13. Arithmetic functions

13.1 Arithmetic functions

In the previous lectures, we have witnessed functions like the “sum-of-squares” functions
ri(n) that are defined on the positive integers. Such functions are of particular interest in
the study of number theory.

Definition 13.1 An arithmetic function is a complex-valued function that is defined on
I the positive integers.

r) In G. H. Hardy and E. M. Wright’s Introduction, they also include in their definition
the requirement that an arithmetical function “expresses some arithmetical property
of n

Recall that we have also encountered multiplicative functions such as Euler’s totient
function ¢ (n).
Definition 13.2 An arithmetic function f is
(i) multiplicative if f(1) =1 and f(mn) = f(m)f(n) for all positive integers m and n

with (m,n) =1,
(ii) completely multiplicative if f(1) =1 and f(mn) = f(m)f(n) for all positive integers
m and n.

Analogously, we may replace the above multiplicative condtion with an additive con-
dition.
Definition 13.3 An arithmetic function f is
(i) additive if f(mn) = f(m)+ f(n) for all positive integers m and n with (m,n) = 1;
(ii) completely additive if f(mn) = f(m)+ f(n) for all positive integers m and n.

We list here several simple but important arithmetic functions:
> the constant function 1(n), defined by 1(n) =1 for all n — completely multiplicative;
the identity function id(n), defined by id(n) = n for all n — completely multiplicative;
> the unit function €(n), defined by €(n) =1 if n =1, and 0 otherwise — completely
multiplicative;
> the function Q(n), defined by the total number of prime factors of n (e.g. Q(1) =0,
Q2)=1, Q4) =2, Q(6) =2, Q(12) =3, etc.) — completely additive;
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> the function @(n), defined by the number of distinct prime factors of n (e.g. @(1) =0,
02)=1,04)=1, 0(6) =2, ®(12) =2, etc.) — additive.

13.2 Divisor functions

Definition 13.4 For real or complex s, the divisor functions are defined o,(n) by

o,(n) := Y ",

dn

where the summation runs over all positive divisors of n. In particular, we define

d(n) =op(n) =) 1 and o(n)=o0i(n)=Y4d.

dln d|n

Theorem 13.1 Let n= p‘f‘1 -+« p% be in the canonical form. Then

r

d(n) =[J(ax+1) (13.1)

k=1
and for s # 0,

7 pl((ak+1)s 1
k=1 Pk

Proof. Noting that all divisors of n are of the form p}’ ~-p£3' with 0 < By < o for all k, we
have

r

(04} o
d|n Bi=0  B=0 k=1

We further get (13.1) and (13.2) by using the fact that 1+ p*+---+ p* equals o+ 1 if

(a+1)s _1 .
F— Lif 5£0. u

s =0, and

Corollary 13.2 For any s, the divisor function oy(n) is multiplicative.

Proof. This is a direct implication of Theorem 13.1. |

13.3 Mobius function

Recall that w(n) counts by the number of distinct prime factors of n.

Definition 13.5 An positive integer n is squarefree if no squares other than 1 divide n;
I otherwise, we say n is squareful.

m Example 13.1 The first several squarefree integers are 1,2,3,5,6,7,10,11,... and the first
several squareful integers are 4,8,9,12,16,18,20,24... =

Definition 13.6 The Modbius function p(n) is defined by

(=1)®™ if n is squarefree,
H(n) = .
0 otherwise.
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The Mobius function was introduced by the German mathematician August Ferdi-
nand Moébius (J. Reine Angew. Math. 9 (1832), 105-123).

