0,
g3(n,Λ) = zg3(n− 1,Λ) + g4(n− 1,Λ);
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(d). for Λ = 0 and Λ ≥ n− 1,
g4(n,Λ) = 0,

and for 1 ≤ Λ ≤ n− 2,

g4(n,Λ) =
∑

0≤Λ′<Λ

(
g1(n− 1,Λ′) + zg2(n− 1,Λ′)

+ zg3(n− 1,Λ′) + g4(n− 1,Λ′)
)
.

Further,

(b’). for 1 ≤ Λ ≤ n− 1,

g2(n,Λ)− g2(n,Λ− 1) = z−1g1(n,Λ− 1);

(d’). for 1 ≤ Λ ≤ n− 2,

g4(n,Λ)− g4(n,Λ− 1) = zg2(n− 1,Λ) + g3(n,Λ− 1).

Similar to Proposition 16.3.2, we have the following equalities.

Proposition 16.3.5. For n ≥ 1,

g1(n,Λ) = 0, if Λ > n− 2,

g2(n,Λ) = 0, if Λ > n− 1,

g3(n,Λ) = 0, if Λ > n− 3,

g4(n,Λ) = 0, if Λ > n− 2.

16.3.2 Generating Functions

Let

F1(t) = F1(t; q) :=
∑
n≥2

n−2∑
Λ=0

f1(n,Λ)tn−2−Λqn,

F2(t) = F2(t; q) :=
∑
n≥2

n−1∑
Λ=0

f2(n,Λ)tn−1−Λqn,

F3(t) = F3(t; q) :=
∑
n≥3

n−3∑
Λ=0

f3(n,Λ)tn−3−Λqn,
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F4(t) = F4(t; q) :=
∑
n≥2

n−2∑
Λ=0

f4(n,Λ)tn−2−Λqn.

It is easy to translate the recurrences of the fi’s in Lemma 16.3.1 to functional equations
of F1(t), F2(t), F3(t) and F4(t).

Lemma 16.3.6. We have

F1(t)− q2 = tqF1(t) + qF2(t) + t2qF3(t) + tqF4(t),

tF2(t)−
(
F2(t)−F2(0)

)
= ztF1(t),

F3(t) = tqF3(t) + qF4(t),

tF4(t)−
(
F4(t)−F4(0)

)
= tqF2(t) + ztF3(t).

(16.3.7)

Proof. We show the first and second equations as instances. The proof of the third one
is similar to the first and the proof of the fourth one resembles the second.

First, by Lemma 16.3.1(a) and Proposition 16.3.2, we have

F1(t) =
∑
n≥2

n−2∑
Λ=0

f1(n,Λ)tn−2−Λqn

=
∑
n≥2

n−2∑
Λ=0

(
f1(n− 1,Λ) + f2(n− 1,Λ) + f3(n− 1,Λ) + f4(n− 1,Λ)

)
tn−2−Λqn

=
∑
n≥1

n−1∑
Λ=0

(
f1(n,Λ) + f2(n,Λ) + f3(n,Λ) + f4(n,Λ)

)
tn−1−Λqn+1

= tq
∑
n≥1

n−2∑
Λ=0

f1(n,Λ)tn−2−Λqn + q
∑
n≥1

n−1∑
Λ=0

f2(n,Λ)tn−1−Λqn

+ t2q
∑
n≥1

n−3∑
Λ=0

f3(n,Λ)tn−3−Λqn + tq
∑
n≥1

n−2∑
Λ=0

f4(n,Λ)tn−2−Λqn.

The first equation follows by recalling the initial values (16.3.2), (16.3.3) and (16.3.4).
For the second equation, we apply Lemma 16.3.1(b’) and Proposition 16.3.2. Then

F2(t) =
∑
n≥2

n−1∑
Λ=0

f2(n,Λ)tn−1−Λqn

=
∑
n≥2

n−1∑
Λ=1

f2(n,Λ)tn−1−Λqn (since f2(n, 0) = 0 for n ≥ 2 by Lemma 16.3.1(b))

354



=
∑
n≥2

n−1∑
Λ=1

(
zf1(n,Λ− 1) + f2(n,Λ− 1)

)
tn−1−Λqn

=
∑
n≥2

n−2∑
Λ=0

(
zf1(n,Λ) + f2(n,Λ)

)
tn−2−Λqn

= z
∑
n≥2

n−2∑
Λ=0

f1(n,Λ)tn−2−Λqn + t−1 ∑
n≥2

n−2∑
Λ=0

f2(n,Λ)tn−1−Λqn

= zF1(t) + t−1
(
F2(t)−F2(0)

)
,

which is essentially the second equation.

