## 14. Möbius inversion formula

### 14.1 Möbius inversion formula

The pair of relations (13.4) and (13.5), and the pair of relations (13.6) and (13.8) are indeed special cases of a general phenomenon, known as the Möbius inversion formula.

Theorem 14.1 (Möbius Inversion Formula). Let $f(n)$ and $g(n)$ be arithmetic functions. If

$$
\begin{equation*}
g(n)=\sum_{d \mid n} f(d) \tag{14.1}
\end{equation*}
$$

then

$$
\begin{equation*}
f(n)=\sum_{d \mid n} \mu(d) g\left(\frac{n}{d}\right), \tag{14.2}
\end{equation*}
$$

and vice versa.

R In (13.4) and (13.5), we have $f=\phi$ and $g=$ id; in (13.6) and (13.8), we have $f=\Lambda$ and $g=\log$.

Proof. We first prove (14.2) by (14.1). Note that

$$
\begin{aligned}
\sum_{d \mid n} \mu(d) g\left(\frac{n}{d}\right) & =\sum_{d \mid n} \mu(d) \sum_{d^{\prime} \left\lvert\, \frac{n}{d}\right.} f\left(d^{\prime}\right)=\sum_{\substack{d, d^{\prime} \\
d d^{\prime} \mid n}} \mu(d) f\left(d^{\prime}\right) \\
& =\sum_{d^{\prime} \mid n} f\left(d^{\prime}\right) \sum_{d| |_{d^{\prime}}^{n}} \mu(d)=\sum_{d^{\prime} \mid n} f\left(d^{\prime}\right) \varepsilon\left(\frac{n}{d^{\prime}}\right)=f(n),
\end{aligned}
$$

where we make use of (13.3). Conversely, to show (14.1) from (14.2), we first require the trivial fact that for any arithmetic function $a(n)$,

$$
\sum_{d \mid n} a(d)=\sum_{d \mid n} a\left(\frac{n}{d}\right) .
$$

Rewriting (14.2) as

$$
f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)
$$

it follows that

$$
\begin{aligned}
\sum_{d \mid n} f(d) & =\sum_{d \mid n} f\left(\frac{n}{d}\right)=\sum_{d \mid n} \sum_{d^{\prime} \left\lvert\, \frac{n}{d}\right.} \mu\left(\frac{n / d}{d^{\prime}}\right) g\left(d^{\prime}\right)=\sum_{\substack{d, d^{\prime} \\
d d^{\prime} \mid n}} \mu\left(\frac{n}{d d^{\prime}}\right) g\left(d^{\prime}\right) \\
& =\sum_{d^{\prime} \mid n} g\left(d^{\prime}\right) \sum_{d \left\lvert\, \frac{n}{d^{\prime}}\right.} \mu\left(\frac{n / d^{\prime}}{d}\right)=\sum_{d^{\prime} \mid n} g\left(d^{\prime}\right) \sum_{d \left\lvert\, \frac{n}{d^{\prime}}\right.} \mu(d)=\sum_{d^{\prime} \mid n} g\left(d^{\prime}\right) \varepsilon\left(\frac{n}{d^{\prime}}\right)=g(n),
\end{aligned}
$$

where (13.3) is also applied.
There is a slightly different type of Möbius inversion formula working for functions defined on real $x>0$. Below, in the summation $\sum_{n \leq x}$, the index $n$ runs over all positive integers no larger than $x$.

Theorem 14.2 Let $F(x)$ and $G(x)$ be functions defined on real $x>0$. If

$$
\begin{equation*}
G(x)=\sum_{n \leq x} F\left(\frac{x}{n}\right) \tag{14.3}
\end{equation*}
$$

then

$$
\begin{equation*}
F(x)=\sum_{n \leq x} \mu(n) G\left(\frac{x}{n}\right), \tag{14.4}
\end{equation*}
$$

and vice versa.

