
14. Möbius inversion formula

14.1 Möbius inversion formula
The pair of relations (13.4) and (13.5), and the pair of relations (13.6) and (13.8) are
indeed special cases of a general phenomenon, known as the Möbius inversion formula.

Theorem 14.1 (Möbius Inversion Formula). Let f (n) and g(n) be arithmetic functions. If

g(n) = ∑
d|n

f (d) (14.1)

then

f (n) = ∑
d|n

µ(d)g
(n

d

)
, (14.2)

and vice versa.

R In (13.4) and (13.5), we have f = ϕ and g = id; in (13.6) and (13.8), we have f = Λ
and g = log.

Proof. We first prove (14.2) by (14.1). Note that

∑
d|n

µ(d)g
(n

d

)
= ∑

d|n
µ(d) ∑

d′| n
d

f (d′) = ∑
d,d′

dd′|n

µ(d) f (d′)

= ∑
d′|n

f (d′) ∑
d| n

d′

µ(d) = ∑
d′|n

f (d′)ε
( n

d′

)
= f (n),

where we make use of (13.3). Conversely, to show (14.1) from (14.2), we first require the
trivial fact that for any arithmetic function a(n),

∑
d|n

a(d) = ∑
d|n

a
(n

d

)
.

Rewriting (14.2) as
f (n) = ∑

d|n
µ
(n

d

)
g(d),
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it follows that

∑
d|n

f (d) = ∑
d|n

f
(n

d

)
= ∑

d|n
∑
d′| n

d

µ
(

n/d
d′

)
g(d′) = ∑

d,d′

dd′|n

µ
( n

dd′

)
g(d′)

= ∑
d′|n

g(d′) ∑
d| n

d′

µ
(

n/d′

d

)
= ∑

d′|n
g(d′) ∑

d| n
d′

µ(d) = ∑
d′|n

g(d′)ε
( n

d′

)
= g(n),

where (13.3) is also applied. ■

There is a slightly different type of Möbius inversion formula working for functions
defined on real x > 0. Below, in the summation ∑n≤x, the index n runs over all positive
integers no larger than x.

Theorem 14.2 Let F(x) and G(x) be functions defined on real x > 0. If

G(x) = ∑
n≤x

F
( x

n

)
(14.3)

then

F(x) = ∑
n≤x

µ(n)G
( x

n

)
, (14.4)

and vice versa.

Proof. We first prove (14.4) by (14.3). Note that

∑
n≤x

µ(n)G
( x

n

)
= ∑

n≤x
µ(n) ∑

m≤ x
n

F
(

x/n
m

)
= ∑

m,n
mn≤x

µ(n)F
( x

mn

)
(with N = mn) = ∑

N≤x
F
( x

N

)
∑
n|N

µ(n) = ∑
N≤x

F
( x

N

)
ε(N) = F(x).

Conversely, to show (14.3) from (14.4), we have

∑
n≤x

F
( x

n

)
= ∑

n≤x
∑

m≤ x
n

µ(m)G
(

x/n
m

)
= ∑

m,n
mn≤x

µ(m)G
( x

mn

)
(with N = mn) = ∑

N≤x
G
( x

N

)
∑
m|N

µ(m) = ∑
N≤x

G
( x

N

)
ε(N) = G(x),

as required. ■

14.2 Multiplicative Möbius inversion formula
Another important variant of Möbius inversion formula is in the multiplicative notation.

Theorem 14.3 Let f (n) and g(n) be arithmetic functions such that f (n) ̸= 0 and g(n) ̸= 0
for all n. If

g(n) = ∏
d|n

f (d) (14.5)
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then

f (n) = ∏
d|n

g
(n

d

)µ(d)
, (14.6)

and vice versa.

Proof. We first prove (14.6) by (14.5). Note that

∏
d|n

g
(n

d

)µ(d)
= ∏

d|n

(
∏
d′| n

d

f (d′)

)µ(d)
= ∏

d|n
∏
d′| n

d

f (d′)µ(d) = ∏
d′|n

∏
d| n

d′

f (d′)µ(d)

= ∏
d′|n

f (d′)
∑d| n

d′
µ(d)

= ∏
d′|n

f (d′)ε(n/d′) = f (n).

