
13. Arithmetic functions

13.1 Arithmetic functions
In the previous lectures, we have witnessed functions like the “sum-of-squares” functions
rk(n) that are defined on the positive integers. Such functions are of particular interest in
the study of number theory.

Definition 13.1 An arithmetic function is a complex-valued function that is defined on
the positive integers.

R In G. H. Hardy and E. M. Wright’s Introduction, they also include in their definition
the requirement that an arithmetical function “expresses some arithmetical property
of n.”

Recall that we have also encountered multiplicative functions such as Euler’s totient
function ϕ(n).

Definition 13.2 An arithmetic function f is
(i) multiplicative if f (1) = 1 and f (mn) = f (m) f (n) for all positive integers m and n

with (m,n) = 1;
(ii) completely multiplicative if f (1) = 1 and f (mn) = f (m) f (n) for all positive integers

m and n.

Analogously, we may replace the above multiplicative condtion with an additive con-
dition.

Definition 13.3 An arithmetic function f is
(i) additive if f (mn) = f (m)+ f (n) for all positive integers m and n with (m,n) = 1;
(ii) completely additive if f (mn) = f (m)+ f (n) for all positive integers m and n.

We list here several simple but important arithmetic functions:
▷ the constant function 1(n), defined by 1(n) = 1 for all n — completely multiplicative;
▷ the identity function id(n), defined by id(n) = n for all n — completely multiplicative;
▷ the unit function ε(n), defined by ε(n) = 1 if n = 1, and 0 otherwise — completely

multiplicative;
▷ the function Ω(n), defined by the total number of prime factors of n (e.g. Ω(1) = 0,

Ω(2) = 1, Ω(4) = 2, Ω(6) = 2, Ω(12) = 3, etc.) — completely additive;
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▷ the function ω(n), defined by the number of distinct prime factors of n (e.g. ω(1) = 0,
ω(2) = 1, ω(4) = 1, ω(6) = 2, ω(12) = 2, etc.) — additive.

13.2 Divisor functions
Definition 13.4 For real or complex s, the divisor functions are defined σs(n) by

σs(n) := ∑
d|n

ds,

where the summation runs over all positive divisors of n. In particular, we define

d(n) = σ0(n) = ∑
d|n

1 and σ(n) = σ1(n) = ∑
d|n

d.

Theorem 13.1 Let n = pα1
1 · · · pαr

r be in the canonical form. Then

d(n) =
r

∏
k=1

(ak +1) (13.1)

and for s ̸= 0,

σs(n) =
r

∏
k=1

p(ak+1)s
k −1

ps
k −1

. (13.2)

Proof. Noting that all divisors of n are of the form pβ1
1 · · · pβr

r with 0 ≤ βk ≤ αk for all k, we
have

σs(n) = ∑
d|n

ds =
α1

∑
β1=0

· · ·
αr

∑
βr=0

(
pβ1

1 · · · pβr
r
)s

=
r

∏
k=1

(
1+ ps

k + p2s
k + · · ·+ pαks

k

)
.

We further get (13.1) and (13.2) by using the fact that 1+ ps + · · ·+ pαs equals α + 1 if
s = 0, and p(α+1)s−1

p−1 if s ̸= 0. ■

Corollary 13.2 For any s, the divisor function σs(n) is multiplicative.

Proof. This is a direct implication of Theorem 13.1. ■

13.3 Möbius function
Recall that ω(n) counts by the number of distinct prime factors of n.

Definition 13.5 An positive integer n is squarefree if no squares other than 1 divide n;
otherwise, we say n is squareful.

■ Example 13.1 The first several squarefree integers are 1,2,3,5,6,7,10,11, . . . and the first
several squareful integers are 4,8,9,12,16,18,20,24 . . . ■

Definition 13.6 The Möbius function µ(n) is defined by

µ(n) =

{
(−1)ω(n) if n is squarefree,
0 otherwise.



13.4 Euler’s totient function revisited 81

R The Möbius function was introduced by the German mathematician August Ferdi-
nand Möbius (J. Reine Angew. Math. 9 (1832), 105–123).

■ Example 13.2 We have µ(1) = 1, µ(2) =−1, µ(3) =−1, µ(4) = 0, µ(5) =−1, µ(6) = 1,
etc. ■

Theorem 13.3 The Möbius function µ(n) is multiplicative.

Proof. First, we have µ(1) = 1. Let us assume that m and n are such that (m,n) = 1.
If one of m and n is squareful, so is mn, and hence µ(mn) = 0 = µ(m)µ(n). Further,
µ(mn) = (−1)ω(mn) = (−1)ω(m)+ω(n) = µ(m)µ(n) since ω(n) is additive. ■

Theorem 13.4 For n ≥ 1,

∑
d|n

µ(d) =

{
1 if n = 1,
0 if n > 1.