Proof. We first prove (14.4) by (14.3). Note that

$$
\begin{aligned}
\sum_{n \leq x} \mu(n) G\left(\frac{x}{n}\right) & =\sum_{n \leq x} \mu(n) \sum_{m \leq \frac{x}{n}} F\left(\frac{x / n}{m}\right)=\sum_{\substack{m, n \\
m n \leq x}} \mu(n) F\left(\frac{x}{m n}\right) \\
(\text { with } N=m n) & =\sum_{N \leq x} F\left(\frac{x}{N}\right) \sum_{n \mid N} \mu(n)=\sum_{N \leq x} F\left(\frac{x}{N}\right) \varepsilon(N)=F(x) .
\end{aligned}
$$

Conversely, to show (14.3) from (14.4), we have

$$
\begin{aligned}
\sum_{n \leq x} F\left(\frac{x}{n}\right) & =\sum_{n \leq x} \sum_{m \leq \frac{x}{n}} \mu(m) G\left(\frac{x / n}{m}\right)=\sum_{\substack{m, n \\
m n \leq x}} \mu(m) G\left(\frac{x}{m n}\right) \\
(\text { with } N=m n) & =\sum_{N \leq x} G\left(\frac{x}{N}\right) \sum_{m \mid N} \mu(m)=\sum_{N \leq x} G\left(\frac{x}{N}\right) \varepsilon(N)=G(x),
\end{aligned}
$$

as required.

### 14.2 Multiplicative Möbius inversion formula

Another important variant of Möbius inversion formula is in the multiplicative notation.
Theorem 14.3 Let $f(n)$ and $g(n)$ be arithmetic functions such that $f(n) \neq 0$ and $g(n) \neq 0$ for all $n$. If

$$
\begin{equation*}
g(n)=\prod_{d \mid n} f(d) \tag{14.5}
\end{equation*}
$$

then

$$
\begin{equation*}
f(n)=\prod_{d \mid n} g\left(\frac{n}{d}\right)^{\mu(d)} \tag{14.6}
\end{equation*}
$$

and vice versa.

Proof. We first prove (14.6) by (14.5). Note that

$$
\begin{aligned}
\prod_{d \mid n} g\left(\frac{n}{d}\right)^{\mu(d)} & =\prod_{d \mid n}\left(\prod_{d^{\prime} \left\lvert\, \frac{n}{d}\right.} f\left(d^{\prime}\right)\right)^{\mu(d)}=\prod_{d \mid n} \prod_{d^{\prime} \left\lvert\, \frac{n}{d}\right.} f\left(d^{\prime}\right)^{\mu(d)}=\prod_{d^{\prime}|n d| \frac{n}{d^{\prime}}} f\left(d^{\prime}\right)^{\mu(d)} \\
& =\prod_{d^{\prime} \mid n} f\left(d^{\prime}\right)^{\sum_{d \left\lvert\, \frac{n}{d^{\prime}}\right.} \mu(d)}=\prod_{d^{\prime} \mid n} f\left(d^{\prime}\right)^{\varepsilon\left(n / d^{\prime}\right)}=f(n)
\end{aligned}
$$

Conversely, to show (14.5) from (14.6), we have

$$
\begin{aligned}
\prod_{d \mid n} f(d) & =\prod_{d \mid n} f\left(\frac{n}{d}\right)=\prod_{d \mid n} \prod_{d^{\prime} \left\lvert\, \frac{n}{d}\right.} g\left(d^{\prime}\right)^{\mu\left(\frac{n / d}{d^{\prime}}\right)}=\prod_{d^{\prime}|n d| \frac{n}{d^{\prime}}} g\left(d^{\prime}\right)^{\mu\left(\frac{n}{d d^{\prime}}\right)} \\
& =\prod_{d^{\prime} \mid n} g\left(d^{\prime}\right)^{\sum_{d \mid} \frac{n}{d^{\prime}}} \mu\left(\frac{n / d^{\prime}}{d}\right)
\end{aligned}=\prod_{d^{\prime} \mid n} g\left(d^{\prime}\right)^{\sum_{d \mid} \left\lvert\, \frac{n}{d^{\prime}} \mu(d)\right.}=\prod_{d^{\prime} \mid n} g\left(d^{\prime}\right)^{\varepsilon\left(n / d^{\prime}\right)}=g(n),
$$

as required.

