10. Integer partitions

10.1 Integer partitions

Integer partitions can be seen as a twin sibling of compositions.

Definition 10.1 An *integer partition* or a *partition* of an integer n is a way of writing n as the sum of a sequence of positive integers, and the order of these summands does *not* matter. We usually denote by p(n) the number of partitions of n, and call p(n) the *partition function*.

R Since for a partition $\lambda = (\lambda_1, \lambda_2, ..., \lambda_{\ell})$ of *n*, the order of these positive integers does not matter, we usually assume that they are in **weakly decreasing** order $\lambda_1 \ge \lambda_2 \ge$ $\dots \ge \lambda_{\ell}$, as a representative. We also often write a partition as $\lambda = \lambda_1 + \lambda_2 + \dots + \lambda_{\ell}$.

Example 10.1 There are five partitions of 4, namely, 4, 3+1, 2+2, 2+1+1 and 1+1+1+1. Therefore, p(5) = 4.

Definition 10.2 Given a partition $\lambda = (\lambda_1, \lambda_2, ..., \lambda_\ell)$ of n, usually written as $\lambda \vdash n$, we call each λ_i a part of λ ; call $n = \lambda_1 + \lambda_2 + \cdots + \lambda_\ell$ the size of λ , denoted by $|\lambda|$; and call the number ℓ of parts the *length* of λ , denoted by $\ell(\lambda)$.

R We assume that 0 has an empty partition, written as \emptyset , and thus p(0) = 1. For the empty partition \emptyset , we have $|\emptyset| = 0$ and $\ell(\emptyset) = 0$.

10.2 Generating function for partitions

Another convenient way to represent partitions is through the *frequency notation*. Given a partition λ , for each positive integer *i*, we may count the number f_i of occurrences of *i* among the parts in λ , and we call f_i the frequency of *i*. Hence, we may represent λ in the frequency notation $1^{f_1}2^{f_2}3^{f_3}\cdots$, and we often omit the integers whose frequency is zero.

Example 10.2 The partition 6+6+5+3+3+3+2+1+1+1+1+1 has the frequency notation $6^25^13^32^11^5$.

When using the frequency notation, it is necessary to avoid confusion with products of powers.

Taking advantage the frequency notation, it is easy to determine the generating function of p(n).

Theorem 10.1 Let $p_{\leq N}(n)$ count the number of partitions of *n* with largest part at most *N*. We have

$$\sum_{n\geq 0} p_{\leq N}(n)q^n = \prod_{k=1}^N \frac{1}{1-q^k}.$$
(10.1)

Proof. We expand the multiplicand

$$\frac{1}{1-q^k} = 1 + q^k + q^{2k} + q^{3k} + \dots = q^{0\cdot k} + q^{1\cdot k} + q^{2\cdot k} + q^{3\cdot k} + \dots$$

Hence, each term $q^{f_k \cdot k}$ enumerates the case where the frequency of k is f_k for f_k a nonnegative integer. Further, if we expand the infinite product $\prod_{k=1}^{N} \frac{1}{1-q^k}$, its terms are of the form $q^{f_1 \cdot 1+f_2 \cdot 2+\cdots+f_N \cdot N}$, corresponding to a unique partition with frequency notation $1^{f_1}2^{f_2}\cdots N^{f_N}$, which also restricts the largest part to be at most N.

Letting $N \to \infty$, we immediately see that the generating function of p(n) is given by an infinite product.

Theorem 10.2 We have

$$\sum_{n\geq 0} p(n)q^n = \prod_{k\geq 1} \frac{1}{1-q^k}.$$
(10.2)

We may also apply some additional restrictions to the parts.

Theorem 10.3 For any positive integers $0 < a \le m$, let $p_{a,m}(n)$ count the number of partitions of n with parts congruent to a modulo m. We have

$$\sum_{n \ge 0} p_{a,m}(n)q^n = \prod_{k \ge 0} \frac{1}{1 - q^{km + a}}.$$
(10.3)

Proof. Note that

$$\sum_{n\geq 0} p_{a,m}(n)q^n = \prod_{k\geq 0} \left(q^{0\cdot(km+a)} + q^{1\cdot(km+a)} + q^{2\cdot(km+a)} + \cdots \right) = \prod_{k\geq 0} \frac{1}{1-q^{km+a}},$$

as required.