Conversely, to show (14.5) from (14.6), we have

∏
d|n

f (d) = ∏
d|n

f
(n

d

)
= ∏

d|n
∏
d′| n

d

g(d′)
µ
(

n/d
d′

)
= ∏

d′|n
∏
d| n

d′

g(d′)µ( n
dd′ )

= ∏
d′|n

g(d′)
∑d| n

d′
µ
(

n/d′
d

)
= ∏

d′|n
g(d′)

∑d| n
d′

µ(d)
= ∏

d′|n
g(d′)ε(n/d′) = g(n),

as required. ■

R Intuitively, for positive-valued f and g, we may define f̃ (n) = log f (n) and g̃(n) =
logg(n). By taking logarithm in (14.5) and (14.6), their equivalence becomes

g̃(n) = ∑
d|n

f̃ (d) ⇐⇒ f̃ (n) = ∑
d|n

µ(d)g̃
(n

d

)
,

which is exactly the usual Möbius inversion formula.

14.3 Dirichlet convolutions
The Möbius inversion formula can be further understood in a more abstract way, through
Dirichlet convolutions, named after the German mathematician Peter Gustav Lejeune
Dirichlet.

Definition 14.1 For arithmetic functions f and g, their Dirichlet convolution is defined
to be an arithmetic function h with

h(n) = ∑
d|n

f (d)g
(n

d

)
,

where the summation runs over all positive divisors of n. We write

h = f ∗g.

Dirichlet convolutions satisfy the following algebraic properties.

Theorem 14.4 For any arithmetic functions u, v and w, we have
(i) u∗ v = v∗u (commutative law);
(ii) (u∗ v)∗w = u∗ (v∗w) (associative law).
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Proof. It is straightforward to verify that

(u∗ v)(n) = (v∗u)(n) = ∑
a,b

ab=n

u(a)v(b)

and (
(u∗ v)∗w

)
(n) =

(
u∗ (v∗w)

)
(n) = ∑

a,b,c
abc=n

u(a)v(b)w(c),

where a, b and c run over positive integers. ■

Theorem 14.5 Let ε be the unit function. For any arithmetic function f , we have
f ∗ ε = ε ∗ f = f .

Proof. We have
( f ∗ ε)(n) = ∑

d|n
f (d)ε

(n
d

)
= f (n),

as required. ■

Theorem 14.6 Let f be an arithmetic function with f (1) ̸= 0. Then there exists a unique
arithmetic function g such that f ∗g = g∗ f = ε. Moreover, g is given by

g(1) =
1

f (1)
(14.7)

and for n > 1,

g(n) =− 1
f (1) ∑

d|n
d<n

f
(n

d

)
g(d). (14.8)

Proof. First, we note that ( f ∗g)(1) = f (1)g(1) = ε(1) = 1 gives g(1) = 1/ f (1). For n > 1,
we have ε(n) = 0, and hence,

0 = ( f ∗g)(n) = (g∗ f )(n) = ∑
d|n

f
(n

d

)
g(d) = f (1)g(n)+ ∑

d|n
d<n

f
(n

d

)
g(d).

Hence, we may iteratively determine the unique g(n) by (14.8). ■

Definition 14.2 Given an arithmetic function f with f (1) ̸= 0, we call the unique arith-
metic function g such that f ∗ g = g ∗ f = ε the Dirichlet inverse of f , denoted by
g = f−1.

Theorem 14.7 For any arithmetic functions with f (1) ̸= 0 and g(1) ̸= 0, we have ( f ∗
g)−1 = f−1 ∗g−1.