R Intuitively, for positive-valued $f$ and $g$, we may define $\tilde{f}(n)=\log f(n)$ and $\tilde{g}(n)=$ $\log g(n)$. By taking logarithm in (14.5) and (14.6), their equivalence becomes

$$
\tilde{g}(n)=\sum_{d \mid n} \tilde{f}(d) \quad \Longleftrightarrow \quad \tilde{f}(n)=\sum_{d \mid n} \mu(d) \tilde{g}\left(\frac{n}{d}\right)
$$

which is exactly the usual Möbius inversion formula.

### 14.3 Dirichlet convolutions

The Möbius inversion formula can be further understood in a more abstract way, through Dirichlet convolutions, named after the German mathematician Peter Gustav Lejeune Dirichlet.
Definition 14.1 For arithmetic functions $f$ and $g$, their Dirichlet convolution is defined to be an arithmetic function $h$ with

$$
h(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)
$$

where the summation runs over all positive divisors of $n$. We write

$$
h=f * g .
$$

Dirichlet convolutions satisfy the following algebraic properties.
Theorem 14.4 For any arithmetic functions $u, v$ and $w$, we have
(i) $u * v=v * u$ (commutative law);
(ii) $(u * v) * w=u *(v * w)$ (associative law).

Proof. It is straightforward to verify that

$$
(u * v)(n)=(v * u)(n)=\sum_{\substack{a, b \\ a b=n}} u(a) v(b)
$$

and

$$
((u * v) * w)(n)=(u *(v * w))(n)=\sum_{\substack{a, b, c \\ a b=n}} u(a) v(b) w(c),
$$

where $a, b$ and $c$ run over positive integers.
Theorem 14.5 Let $\varepsilon$ be the unit function. For any arithmetic function $f$, we have $f * \varepsilon=\varepsilon * f=f$.

Proof. We have

$$
(f * \varepsilon)(n)=\sum_{d \mid n} f(d) \varepsilon\left(\frac{n}{d}\right)=f(n),
$$

as required.

Theorem 14.6 Let $f$ be an arithmetic function with $f(1) \neq 0$. Then there exists a unique arithmetic function $g$ such that $f * g=g * f=\varepsilon$. Moreover, $g$ is given by

$$
\begin{equation*}
g(1)=\frac{1}{f(1)} \tag{14.7}
\end{equation*}
$$

and for $n>1$,

$$
\begin{equation*}
g(n)=-\frac{1}{f(1)} \sum_{\substack{d \mid n \\ d<n}} f\left(\frac{n}{d}\right) g(d) . \tag{14.8}
\end{equation*}
$$

Proof. First, we note that $(f * g)(1)=f(1) g(1)=\varepsilon(1)=1$ gives $g(1)=1 / f(1)$. For $n>1$, we have $\boldsymbol{\varepsilon}(n)=0$, and hence,

$$
0=(f * g)(n)=(g * f)(n)=\sum_{d \mid n} f\left(\frac{n}{d}\right) g(d)=f(1) g(n)+\sum_{\substack{d \mid n \\ d<n}} f\left(\frac{n}{d}\right) g(d) .
$$

Hence, we may iteratively determine the unique $g(n)$ by (14.8).
Definition 14.2 Given an arithmetic function $f$ with $f(1) \neq 0$, we call the unique arithmetic function $g$ such that $f * g=g * f=\varepsilon$ the Dirichlet inverse of $f$, denoted by $g=f^{-1}$.

Theorem 14.7 For any arithmetic functions with $f(1) \neq 0$ and $g(1) \neq 0$, we have $(f *$ $g)^{-1}=f^{-1} * g^{-1}$.

