MATH 3070 – THEORY OF NUMBERS

Homework 6

Due: Tuesday, Nov 29, 2022 (in class)

- **1.** Let $p \ge 5$ be an odd prime.
 - (i). Prove that -3 is a quadratic residue modulo p if p ≡ 1 (mod 6), and a quadratic non-residue modulo p if p ≡ 5 (mod 6).
 (*Hint: Use the fact that* (⁻³/_p) = (⁻¹/_p)(³/_p), and apply the criteria for (⁻¹/_p) and (³/_p) in Sects. 6.4 & 7.4.)
 - (ii). Prove that if $p \equiv 5 \pmod{6}$, then we **cannot** find integers x and y such that $p = x^2 + 3y^2$.

(*Hint: Prove by contradiction. Assume that there exist* x *and* y *such that* $p = x^2 + 3y^2$. *First prove that* $p \nmid x$ *and* $p \nmid y$. *Then apply Part (i).*)

(iii). Prove that if $p \equiv 1 \pmod{6}$, then there exists an integer x such that

$$x^2 + 3 = mp$$

with 0 < m < p. (*Hint: Mimic the proof of Theorem 6.9.*)

(iv). Prove that

$$(x_1^2 + 3y_1^2)(x_2^2 + 3y_2^2) = (x_1x_2 + 3y_1y_2)^2 + 3(x_1y_2 - x_2y_1)^2.$$

(v). Prove that if $p \equiv 1 \pmod{6}$ and x and y are integers such that $x^2 + 3y^2 = mp$ with m an integer, then either m is odd, or m is a multiple of 4. In particular, $m \neq 2$.

(*Hint: Consider the parity of* x *and* y.)

(vi). Prove that if $p \equiv 1 \pmod{6}$, then we can find integers x and y such that $p = x^2 + 3y^2$.

(Hint: First deduce from Part (iii) that there exists an integer m with 0 < m < p such that the equation $x^2 + 3y^2 = mp$ has an integer solution (x, y). Then consider the two cases: (1). (x, y) > 1; (2). (x, y) = 1. For Case (1), prove that $d^2 \mid m$ where d = (x, y). For Case (2), mimic the first proof of Theorem 8.2.)