= Example 13.2 We have u(1)=1, u(2)=—1, u(3)=—1, u(4)=0, u(5) =-1, u(6) =1,
etc. L]

Theorem 13.3 The Mobius function p(n) is multiplicative. ‘

Proof. First, we have u(1) = 1. Let us assume that m and n are such that (m,n) = 1.
If one of m and n is squareful, so is mn, and hence p(mn) =0 = u(m)u(n). Further,
w(mn) = (—1)20m) = (—1)@m+00) — 4 (m)u(n) since w(n) is additive. [ |

Theorem 13.4 For n > 1,

Zu(d)—{l ifn=1, a9

Proof. The formula is trivial when n =1. For n > 1, we write n in the canonical form
n=p{"...p%. Note that if suffices to consider squarefree divisors d of n in the sum
Yajn 1t(d). We have

Yu(d)=pu()+p(p)+-+u(pr) +1(prip2) + -+ proape) +- o+ pu(prepr)

dln
()@ ee) oo

as required. [

R ) Recalling the definition of the unit function €, i.e., &(n) = 1 if n =1, and 0 otherwise,

we have
£(r) = L (e
d|n

Euler’s totient function revisited

Recall that Euler’s totient function ¢(n) was well studied in Sect. 4.2 and later lectures.
In particular, we know that ¢(n) is multiplicative. Also, we have shown in Theorem 4.5
that

Y ¢(d)=n. (13.4)

dln

Now, we establish a formula connecting FEuler’s totient function and the Md&bius function.

Theorem 13.5 Forn>1,

o(n) = L (). (13.5)

d|n
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Proof. By the definition of ¢ (n), we have, with (13.3) applied, that

n

S YCCOES NS WITES WITES 3 WIGES Wi
k=1 k=1d|(kn) k=1 Z’i d|nk o din

as required. [

Mangoldt function

In this part, we introduct the Mangoldt function A(n) which plays a crucial role in the
distribution of primes.

Definition 13.7 The Mangoldt function A(n) is defined by

Aln) {logp if n = p% with p a prime and o a positive integer,
n)=

0 otherwise.

R ) The Mangoldt function is named after the German mathematician Hans von Man-
goldt.

= Example 13.3 We have A(1) =0, A(2) =1log2, A(3) =log3, A(4) =log2, A(5) =log5,
A(6) =0, etc. .

The Mangoldt function A(n) is neither multiplicative nor additive, for A(6) # A(2)A(3)
and A(6) # A(2) +A(3).

Theorem 13.6 For n > 1,

logn = ZlA(d). (13.6)
d|n

Proof. The formula is trivial when n = 1. For n > 1, we write n in the canonical form
n=p{--p%. Then

r r r
Y A@d) =Y (A(pe) +A(pR) +- -+ Alp Z oy logpe = Y log pi* =logn,
dn k=1 k=1 k=1
as deseried. [ |

Theorem 13.7 Forn>1,

=—Y u(d)logd. (13.7)
d|n

Proof. The formula is trivial when n=1. Also, if n = p® with p a prime and @ a positive
integer, we have

— ) u(d)logd = —p(1)logl —p(p)logp =logp = A(p“).
d|p*

Now, we assume that n is written in the canonical form n= p{" --- p% with r >2. Then

—Zu(d)logd: Z log pi — Z logpip;

dn 1<i<r 1<i<j<r
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+ Y logpipjpi—--+(=1)""logpipa---pr.
1<i<j<k<r

Note that logxy = logx+1logy. We find that in the summation },;<,logp;, each logpy

appears 1 = (rgl) time; in the summation Y <; j<,log p;p;, each log py appears r—1 = (rzl)

times; in the summation Y, j<,logp;p;, each log py appears (rgl) times, etc. Hence,
! r—1 r—1 r—1 r—1
~ Y u(d)logd = — — e (=) 1
Suanosa =3 (")~ (7 )+ () e () Joen
|n (=1
r
= Z(l — 1)’*110gpg =0.

(=1

However, for n= p{'--- p% with r > 2, we also have A(n) =0 by definition. The desired
identity holds true. |

Corollary 13.8 Forn > 1,

A(n) :Zu(d)logg. (13.8)
d|n

Proof. Note that

Y u(d)log s = Y u(d)(logn —logd) = (togn) ¥ (d) = ¥ (d) logd.
din d|n din din

Since (logn) ¥ g, 1(d) =0 for n > 1 by (13.3), we arrive at the required result by recalling
(13.7). u