(13.3)

Proof. The formula is trivial when n = 1. For n > 1, we write n in the canonical form
n = pα1

1 · · · pαr
r . Note that if suffices to consider squarefree divisors d of n in the sum

∑d|n µ(d). We have

∑
d|n

µ(d) = µ(1)+µ(p1)+ · · ·+µ(pr)+µ(p1 p2)+ · · ·+µ(pr−1 pr)+ · · ·+µ(p1 · · · pr)

=

(
r
0

)
−
(

r
1

)
+

(
r
2

)
+ · · ·+(−1)r

(
r
r

)
= (1−1)r = 0,

as required. ■

R Recalling the definition of the unit function ε, i.e., ε(n) = 1 if n = 1, and 0 otherwise,
we have

ε(n) = ∑
d|n

µ(d).

13.4 Euler’s totient function revisited
Recall that Euler’s totient function ϕ(n) was well studied in Sect. 4.2 and later lectures.
In particular, we know that ϕ(n) is multiplicative. Also, we have shown in Theorem 4.5
that

∑
d|n

ϕ(d) = n. (13.4)

Now, we establish a formula connecting Euler’s totient function and the Möbius function.

Theorem 13.5 For n ≥ 1,

ϕ(n) = ∑
d|n

µ(d)
n
d
. (13.5)
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Proof. By the definition of ϕ(n), we have, with (13.3) applied, that

ϕ(n) =
n

∑
k=1

ε
(
(k,n)

)
=

n

∑
k=1

∑
d|(k,n)

µ(d) =
n

∑
k=1

∑
d|k
d|n

µ(d) = ∑
d|n

n

∑
k=1
d|k

µ(d) = ∑
d|n

µ(d)
n
d
,

as required. ■

13.5 Mangoldt function
In this part, we introduct the Mangoldt function Λ(n) which plays a crucial role in the
distribution of primes.

Definition 13.7 The Mangoldt function Λ(n) is defined by

Λ(n) =

{
log p if n = pα with p a prime and α a positive integer,
0 otherwise.

R The Mangoldt function is named after the German mathematician Hans von Man-
goldt.

■ Example 13.3 We have Λ(1) = 0, Λ(2) = log2, Λ(3) = log3, Λ(4) = log2, Λ(5) = log5,
Λ(6) = 0, etc. ■

R The Mangoldt function Λ(n) is neither multiplicative nor additive, for Λ(6) ̸=Λ(2)Λ(3)
and Λ(6) ̸= Λ(2)+Λ(3).

Theorem 13.6 For n ≥ 1,

logn = ∑
d|n

Λ(d). (13.6)

Proof. The formula is trivial when n = 1. For n > 1, we write n in the canonical form
n = pα1

1 · · · pαr
r . Then

∑
d|n

Λ(d) =
r

∑
k=1

(
Λ(pk)+Λ(p2

k)+ · · ·+Λ(pαk
k )
)
=

r

∑
k=1

αk log pk =
r

∑
k=1

log pαk
k = logn,

as deseried. ■

Theorem 13.7 For n ≥ 1,

Λ(n) =−∑
d|n

µ(d) logd. (13.7)

Proof. The formula is trivial when n = 1. Also, if n = pα with p a prime and α a positive
integer, we have

− ∑
d|pα

µ(d) logd =−µ(1) log1−µ(p) log p = log p = Λ(pα).

Now, we assume that n is written in the canonical form n = pα1
1 · · · pαr

r with r ≥ 2. Then

−∑
d|n

µ(d) logd = ∑
1≤i≤r

log pi − ∑
1≤i< j≤r

log pi p j
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+ ∑
1≤i< j<k≤r

log pi p j pk −·· ·+(−1)r−1 log p1 p2 · · · pr.

Note that logxy = logx+ logy. We find that in the summation ∑1≤i≤r log pi, each log pℓ
appears 1=

(r−1
0

)
time; in the summation ∑1≤i< j≤r log pi p j, each log pℓ appears r−1=

(r−1
1

)
times; in the summation ∑1≤i< j≤r log pi p j, each log pℓ appears

(r−1
2

)
times, etc. Hence,

−∑
d|n

µ(d) logd =
r

∑
ℓ=1

((
r−1

0

)
−
(

r−1
1

)
+

(
r−1

2

)
−·· ·+(−1)r−1

(
r−1
r−1

))
log pℓ

=
r

∑
ℓ=1

(1−1)r−1 log pℓ = 0.

However, for n = pα1
1 · · · pαr

r with r ≥ 2, we also have Λ(n) = 0 by definition. The desired
identity holds true. ■

Corollary 13.8 For n ≥ 1,

Λ(n) = ∑
d|n

µ(d) log
n
d
. (13.8)

Proof. Note that

∑
d|n

µ(d) log
n
d
= ∑

d|n
µ(d)

(
logn− logd

)
= (logn)∑

d|n
µ(d)−∑

d|n
µ(d) logd.

Since (logn)∑d|n µ(d) = 0 for n ≥ 1 by (13.3), we arrive at the required result by recalling
(13.7). ■


