MATH 3070 - THEORY OF NUMBERS

Homework 2

Due: Thursday, Sep 29, 2022 (in class)

- 1. Prove Theorem 3.2.
 - (i). $a \equiv b \pmod{m}$ if and only if $a b \equiv 0 \pmod{m}$;
 - (ii). If $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$, then

$$a_1 + a_2 \equiv b_1 + b_2 \pmod{m},$$

$$a_1 a_2 \equiv b_1 b_2 \pmod{m};$$

(iii). If $a \equiv b \pmod{m}$, then for any positive integer k,

$$a^k \equiv b^k \pmod{m};$$

(iv). If f(x) is a polynomial with integer coefficients, and $u \equiv v \pmod{m}$, then

$$f(u) \equiv f(v) \pmod{m}$$
.

(Hint: Write f(x) as $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ with all a_i integers.)

- **2.** Let $\phi(n)$ be the Euler totient function.
 - (i). Compute $\phi(1)$ and $\phi(2)$.
 - (ii). Let p be a prime and α be a positive integer. Prove that $\phi(p^{\alpha})$ is odd only if p=2 and $\alpha=1$.
 - (iii). Prove that for integers $n \geq 3$, $\phi(n)$ is even.
- **3.** Let n be a positive integer, and write n in the canonical form $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$.
 - (i). Prove that for $n \geq 2$,

$$\frac{n}{\phi(n)} = \prod_{i=1}^{r} \frac{p_i}{p_i - 1}.$$

- (ii). Prove that if n is odd with $n \geq 3$, then $\frac{n}{\phi(n)}$ is not an integer, i.e., $\phi(n) \nmid n$. (You may use the results in Question 2.)
- (iii). Prove that if n has two distinct odd prime factors, then $\phi(n) \nmid n$.
- (iv). Prove that if $\phi(n) \mid n$, then n = 1 or 2^{α} ($\alpha \ge 1$) or $2^{\alpha}3^{\beta}$ ($\alpha, \beta \ge 1$).

1