Theorem 10.4 For any positive integer s, let $p_{[s]}(n)$ count the number of partitions of n in which each distinct part appears at most s times, i.e., the frequency $f_k \leq s$ for each k. We have

$$\sum_{n\geq 0} p_{[s]}(n)q^n = \prod_{k\geq 1} \frac{1-q^{(s+1)k}}{1-q^k}.$$
(10.4)

Proof. Note that

$$\sum_{n\geq 0} p_{[s]}(n)q^n = \prod_{k\geq 1} \left(q^{0\cdot k} + q^{1\cdot k} + \dots + q^{s\cdot k} \right) = \prod_{k\geq 1} \frac{\left(1 - q^k\right) \left(1 + q + \dots + q^{s\cdot k}\right)}{1 - q^k} = \prod_{k\geq 1} \frac{1 - q^{(s+1)k}}{1 - q^k},$$

as required.

10.3 "Odd partitions" vs "Distinct partitions"

Definition 10.3 A partition is called an *odd partition* if all its parts are odd integers, and a partition is called an *even partition* if all its parts are even integers. We denote by $p_o(n)$ the number of odd partitions of n, and by $p_e(n)$ the number of even partitions of n.

Taking m = 2, and a = 1 and 2, respectively, in Theorem 10.3, we have the following generating function identities.

Theorem 10.5 We have

$$\sum_{n\geq 0} p_o(n)q^n = \prod_{k\geq 1} \frac{1}{1-q^{2k-1}},$$
(10.5)

$$\sum_{k\geq 0} p_e(n)q^n = \prod_{k\geq 1} \frac{1}{1-q^{2k}}.$$
(10.6)

Definition 10.4 A partition is called a *distinct partition* if all its parts are pairwise distinct. We denote by $p_D(n)$ the number of distinct partitions of n.

From the proof of Theorem 10.4 with s = 1, the following generating function identity holds true.

Theorem 10.6 We have

$$\sum_{n \ge 0} p_D(n) q^n = \prod_{k \ge 1} \left(1 + q^k \right).$$
(10.7)

Euler established a well-known result on odd partitions and distinct partitions.

Theorem 10.7 (Euler). For $n \ge 0$, we have $p_o(n) = p_D(n)$.

Proof. It suffices to show that $p_o(n)$ and $p_D(n)$ have the same generating function:

$$\sum_{n\geq 0} p_o(n)q^n = \prod_{k\geq 1} \frac{1}{1-q^{2k-1}} = \prod_{k\geq 1} \frac{1}{1-q^{2k-1}} \frac{1-q^{2k}}{1-q^{2k}} = \prod_{k\geq 1} \frac{1-q^{2k}}{1-q^k} = \prod_{k\geq 1} \left(1+q^k\right) = \sum_{n\geq 0} p_D(n)q^n,$$

as required.

10.4 Ferrers diagrams

We may also represent partitions in a graphical way.

Definition 10.5 A *Ferrers diagram* represents partitions as patterns of dots, with the *n*-th row having the same number of dots as the *n*-th part of the partition. If we replace these dots by squares, the graph is often called a *Young diagram*.

R Ferrers diagrams are named after the British mathematician Norman Macleod Ferrers, and Young diagrams are named after the British mathematician Alfred Young.

Example 10.3 The graphical representations of the partition 5+3+3+2+2+1 are given as follows — Ferrers diagram (left) and Young diagram (right):

Definition 10.6 Given a partition λ , its *conjugate partition*, denoted by λ^{T} , is the partition whose Ferrers diagram is obtained by fliping the diagram of λ along its main diagonal.

Theorem 10.8 Let p(N,n) count the number of partitions of n with at most N parts. We have

$$\sum_{n \ge 0} p(N,n)q^n = \prod_{k=1}^N \frac{1}{1-q^k}.$$
(10.8)

Proof. Note that for any partition with at most N parts, its conjugate is a partition with largest part at most N. Hence, $p(N,n) = p_{\leq N}(n)$. Recalling Theorem 10.1 gives the desired result.

10.5 Euler's summations

Note that the above generating functions are represented in the product form. Now, we introduce the q-Pochhammer symbols for notational brevity.

Definition 10.7 Let $q \in \mathbb{C}$ be such that |q| < 1. Let $n \in \mathbb{N}$. The *q*-Pochhammer symbols are given by

$$\begin{split} (A;q)_n &:= \prod_{k=0}^{n-1} (1 - Aq^k), \\ (A;q)_\infty &:= \prod_{k \ge 0} (1 - Aq^k). \end{split}$$

We first present refinements of Theorems 10.2 and 10.6.

Theorem 10.9 Let \mathscr{P} be the set of partitions and \mathscr{D} be the set of distinct partitions. We have

$$\sum_{\lambda \in \mathscr{P}} z^{\ell(\lambda)} q^{|\lambda|} = \frac{1}{(zq;q)_{\infty}},\tag{10.9}$$

$$\sum_{\lambda \in \mathscr{D}} z^{\ell(\lambda)} q^{|\lambda|} = (-zq;q)_{\infty}.$$
(10.10)

Proof. We have

$$\sum_{\lambda \in \mathscr{P}} z^{\ell(\lambda)} q^{|\lambda|} = \prod_{k \ge 1} \left(1 + zq^k + z^2 q^{2k} + \cdots \right) = \prod_{k \ge 1} \frac{1}{1 - zq^k} = \frac{1}{(zq;q)_{\infty}}$$

Similarly,

$$\sum_{\lambda \in \mathscr{D}} z^{\ell(\lambda)} q^{|\lambda|} = \prod_{k \ge 1} \left(1 + z q^k \right) = (-zq;q)_{\infty},$$

as required.