We treat F1(t), F2(t), F3(t) and F4(t) as unknowns and solve the above system so
that they are expressed in terms of F2(0), F4(0), z, q and t. In particular, we have the
following expression for F4(t).

Lemma 16.3.7. We have

Kf (t)F4(t) = (1− qt)Pf (t), (16.3.8)

where

Pf (t) = F4(0)−
(
qF2(0) + F4(0) + qF4(0)− zqF4(0)

)
t

+
(
zq3 + q2F2(0) + qF4(0)

)
t2 (16.3.9)

and

Kf (t) = 1− (2 + 2q − 2zq)t+ (1 + 4q − 2zq + q2 − 2zq2 + z2q2)t2

− (2q + 2q2 − zq2)t3 + q2t4. (16.3.10)

Analogously, we define

G1(t) = G1(t; q) :=
∑
n≥2

n−2∑
Λ=0

g1(n,Λ)tn−2−Λqn,

G2(t) = G2(t; q) := z
∑
n≥2

n−1∑
Λ=0

g2(n,Λ)tn−1−Λqn,

G3(t) = G3(t; q) :=
∑
n≥3

n−3∑
Λ=0

g3(n,Λ)tn−3−Λqn,
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G4(t) = G4(t; q) :=
∑
n≥2

n−2∑
Λ=0

g4(n,Λ)tn−2−Λqn.

By the recurrences of the gi’s in Lemma 16.3.4, the following system holds true.

Lemma 16.3.8. We have

G1(t)− zq2 = ztqG1(t) + qG2(t) + zt2qG3(t) + ztqG4(t),

tG2(t)−
(
G2(t)− G2(0)

)
= tG1(t),

G3(t) = ztqG3(t) + qG4(t),

tG4(t)−
(
G4(t)− G4(0)

)
= tqG2(t) + tG3(t).

(16.3.11)

We may also solve the above system for G1(t), G2(t), G3(t) and G4(t). In particular,
we have the following expression for G4(t).

Lemma 16.3.9. We have

Kg(t)G4(t) = (1− zqt)Pg(t), (16.3.12)

where

Pg(t) = G4(0)−
(
qG2(0) + G4(0)− qG4(0) + zqG4(0)

)
t

+
(
zq3 + zq2G2(0) + zqG4(0)

)
t2 (16.3.13)

and

Kg(t) = 1− (2− 2q + 2zq)t+ (1− 2q + 4zq + q2 − 2zq2 + z2q2)t2

− (2zq − zq2 + 2z2q2)t3 + (z2q2 − zq3 + z2q3)t4. (16.3.14)

Remark 16.3.1. We could, of course, derive kernel equations for F2(t) and G2(t) instead
of F4(t) and G4(t). But such changes will not make any essential difference after the
application of the kernel method; we are still led to Theorem 16.4.1.

16.4 Proof of Theorem 16.1.1

The objective of this section is to apply the kernel method to establish the following
surprising relations, one of which will lead to a proof of Theorem 16.1.1.
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Theorem 16.4.1. We have

f1(n, n− 2) = g1(n, n− 2) for n ≥ 3,

f2(n, n− 1) = zg2(n, n− 1) for n ≥ 2,

f3(n, n− 3) = g3(n, n− 3) for n ≥ 3,

f4(n, n− 2) = g4(n, n− 2) for n ≥ 2.

16.4.1 Roots of the Kernel Polynomials

Before applying the kernel method to F4(t) and G4(t), let us first investigate properties
of the roots of the two kernel polynomials Kf (t) and Kg(t).

Lemma 16.4.2. Let r1, r2, r3 and r4 be the four roots of the quartic polynomial Kf (t).
Then the quartic polynomial Kg(t) has roots s1, s2, s3 and s4 such that for 1 ≤ i ≤ 4,

si = ri
1− (1− z)qri

. (16.4.1)

Proof. We have

Kf (t) = q2(t− r1)(t− r2)(t− r3)(t− r4).

Since Kf (t) has constant term 1, we know that the quartic polynomial K?
f (t) := t4Kf (t−1)

is monic. Further,

K?
f (t) = (t− r−1

1 )(t− r−1
2 )(t− r−1

3 )(t− r−1
4 ).

