14. Mobius inversion formula

14.1 Mobius inversion formula

The pair of relations (13.4) and (13.5), and the pair of relations (13.6) and (13.8) are
indeed special cases of a general phenomenon, known as the Mdbius inversion formula.

Theorem 14.1 (Mébius Inversion Formula). Let f(n) and g(n) be arithmetic functions. If

g(n) =) f(d) (14.1)
din
then
=Y u@dg(2), 14.2
o) =L ) (%) (14.2)

and vice versa.

R ) In (13.4) and (13.5), we have f = ¢ and g =id; in (13.6) and (13.8), we have f = A
and g =log.

Proof. We first prove (14.2) by (14.1). Note that
Yus(5) =Lu@ ¥ f@)= ¥ udf(d)

dln din a\y dd
dd'|n

=Y @) Lol = Y fd)e () = (n).
d'|n d|% d'|n

where we make use of (13.3). Conversely, to show (14.1) from (14.2), we first require the
trivial fact that for any arithmetic function a(n),

ald)=Ya(2).
L) =La(3)
Rewriting (14.2) as

fm =Y u(5)s@,

d|n
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it follows that

Y.r() Zf<>22u(”>g = L u(gg) s

d|n d|n dlnd'| dd'
dd'|n
d/
d'|n d|% d\n d\d, d/|n

where (13.3) is also applied. [

There is a slightly different type of Mobius inversion formula working for functions

defined on real x > 0. Below, in the summation ), ., the index n runs over all positive
integers no larger than x.

Theorem 14.2 Let F(x) and G(x) be functions defined on real x > 0. If

ZF( ) (14.3)

n<x

then

=Y un ( ) (14.4)

n<x

and vice versa.

Proof. We first prove (14.4) by (14.3). Note that

¥ uG (%) = Lu L (L) = ¥ uoor ()

n<x n<x m<E m,n mn
mn<x
(with N = mn) ZF( )Zu ): ZF(i)S(N)_F(X)
N<x n|N N<x N

Conversely, to show (14.3) from (14.4), we have

Lr(;) =L L umo ()= %

1
=
3
Q
/N
‘x
N—

) mn
mn<x
X X
(with N=mn) = G ‘U E(N) =G(x),
£ 6(3) K- 50(5)eon -

as required.

14.2 Multiplicative Mobius inversion formula

Another important variant of Mébius inversion formula is in the multiplicative notation

Theorem 14.3 Let f(n) and g(n) be arithmetic functions such that f(n)# 0 and g(n) #0
for all n. If

=[1r@) (14.5)

dln
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then

~T1¢ ( ) : (14.6)

dln

and vice versa.

Proof. We first prove (14.6) by (14.5). Note that

Hg( ) H(Hfd/> —HHfd’ :HHf(df)u(d)

d|n dn ! dlnd'|% d'|nd| %
Z "
=[Tr@)™& ™" =A@ = fn).
d'|n d'|n

Conversely, to show (14.5) from (14.6), we have

[17@ =117 (5) = [[Te@* (%) = [T Tata )

din dn dind'|§ d'|nd| %

—TTet@)="% ”(T> = TTst@)=#"" = TTa(@)=*) = g(n),

d'|n d'n d'|n
as required. [

R ) Intuitively, for positive-valued f and g, we may define f(n) =logf(n) and g(n) =
logg(n). By taking logarithm in (14.5) and (14.6), their equivalence becomes

s =Y (@) = =Y u@z(3):

din din

which is exactly the usual Mobius inversion formula.

Dirichlet convolutions

The Mobius inversion formula can be further understood in a more abstract way, through
Dirichlet convolutions, named after the German mathematician Peter Gustav Lejeune
Dirichlet.
Definition 14.1 For arithmetic functions f and g, their Dirichlet convolution is defined
to be an arithmetic function h with

=L ra(g):

din
where the summation runs over all positive divisors of n. We write
h=fxg.

Dirichlet convolutions satisfy the following algebraic properties.

