MATH 3070 – THEORY OF NUMBERS

Homework 3

Due: Thursday, Oct 13, 2022 (in class)

- 1.
- (i). Prove that for $m \ge 3$ an integer, $\operatorname{ord}_m(m-1) = 2$.
- (ii). Prove that for $p \ge 3$ a prime, there is only one integer among $\{1, 2, \ldots, p\}$ of order 2 modulo p, and this integer is p 1.
- **2.** Let $p \ge 5$ be a prime. Let g be a primitive root of p.
 - (i). If $g^{-1} \mod p$ is the modular inverse of g, prove that g^{-1} is also a primitive root of p.
 - (ii). Prove that $g \not\equiv g^{-1} \pmod{p}$. (Hint: Prove first that $g \equiv g^{-1} \pmod{p}$ implies that $g^2 \equiv 1 \pmod{p}$.)
 - (iii). Recall that there are $\phi(\phi(p)) = \phi(p-1)$ primitive roots of p among $\{1, 2, \ldots, p\}$. We denote them by $g_1, g_2, \ldots, g_{\phi(p-1)}$. Prove that

$$\prod_{i=1}^{\phi(p-1)} g_i \equiv 1 \pmod{p}.$$

(Hint: Pair the primitive roots g and g^{-1} .)

- **3.** Let m and n be positive integers with $m \mid n$.
 - (i). For a with (a, m) = 1, if a is not a primitive root of m, prove that there exists an integer b with (b, m) = 1 such that $b \not\equiv a^k \pmod{m}$ for any integer k.
 - (ii). Let x be such that (x, m) = 1. Prove that there exists an integer y such that (y, n) = 1 and $y \equiv x \pmod{m}$.

(This result, although looking trivial, is surprisingly not easy. So I give more clues. Write n in the canonical form $n = \prod_i p_i^{\alpha_i} \prod_j q_j^{\beta_j}$ with $p_i \mid m$ and $q_j \nmid m$. Consider the linear congruence system: $y \equiv x \pmod{p_i^{\alpha_i}}$ for each i, and $y \equiv 1 \pmod{q_j^{\beta_j}}$ for each j. Is this system solvable? By which theorem? Is it true that (y, n) = 1? Is it true that $y \equiv x \pmod{m}$?)

(iii). Prove through the previous two parts that if g is a primitive root of n, then g is also a primitive root of m.