Proof. We have $(f * g) *\left(f^{-1} * g^{-1}\right)=\left(f * f^{-1}\right) *\left(g * g^{-1}\right)=\varepsilon * \varepsilon=\varepsilon$, as required.
R In the language of group theory, the set of arithmetic functions $f$ with $f(1) \neq 0$ forms an Abelien group with respect to the operation "*" (Dirichlet convolution), and the identity element of this group is the unit function $\varepsilon$.

Corollary 14.8 The Möbius function $\mu$ and the constant function $\mathbf{1}$ are Dirichlet inverses of one another.

Proof. We simply rewrite the relation (13.3), $\sum_{d \mid n} \mu(d)=\varepsilon(n)$, in terms of Dirichlet convolution, and find that $\mu * \mathbf{1}=\varepsilon$, yielding the desired result.

R We may also interpret the Möbius inversion formula in this setting by noting that it is exactly the equivalence

$$
g=f * \mathbf{1} \quad \Longleftrightarrow \quad f=g * \mu .
$$

This is trivial since if $g=f * \mathbf{1}$, then $g * \mu=(f * \mathbf{1}) * \mu=f *(\mu * \mathbf{1})=f * \varepsilon=f$; and if $f=g * \mu$, then $f * \mathbf{1}=(g * \mu) * \mathbf{1}=g *(\mu * \mathbf{1})=g * \varepsilon=g$.

Now, we consider Dirichlet convolutions on multiplicative functions.
Theorem 14.9 If $f$ and $g$ are multiplicative functions, so is their Dirichlet convolution $f * g$.

Proof. We write $h=f * g$. Let $m$ and $n$ be positive integers with $(m, n)=1$. We use the fact that if $d \mid m n$, then we may uniquely write $d=a b$ with $a \mid m$ and $b \mid n$. In particular, $(a, b)=1$ and $\left(\frac{m}{a}, \frac{n}{b}\right)=1$. Now,

$$
\begin{aligned}
h(m n) & =\sum_{d \mid m n} f(d) g\left(\frac{m n}{d}\right)=\sum_{a|m, b| n} f(a b) g\left(\frac{m n}{a b}\right)=\sum_{a|m, b| n} f(a) f(b) g\left(\frac{m}{a}\right) g\left(\frac{n}{b}\right) \\
& =\sum_{a \mid m} f(a) g\left(\frac{m}{a}\right) \sum_{b \mid n} f(b) g\left(\frac{n}{b}\right)=h(m) h(n) .
\end{aligned}
$$

Hence, $h=f * g$ is multiplicative.

Theorem 14.10 If $f$ is a multiplicative function, so is its Dirichlet inverse $f^{-1}$.

Proof. Noting that $f$ is multiplicative, we have $f(1)=1$, and hence $f^{-1}(1)=\frac{1}{f(1)}=1$. Now we shall show that for every positive integer $N, f^{-1}(N)=f^{-1}(m) f^{-1}(n)$ holds true for any positive integers $m$ and $n$ with $(m, n)=1$ and $m n=N$. We prove by induction on $N$. The base case $N=1$ is confirmed by the fact that $f^{-1}(1)=1$. Assume that the claim is true for $1, \ldots, N-1$ for some $N \geq 2$, and we shall prove the case of $N$. Note that

$$
\begin{aligned}
\varepsilon(N) & =\left(f^{-1} * f\right)(m n)=\sum_{a|m, b| n} f^{-1}(a b) f\left(\frac{m n}{a b}\right) \\
& =f^{-1}(m n) f(1)+\sum_{\substack{a|m, b| n \\
a b<N}} f^{-1}(a b) f\left(\frac{m n}{a b}\right) \\
\text { (induc. assump.) } & =f^{-1}(m n) f(1)+\sum_{\substack{a|m, b| n \\
a b<N}} f^{-1}(a) f^{-1}(b) f\left(\frac{m}{a}\right) f\left(\frac{n}{b}\right) \\
& =f^{-1}(m n) f(1)-f^{-1}(m) f^{-1}(n) f(1) f(1)+\sum_{a|m, b| n} f^{-1}(a) f^{-1}(b) f\left(\frac{m}{a}\right) f\left(\frac{n}{b}\right) \\
& =f^{-1}(N)-f^{-1}(m) f^{-1}(n)+\left(f^{-1} * f\right)(m)\left(f^{-1} * f\right)(n) \\
& =f^{-1}(N)-f^{-1}(m) f^{-1}(n)+\varepsilon(N),
\end{aligned}
$$