Theorem 14.4 For any arithmetic functions u, v and w, we have

(i) uxv=v*u (commutative law);
(i) (uxv)*xw=ux(vxw) (associative law).
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Proof. 1t is straightforward to verify that

(uxv)(n) = (vxu)(n) = Z u(a)v(b)

a,b
ab=n
and
((u * V) * w) (n) = (u (v * w)) (n) = Z u(a)v(b)w(c),
b,
aben
where a, b and ¢ run over positive integers. |

Theorem 14.5 Let € be the unit function. For any arithmetic function f, we have

fre=€exf=f.

Proof. We have
(rx&)m) =Y r(de (5) = f(n),

d|n

as required. [

Theorem 14.6 Let f be an arithmetic function with f(1) # 0. Then there exists a unique
arithmetic function g such that fxg = g* f = €. Moreover, g is given by

b

0 (14.7)

g(1)=

and for n > 1,

:_§f( ) (d). (14.8)
d<n

Proof. First, we note that (fxg)(1) = f(1)g(1) =¢€(1) =1 gives g(1) =1/f(1). For n > 1,
we have €(n) =0, and hence,

= (Fr8)(n) = (g+N0) = L f () #(@) = F1)slo)+ X £ (3) 8(@):
d<n

Hence, we may iteratively determine the unique g(n) by (14.8). [

Definition 14.2 Given an arithmetic function f with f(1) # 0, we call the unique arith-
metic function g such that f*xg = gx f = & the Dirichlet inverse of f, denoted by

g=r"

Theorem 14.7 For any arithmetic functions with f(1) # 0 and g(1) # 0, we have (f
g =f"lxgl.

Proof. We have (f+g)*(f'*xg )= (fxfx*(gxg™ ') =exe =g, as required. [ |

R ) Inthe language of group theory, the set of arithmetic functions f with f(1) # 0 forms
an Abelien group with respect to the operation “x” (Dirichlet convolution), and the
identity element of this group is the unit functlon €.
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Corollary 14.8 The Mobius function u and the constant function 1 are Dirichlet inverses
of one another.

Proof. We simply rewrite the relation (13.3), ¥4, t(d) = &(n), in terms of Dirichlet con-
volution, and find that u*1 = €, yielding the desired result. |

R ) We may also interpret the Mobius inversion formula in this setting by noting that it
is exactly the equivalence

g=fx*1 <= f=gxU.
This is trivial since if g = f*1, then gxpu = (f*x1)xu = fx(u*x1) = fxe=f; and if
f=gxu, then fx1=(gxpu)x1=gx(uxl)=gxe=g.

Now, we consider Dirichlet convolutions on multiplicative functions.

Theorem 14.9 If f and g are multiplicative functions, so is their Dirichlet convolution

fxg.

Proof. We write h = fxg. Let m and n be positive integers with (m,n) = 1. We use the
fact that if d | mn, then we may uniquely write d = ab with a | m and b | n. In particular,
(a,b)=1and (%,7)=1. Now,

ST s = T s = T ssos(T)a )

d|mn alm,bn alm,bln
=Y r@g (% )Zf ¢ () = hmh(n).
alm
Hence, h = f * g is multiplicative. |

Theorem 14.10 If f is a multiplicative function, so is its Dirichlet inverse f~!.

Proof. Noting that f is multiplicative, we have f(1) =1, and hence f~!(1) = ﬁ =1. Now
we shall show that for every positive integer N, f~1(N) = f~!(m)f~'(n) holds true for any
positive integers m and n with (m,n) =1 and mn = N. We prove by induction on N. The
base case N = 1 is confirmed by the fact that f~!'(1) = 1. Assume that the claim is true

for 1,...,N —1 for some N > 2, and we shall prove the case of N. Note that

W)= (F)lmm) = ¥ ab)f (2

alm,b|n

=/ W+ Y 1 (b)

alm,b|n
ab<N

ntuc asumy = £ (D) + Y 7 @) o0 (2) 7 (1)

a\zmbll\;l a b
= ) () = wrmrm+ Yot e (2) 1 (5)

alm,bn
= W) = m) N )+ (T ) m) (F ) ()
=" N) = f (m)f () +e(N),

thereby implying that f~'(N) = f~!(m)f~'(n), as required. [
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The set of multiplicative functions is a subgroup of the group of all arithmetic
functions f with f(1) #0.