Proof. We have ( f ∗g)∗ ( f−1 ∗g−1) = ( f ∗ f−1)∗ (g∗g−1) = ε ∗ ε = ε, as required. ■

R In the language of group theory, the set of arithmetic functions f with f (1) ̸= 0 forms
an Abelien group with respect to the operation “∗” (Dirichlet convolution), and the
identity element of this group is the unit function ε.
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Corollary 14.8 The Möbius function µ and the constant function 1 are Dirichlet inverses
of one another.

Proof. We simply rewrite the relation (13.3), ∑d|n µ(d) = ε(n), in terms of Dirichlet con-
volution, and find that µ ∗1 = ε, yielding the desired result. ■

R We may also interpret the Möbius inversion formula in this setting by noting that it
is exactly the equivalence

g = f ∗1 ⇐⇒ f = g∗µ.

This is trivial since if g = f ∗1, then g∗µ = ( f ∗1)∗µ = f ∗ (µ ∗1) = f ∗ ε = f ; and if
f = g∗µ, then f ∗1 = (g∗µ)∗1 = g∗ (µ ∗1) = g∗ ε = g.

Now, we consider Dirichlet convolutions on multiplicative functions.

Theorem 14.9 If f and g are multiplicative functions, so is their Dirichlet convolution
f ∗g.

Proof. We write h = f ∗ g. Let m and n be positive integers with (m,n) = 1. We use the
fact that if d | mn, then we may uniquely write d = ab with a | m and b | n. In particular,
(a,b) = 1 and (m

a ,
n
b) = 1. Now,

h(mn) = ∑
d|mn

f (d)g
(mn

d

)
= ∑

a|m,b|n
f (ab)g

(mn
ab

)
= ∑

a|m,b|n
f (a) f (b)g

(m
a

)
g
(n

b

)
= ∑

a|m
f (a)g

(m
a

)
∑
b|n

f (b)g
(n

b

)
= h(m)h(n).

Hence, h = f ∗g is multiplicative. ■

Theorem 14.10 If f is a multiplicative function, so is its Dirichlet inverse f−1.

Proof. Noting that f is multiplicative, we have f (1) = 1, and hence f−1(1) = 1
f (1) = 1. Now

we shall show that for every positive integer N, f−1(N) = f−1(m) f−1(n) holds true for any
positive integers m and n with (m,n) = 1 and mn = N. We prove by induction on N. The
base case N = 1 is confirmed by the fact that f−1(1) = 1. Assume that the claim is true
for 1, . . . ,N −1 for some N ≥ 2, and we shall prove the case of N. Note that

ε(N) = ( f−1 ∗ f )(mn) = ∑
a|m,b|n

f−1(ab) f
(mn

ab

)
= f−1(mn) f (1)+ ∑

a|m,b|n
ab<N

f−1(ab) f
(mn

ab

)
(induc. assump.) = f−1(mn) f (1)+ ∑

a|m,b|n
ab<N

f−1(a) f−1(b) f
(m

a

)
f
(n

b

)
= f−1(mn) f (1)− f−1(m) f−1(n) f (1) f (1)+ ∑

a|m,b|n
f−1(a) f−1(b) f

(m
a

)
f
(n

b

)
= f−1(N)− f−1(m) f−1(n)+( f−1 ∗ f )(m)( f−1 ∗ f )(n)

= f−1(N)− f−1(m) f−1(n)+ ε(N),

thereby implying that f−1(N) = f−1(m) f−1(n), as required. ■
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R The set of multiplicative functions is a subgroup of the group of all arithmetic
functions f with f (1) ̸= 0.

14.4 Ramanujan’s sums
We first adopt a conventional nonation in analytic number theory.

Definition 14.3 For any complex τ, we define

e(τ) := e2πiτ .

Now, we introduce Ramanujan’s sums, which is crucial in, for instance, the proof of
I. M. Vinogradov’s theorem (Recueil Math. 2 (1937), 179–195) that every sufficiently large
odd number is the sum of three primes.

Definition 14.4 For q and n positive integers, Ramanujan’s sums are defined by

cq(n) := ∑
1≤a≤q
(a,q)=1

e
(

an
q

)
.