thereby implying that $f^{-1}(N)=f^{-1}(m) f^{-1}(n)$, as required.

The set of multiplicative functions is a subgroup of the group of all arithmetic functions $f$ with $f(1) \neq 0$.

### 14.4 Ramanujan's sums

We first adopt a conventional nonation in analytic number theory.
Definition 14.3 For any complex $\tau$, we define

$$
e(\tau):=e^{2 \pi i \tau}
$$

Now, we introduce Ramanujan's sums, which is crucial in, for instance, the proof of I. M. Vinogradov's theorem (Recueil Math. 2 (1937), 179-195) that every sufficiently large odd number is the sum of three primes.
Definition 14.4 For $q$ and $n$ positive integers, Ramanujan's sums are defined by

$$
c_{q}(n):=\sum_{\substack{1 \leq a \leq q \\(a, q)=1}} e\left(\frac{a n}{q}\right) .
$$

(R) Ramanujan's sums were introduced by Srinivasa Ramanujan (Trans. Cambridge Philos. Soc. 22 (1918), no. 13, 259-276).

We introduce another sum for $q$ and $n$ positive integers:

$$
\eta_{q}(n):=\sum_{1 \leq a \leq q} e\left(\frac{a n}{q}\right)
$$

Lemma 14.11 For positive integers $q$ and $n$,

$$
\eta_{q}(n)= \begin{cases}q & \text { if } q \mid n  \tag{14.9}\\ 0 & \text { if } q \nmid n .\end{cases}
$$

In particular, for positive integers $s$ and $t$ with $(s, t)=1$, we have $\eta_{s}(n) \eta_{t}(n)=\eta_{s t}(n)$.

Proof. Let $d=(q, n)$, and write $q=q^{\prime} d$ and $n=n^{\prime} d$. Noting that $\left(q^{\prime}, n^{\prime}\right)=1$, we have $\left\{a n^{\prime}: 1 \leq a \leq q^{\prime}\right\}$ covers a complete system modulo $q^{\prime}$. Now,

$$
\eta_{q}(n)=\sum_{1 \leq a \leq q} e\left(\frac{a n}{q}\right)=\eta_{q}(n):=\sum_{1 \leq a \leq q^{\prime} d} e\left(\frac{a n^{\prime}}{q^{\prime}}\right)=d \sum_{1 \leq a \leq q^{\prime}} e\left(\frac{a n^{\prime}}{q^{\prime}}\right)=d \sum_{1 \leq a \leq q^{\prime}} e\left(\frac{a}{q^{\prime}}\right)
$$

Note that

$$
\sum_{1 \leq a \leq q^{\prime}} e\left(\frac{a}{q^{\prime}}\right)= \begin{cases}1 & \text { if } q^{\prime}=1 \\ 0 & \text { if } q^{\prime}>1\end{cases}
$$

Finally, we use the fact that $q^{\prime}=1$ if and only if $q=d=(q, n)$, or $q \mid n$, as desired. The second part is a direct consequence of (14.9).

Now, we establish a relation between $c_{q}(n)$ and $\eta_{q}(n)$.