14.4 Ramanujan’s sums

We first adopt a conventional nonation in analytic number theory.
Definition 14.3 For any complex T, we define

e(7):= 2T,

Now, we introduce Ramanujan’s sums, which is crucial in, for instance, the proof of
I. M. Vinogradov’s theorem (Recueil Math. 2 (1937), 179-195) that every sufficiently large
odd number is the sum of three primes.
Definition 14.4 For g and n positive integers, Ramanujan’s sums are defined by

an
cq(n) = Z e<>.
1<a<qg \ 4
(a.q)=1

Ramanujan’s sums were introduced by Srinivasa Ramanujan (Trans. Cambridge
Philos. Soc. 22 (1918), no. 13, 259-276).

We introduce another sum for ¢ and n positive integers:

nen):= Y e ("”)

1<a<q \ 4

Lemma 14.11 For positive integers g and n,

Ta(n) = {g o (149

In particular, for positive integers s and ¢ with (s,#) = 1, we have 1n,(n)n,(n) = Ny (n).

Proof. Let d = (q,n), and write ¢ = ¢'d and n = n'd. Noting that (¢’,n') = 1, we have
{an’ : 1 <a < ¢'} covers a complete system modulo ¢'. Now,

an an’ an’ a
o L o(2) w5 (2 (%) 0
1<a<q q 1<a<q'd q 1<a<q q 1<a<q q

Note that
Z <a> 1 ifgd =1,
e —_— =
1oy \4 0 ifg >1.

Finally, we use the fact that ¢’ =1 if and only if ¢ =d = (g,n), or g | n, as desired. The
second part is a direct consequence of (14.9). [

Now, we establish a relation between c,(n) and ng(n).
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Theorem 14.12 For positive integers ¢ and n,

My(n) = Y. caln). (14.10)

dlq

Proof. We use the fact that {{ :1<a< q} = Ud|q{§ :1<b<dand (b,d) =1}, by simpli-
fying each g to its irreducible form. Hence,

an bn

el — | = el — |,

léaz:Sq ( q > %széd < d )
(bd)=1

as required. [

Let us treat n,(n) and c,(n) as functions in ¢ with n fixed, and define H(q) := ny(n)
and C(q) := cq4(n) for clarity. Then we may paraphrase (14.10) as

H=Cx1. (14.11)

Corollary 14.13 Let n be a positive integer. For positive integers s and ¢t with (s,7) =1,

cs(n)ei(n) = cy(n). (14.12)

Proof. We use Theorems 14.9 and 14.10 by noting that both H and 1 are multiplicative. W

Corollary 14.14 For positive integers g and n,

cem) =Y u(g) d. (14.13)

d|g.d|n

Proof. We apply Mébius inversion formula to (14.11), and find that

¢g(m) =Y p () man).

dlq

The desired relation follows with recourse to (14.9). [

Theorem 14.15 For positive integers ¢ and n,

cq(n) = <( d ) . 29 (14.14)

Proof. For convenience, we write

o q ¢(q)
Ry(n):=pu <(q’n)> , . (14.15)

Let n be an arbitrary positive integer. Note that ¢;(n) = Rj(n). Also, let s and ¢ be such

that (s,z) = 1. Then (st,n) = (s,n)(¢,n) and ((SST)’(IIT)) = 1. Thus,

Ralr) =1 ((srs,tn>>¢(€(z)> - <(S,Sn)>u ((rfm)q,( f(s))j,(g)f) = Re(m)Ri(m)
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Recalling (14.12), it suffices to prove for prime powers p* that c,«(n) = Ry« (n). Finally, it
is straightforward to calculate from (14.13) and (14.15) that

pail(p_l) if (paan):paa
a—1 a—1

cpe(n) =Rpe(n) = —p if (p%,n) =p*~",
0 otherwise.

The desired relation holds true. [ |