Now, our objective is two important summation formulas due to Euler.

Theorem 10.10 (Euler's Summations). We have

$$\sum_{k\geq 0} \frac{z^k q^k}{(q;q)_k} = \frac{1}{(zq;q)_{\infty}},\tag{10.11}$$

$$\sum_{k\geq 0} \frac{z^k q^{\frac{k(k+1)}{2}}}{(q;q)_k} = (-zq;q)_{\infty}.$$
(10.12)

Proof. For Euler's first summation, we consider partitions $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k) \in \mathscr{P}$ with exactly k parts. Then $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k \geq 1$. Now, we construct a new partition $\lambda' = (\lambda'_1, \lambda'_2, ..., \lambda'_k)$ with $\lambda'_i = \lambda_i - 1$. Noting that $\lambda'_1 \geq \lambda'_2 \geq \cdots \geq \lambda'_k \geq 0$, we find that λ' is a partition with at most k parts. Since $|\lambda| = |\lambda'| + k$, we have

$$\sum_{\lambda \in \mathscr{P}} z^{\ell(\lambda)} q^{|\lambda|} = \sum_{k \ge 0} z^k q^k \sum_{n \ge 0} p(k, n) q^n = \sum_{k \ge 0} \frac{z^k q^k}{(q; q)_k},$$

where we make use of Theorem 10.8. Recalling (10.9) gives what we want.

For Euler's second summation, we consider partitions $\pi = (\pi_1, \pi_2, \ldots, \pi_k) \in \mathscr{D}$ with exactly k parts. Then $\pi_1 > \pi_2 > \cdots > \pi_k \ge 1$. Now, we construct a new partition $\pi' = (\pi'_1, \pi'_2, \ldots, \pi'_k)$ with $\pi'_i = \pi_i - (k+1-i)$. Noting that $\pi'_1 \ge \pi'_2 \ge \cdots \ge \pi'_k \ge 0$, we find that π' is a partition with at most k parts. Since $|\pi| = |\pi'| + (1+2+\cdots+k) = |\pi'| + \frac{k(k+1)}{2}$, we have

$$\sum_{\pi \in \mathscr{D}} z^{\ell(\pi)} q^{|\pi|} = \sum_{k \ge 0} z^k q^{\frac{k(k+1)}{2}} \sum_{n \ge 0} p(k,n) q^n = \sum_{k \ge 0} \frac{z^k q^{\frac{k(k+1)}{2}}}{(q;q)_k}$$

where we also use Theorem 10.8. Recalling (10.10) implies the desired result.

/		
	-	
	- 1 \	
× 1		
~		
	-	~

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
•		٠			•	•	٠	•	٠	٠	
•		٠			•	•	٠	٠	٠		
٠	•				•	٠	•				

Euler's second sum:

Euler's first sum:

10.6 Durfee squares

graphically.

From the Ferrers diagram of a partition, another important concept can be introduced. **Definition 10.8** Given a partition, its *Durfee square* is the largest square contained in its Ferrers diagram.

Durfee squares are named after the American mathematician William Pitt Durfee, a student of James Joseph Sylvester.

■ **Example 10.5** The partition 5+3+3+2+2+1 has a Durfee square of size 3, as shown in the Ferrers diagram. ■

The above proof can also be understood

Theorem 10.11 We have

$$\sum_{k\geq 0} \frac{q^{k^2}}{(q;q)_k^2} = \frac{1}{(q;q)_{\infty}}.$$
(10.13)

Proof. We consider partitions λ whose Durfee square is of size k. Note that below the Durfee square, we have a partition μ with largest part at most k; and that to the right of the Durfee square, we have a partition ν with at most k parts. Since $|\lambda| = |\mu| + |\nu| + k^2$ where k^2 is contributed by the Durfee square, we have

$$\sum_{\lambda \in \mathscr{P}} q^{|\lambda|} = \sum_{k \ge 0} q^{k^2} \sum_{n \ge 0} p_{\le k}(n) q^n \sum_{n \ge 0} p(k, n) q^n = \sum_{k \ge 0} \frac{q^{k^2}}{(q; q)_k^2},$$

where we use Theorems 10.1 and 10.8. The desired identity follows from Theorem 10.2. \blacksquare