Theorem 14.12 For positive integers $q$ and $n$,

$$
\begin{equation*}
\eta_{q}(n)=\sum_{d \mid q} c_{d}(n) \tag{14.10}
\end{equation*}
$$

Proof. We use the fact that $\left\{\frac{a}{q}: 1 \leq a \leq q\right\}=\cup_{d \mid q}\left\{\frac{b}{d}: 1 \leq b \leq d\right.$ and $\left.(b, d)=1\right\}$, by simplifying each $\frac{a}{q}$ to its irreducible form. Hence,

$$
\sum_{1 \leq a \leq q} e\left(\frac{a n}{q}\right)=\sum_{d \mid q} \sum_{\substack{1 \leq b \leq d \\(b, d)=1}} e\left(\frac{b n}{d}\right)
$$

as required.
Let us treat $\eta_{q}(n)$ and $c_{q}(n)$ as functions in $q$ with $n$ fixed, and define $H(q):=\eta_{q}(n)$ and $C(q):=c_{q}(n)$ for clarity. Then we may paraphrase (14.10) as

$$
\begin{equation*}
H=C * \mathbf{1} . \tag{14.11}
\end{equation*}
$$

Corollary 14.13 Let $n$ be a positive integer. For positive integers $s$ and $t$ with $(s, t)=1$,

$$
\begin{equation*}
c_{s}(n) c_{t}(n)=c_{s t}(n) \tag{14.12}
\end{equation*}
$$

Proof. We use Theorems 14.9 and 14.10 by noting that both $H$ and $\mathbf{1}$ are multiplicative.

Corollary 14.14 For positive integers $q$ and $n$,

$$
\begin{equation*}
c_{q}(n)=\sum_{d|q, d| n} \mu\left(\frac{q}{d}\right) d \tag{14.13}
\end{equation*}
$$

Proof. We apply Möbius inversion formula to (14.11), and find that

$$
c_{q}(n)=\sum_{d \mid q} \mu\left(\frac{q}{d}\right) \eta_{d}(n)
$$

The desired relation follows with recourse to (14.9).

Theorem 14.15 For positive integers $q$ and $n$,

$$
\begin{equation*}
c_{q}(n)=\mu\left(\frac{q}{(q, n)}\right) \frac{\phi(q)}{\phi\left(\frac{q}{(q, n)}\right)} . \tag{14.14}
\end{equation*}
$$

Proof. For convenience, we write

$$
\begin{equation*}
R_{q}(n):=\mu\left(\frac{q}{(q, n)}\right) \frac{\phi(q)}{\phi\left(\frac{q}{(q, n)}\right)} . \tag{14.15}
\end{equation*}
$$

Let $n$ be an arbitrary positive integer. Note that $c_{1}(n)=R_{1}(n)$. Also, let $s$ and $t$ be such that $(s, t)=1$. Then $(s t, n)=(s, n)(t, n)$ and $\left(\frac{s}{(s, n)}, \frac{t}{(t, n)}\right)=1$. Thus,

$$
R_{s t}(n)=\mu\left(\frac{s t}{(s t, n)}\right) \frac{\phi(s t)}{\phi\left(\frac{s t}{(s t, n)}\right)}=\mu\left(\frac{s}{(s, n)}\right) \mu\left(\frac{t}{(t, n)}\right) \frac{\phi(s) \phi(t)}{\phi\left(\frac{s}{(s, n)}\right) \phi\left(\frac{t}{(t, n)}\right)}=R_{s}(n) R_{t}(n)
$$

Recalling (14.12), it suffices to prove for prime powers $p^{\alpha}$ that $c_{p^{\alpha}}(n)=R_{p^{\alpha}}(n)$. Finally, it is straightforward to calculate from (14.13) and (14.15) that

$$
c_{p^{\alpha}}(n)=R_{p^{\alpha}}(n)= \begin{cases}p^{\alpha-1}(p-1) & \text { if }\left(p^{\alpha}, n\right)=p^{\alpha} \\ -p^{\alpha-1} & \text { if }\left(p^{\alpha}, n\right)=p^{\alpha-1} \\ 0 & \text { otherwise }\end{cases}
$$

The desired relation holds true.