R Ramanujan’s sums were introduced by Srinivasa Ramanujan (Trans. Cambridge
Philos. Soc. 22 (1918), no. 13, 259–276).

We introduce another sum for q and n positive integers:

ηq(n) := ∑
1≤a≤q

e
(

an
q

)
.

Lemma 14.11 For positive integers q and n,

ηq(n) =

{
q if q | n,
0 if q ∤ n.

(14.9)

In particular, for positive integers s and t with (s, t) = 1, we have ηs(n)ηt(n) = ηst(n).

Proof. Let d = (q,n), and write q = q′d and n = n′d. Noting that (q′,n′) = 1, we have
{an′ : 1 ≤ a ≤ q′} covers a complete system modulo q′. Now,

ηq(n) = ∑
1≤a≤q

e
(

an
q

)
= ηq(n) := ∑

1≤a≤q′d
e
(

an′

q′

)
= d ∑

1≤a≤q′
e
(

an′

q′

)
= d ∑

1≤a≤q′
e
(

a
q′

)
Note that

∑
1≤a≤q′

e
(

a
q′

)
=

{
1 if q′ = 1,
0 if q′ > 1.

Finally, we use the fact that q′ = 1 if and only if q = d = (q,n), or q | n, as desired. The
second part is a direct consequence of (14.9). ■

Now, we establish a relation between cq(n) and ηq(n).
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Theorem 14.12 For positive integers q and n,

ηq(n) = ∑
d|q

cd(n). (14.10)

Proof. We use the fact that {a
q : 1 ≤ a ≤ q}= ∪d|q{ b

d : 1 ≤ b ≤ d and (b,d) = 1}, by simpli-
fying each a

q to its irreducible form. Hence,

∑
1≤a≤q

e
(

an
q

)
= ∑

d|q
∑

1≤b≤d
(b,d)=1

e
(

bn
d

)
,

as required. ■

Let us treat ηq(n) and cq(n) as functions in q with n fixed, and define H(q) := ηq(n)
and C(q) := cq(n) for clarity. Then we may paraphrase (14.10) as

H =C ∗1. (14.11)

Corollary 14.13 Let n be a positive integer. For positive integers s and t with (s, t) = 1,

cs(n)ct(n) = cst(n). (14.12)

Proof. We use Theorems 14.9 and 14.10 by noting that both H and 1 are multiplicative. ■

Corollary 14.14 For positive integers q and n,

cq(n) = ∑
d|q,d|n

µ
(q

d

)
d. (14.13)

Proof. We apply Möbius inversion formula to (14.11), and find that

cq(n) = ∑
d|q

µ
(q

d

)
ηd(n).

The desired relation follows with recourse to (14.9). ■

Theorem 14.15 For positive integers q and n,

cq(n) = µ
(

q
(q,n)

)
ϕ(q)

ϕ
(

q
(q,n)

) . (14.14)

Proof. For convenience, we write

Rq(n) := µ
(

q
(q,n)

)
ϕ(q)

ϕ
(

q
(q,n)

) . (14.15)

Let n be an arbitrary positive integer. Note that c1(n) = R1(n). Also, let s and t be such
that (s, t) = 1. Then (st,n) = (s,n)(t,n) and

( s
(s,n) ,

t
(t,n)

)
= 1. Thus,

Rst(n) = µ
(

st
(st,n)

)
ϕ(st)

ϕ
(

st
(st,n)

) = µ
(

s
(s,n)

)
µ
(

t
(t,n)

)
ϕ(s)ϕ(t)

ϕ
(

s
(s,n)

)
ϕ
(

t
(t,n)

) = Rs(n)Rt(n).
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Recalling (14.12), it suffices to prove for prime powers pα that cpα (n) = Rpα (n). Finally, it
is straightforward to calculate from (14.13) and (14.15) that

cpα (n) = Rpα (n) =


pα−1(p−1) if (pα ,n) = pα ,

−pα−1 if (pα ,n) = pα−1,

0 otherwise.

The desired relation holds true. ■