Similarly, if K?
g (t) := t4Kg(t−1), then

K?
g (t) = (t− s−1

1 )(t− s−1
2 )(t− s−1

3 )(t− s−1
4 ).

Therefore, to obtain the desired relations, it suffices to show

K?
g (t) = K?

f

(
t+ (1− z)q

)
,

which is easy to verify.

For the sake of simplicity when utilizing the general formula for roots of quartic
equations, we assume that 0 < q < 1 and z > 0. It can be computed that as q → 0+,
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Kf (t) has four roots

r1 = 1 +
(
z +
√
z
)
q +Oz(q2),

r2 = 1 +
(
z −
√
z
)
q +Oz(q2),

r3 = q−1 +
√
zq−1/2 − z

2 +Oz(q1/2),

r4 = q−1 −
√
zq−1/2 − z

2 +Oz(q1/2).

Let si be as in Lemma 16.4.2 so that they are roots of Kg(t). Then

s1 = 1 +
(
1 +
√
z
)
q +Oz(q2),

s2 = 1 +
(
1−
√
z
)
q +Oz(q2),

s3 = 1
z
q−1 + 1

z3/2 q
−1/2 + 2− 3z

2z2 +Oz(q1/2),

s4 = 1
z
q−1 − 1

z3/2 q
−1/2 + 2− 3z

2z2 +Oz(q1/2).

16.4.2 Applying the Kernel Method

To apply the kernel method, we need to choose roots of Kf(t) and Kg(t) that can
be expanded as a formal power series in q. So only r1, r2 and s1, s2 are admissible,
respectively. Recall (16.3.8):

Kf (t)F4(t) = (1− qt)Pf (t).

We substitute the roots t = r1 and r2 into the above and arrive at Pf(t) = 0. Then
recalling (16.3.9) yields the system



0 = F4(0)−
(
qF2(0) + F4(0) + qF4(0)− zqF4(0)

)
r1

+
(
zq3 + q2F2(0) + qF4(0)

)
r2

1,

0 = F4(0)−
(
qF2(0) + F4(0) + qF4(0)− zqF4(0)

)
r2

+
(
zq3 + q2F2(0) + qF4(0)

)
r2

2.
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Solving the above system for F2(0) and F4(0) gives

F2(0) =

zq2
(
r1 + r2 − (1 + (1− z)q)r1r2

)
1− q(r1 + r2) + (1− z)q2r1r2

,

F4(0) = zq3r1r2

1− q(r1 + r2) + (1− z)q2r1r2
.

Likewise, we substitute the roots t = s1 and s2 into Pg(t) = 0 and use (16.3.13) to obtain
a similar system, which leads to the solution

G2(0) =
zq2

(
s1 + s2 − (1− (1− z)q)s1s2

)
1− zq(s1 + s2)− z(1− z)q2s1s2

,

G4(0) = zq3s1s2

1− zq(s1 + s2)− z(1− z)q2s1s2
.

Finally, making use of the relations
s1 = r1

1− (1− z)qr1
,

s2 = r2

1− (1− z)qr2
,

we find that 
F2(0) = G2(0),

F4(0) = G4(0).

Further, by (16.3.7) and (16.3.11), we have

F1(0) = qF2(0) + q2,

G1(0) = qG2(0) + zq2,

and 
F3(0) = qF4(0),

G3(0) = qG4(0).

Theorem 16.4.1 therefore follows.
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16.4.3 Proof of Theorem 16.1.1

Recalling the definition of the fi’s, we find that, for n ≥ 1,

∑
e∈In(>, 6=,≥)

zasc(e) =
n−1∑
Λ=0

(
f1(n,Λ) + f2(n,Λ) + f3(n,Λ) + f4(n,Λ)

)
= z−1f2(n+ 1, n),

where we make use of Lemma 16.3.1(b). Similarly, we have, for n ≥ 1,

∑
e∈In(≥, 6=,>)

zn−1−asc(e) =
n−1∑
Λ=0

(
g1(n,Λ) + g2(n,Λ) + g3(n,Λ) + g4(n,Λ)

)
= g2(n+ 1, n),

where Lemma 16.3.4(b) is utilized. By the second relation in Theorem 16.4.1, we find
that for n ≥ 1,

z−1f2(n+ 1, n) = g2(n+ 1, n),

and therefore complete the proof of (16.1.2).
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