MATH 3070 – THEORY OF NUMBERS

Homework 1

Due: Thursday, Sep 22, 2022 (in class)

1. Let n be an integer.

- (i). Prove that $3 \mid n^3 n$. (Hint: Consider the three cases n = 3k, 3k + 1 and 3k + 2).
- (ii). Prove that $5 \mid n^5 n$.
- (iii). Give an example of n such that $4 \nmid n^4 n$. Write explicitly the values of n and $n^4 n$.
- **2.** Let $a \ge 2$ and $n \ge 1$ be integers.
 - (i). Prove that if $a^n + 1$ is prime, then a must be even.
 - (ii). Prove that if $k \ge 1$ is an odd integer, then for any real x,

$$x^{k} + 1 = (x+1) \cdot \left(\sum_{i=0}^{k-1} (-1)^{i} x^{i}\right).$$

- (iii). Use the above relation to show that if $a^n + 1$ is prime, then n is of the form $n = 2^m$ with $m \in \mathbb{N}$, i.e., n has no odd factors other than ± 1 .
- **3.** Let $n \geq 2$ be an integer.
 - (i). Prove that if n is even, then $n^4 + 4^n$ is composite.
 - (ii). Prove Sophie Germain's identity

$$x^4 + 4y^4 = (x^2 + 2xy + 2y^2)(x^2 - 2xy + 2y^2).$$

(iii). Use Sophie Germain's identity to show that $n^4 + 4^n$ is also composite if $n \ge 2$ is odd.

1

- **4.** Let a, b be integers with $a \neq 0$.
 - (i). Prove that (a, b) = (a, a + b).
 - (ii). Prove that for any integer k, (a, b) = (a, ka + b).