
10. Integer partitions

10.1 Integer partitions
Integer partitions can be seen as a twin sibling of compositions.

Definition 10.1 An integer partition or a partition of an integer n is a way of writing n
as the sum of a sequence of positive integers, and the order of these summands does
not matter. We usually denote by p(n) the number of partitions of n, and call p(n) the
partition function.

R Since for a partition λ = (λ1,λ2, . . . ,λℓ) of n, the order of these positive integers does
not matter, we usually assume that they are in weakly decreasing order λ1 ≥ λ2 ≥
·· · ≥ λℓ, as a representative. We also often write a partition as λ = λ1 +λ2 + · · ·+λℓ.

■ Example 10.1 There are five partitions of 4, namely, 4, 3+1, 2+2, 2+1+1 and 1+1+
1+1. Therefore, p(5) = 4. ■

Definition 10.2 Given a partition λ = (λ1,λ2, . . . ,λℓ) of n, usually written as λ ⊢ n, we
call each λi a part of λ ; call n = λ1 +λ2 + · · ·+λℓ the size of λ , denoted by |λ |; and call
the number ℓ of parts the length of λ , denoted by ℓ(λ ).

R We assume that 0 has an empty partition, written as ∅, and thus p(0) = 1. For the
empty partition ∅, we have |∅|= 0 and ℓ(∅) = 0.

10.2 Generating function for partitions
Another convenient way to represent partitions is through the frequency notation. Given
a partition λ , for each positive integer i, we may count the number fi of occurrences of i
among the parts in λ , and we call fi the frequency of i. Hence, we may represent λ in the
frequency notation 1 f12 f23 f3 · · · , and we often omit the integers whose frequency is zero.
■ Example 10.2 The partition 6+6+5+3+3+3+2+1+1+1+1+1 has the frequency
notation 6251332115. ■

R When using the frequency notation, it is necessary to avoid confusion with products
of powers.
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Taking advantage the frequency notation, it is easy to determine the generating func-
tion of p(n).

Theorem 10.1 Let p≤N(n) count the number of partitions of n with largest part at most
N. We have

∑
n≥0

p≤N(n)qn =
N

∏
k=1

1
1−qk . (10.1)

Proof. We expand the multiplicand
1

1−qk = 1+qk +q2k +q3k + · · ·= q0·k +q1·k +q2·k +q3·k + · · · .

Hence, each term q fk·k enumerates the case where the frequency of k is fk for fk a nonnega-
tive integer. Further, if we expand the infinite product ∏N

k=1
1

1−qk , its terms are of the form
q f1·1+ f2·2+···+ fN ·N , corresponding to a unique partition with frequency notation 1 f12 f2 · · ·N fN ,
which also restricts the largest part to be at most N. ■

Letting N → ∞, we immediately see that the generating function of p(n) is given by an
infinite product.

Theorem 10.2 We have

∑
n≥0

p(n)qn = ∏
k≥1

1
1−qk . (10.2)

We may also apply some additional restrictions to the parts.

Theorem 10.3 For any positive integers 0 < a ≤ m, let pa,m(n) count the number of
partitions of n with parts congruent to a modulo m. We have

∑
n≥0

pa,m(n)qn = ∏
k≥0

1
1−qkm+a . (10.3)

Proof. Note that

∑
n≥0

pa,m(n)qn = ∏
k≥0

(
q0·(km+a)+q1·(km+a)+q2·(km+a)+ · · ·

)
= ∏

k≥0

1
1−qkm+a ,

as required. ■

Theorem 10.4 For any positive integer s, let p[s](n) count the number of partitions of n
in which each distinct part appears at most s times, i.e., the frequency fk ≤ s for each
k. We have

∑
n≥0

p[s](n)q
n = ∏

k≥1

1−q(s+1)k

1−qk . (10.4)

Proof. Note that

∑
n≥0

p[s](n)q
n = ∏

k≥1

(
q0·k +q1·k + · · ·+qs·k)= ∏

k≥1

(
1−qk

)(
1+q+ · · ·+qsk

)
1−qk = ∏

k≥1

1−q(s+1)k

1−qk ,

as required. ■
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10.3 “Odd partitions” vs “Distinct partitions”
Definition 10.3 A partition is called an odd partition if all its parts are odd integers,
and a partition is called an even partition if all its parts are even integers. We denote
by po(n) the number of odd partitions of n, and by pe(n) the number of even partitions
of n.

Taking m = 2, and a = 1 and 2, respectively, in Theorem 10.3, we have the following
generating function identities.

Theorem 10.5 We have

∑
n≥0

po(n)qn = ∏
k≥1

1
1−q2k−1 , (10.5)

∑
n≥0

pe(n)qn = ∏
k≥1

1
1−q2k . (10.6)

Definition 10.4 A partition is called a distinct partition if all its parts are pairwise
distinct. We denote by pD(n) the number of distinct partitions of n.

From the proof of Theorem 10.4 with s = 1, the following generating function identity
holds true.
Theorem 10.6 We have

∑
n≥0

pD(n)qn = ∏
k≥1

(
1+qk). (10.7)

Euler established a well-known result on odd partitions and distinct partitions.

Theorem 10.7 (Euler). For n ≥ 0, we have po(n) = pD(n).

Proof. It suffices to show that po(n) and pD(n) have the same generating function:

∑
n≥0

po(n)qn = ∏
k≥1

1
1−q2k−1 = ∏

k≥1

1
1−q2k−1

1−q2k

1−q2k = ∏
k≥1

1−q2k

1−qk = ∏
k≥1

(
1+qk)= ∑

n≥0
pD(n)qn,

as required. ■

10.4 Ferrers diagrams
We may also represent partitions in a graphical way.

Definition 10.5 A Ferrers diagram represents partitions as patterns of dots, with the
n-th row having the same number of dots as the n-th part of the partition. If we replace
these dots by squares, the graph is often called a Young diagram.

R Ferrers diagrams are named after the British mathematician Norman Macleod Fer-
rers, and Young diagrams are named after the British mathematician Alfred Young.

■ Example 10.3 The graphical representations of
the partition 5+3+3+2+2+1 are given as fol-
lows — Ferrers diagram (left) and Young diagram
(right): ■

• • • • •

• • •

• • •

• •

• •

•
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Definition 10.6 Given a partition λ , its conjugate partition, denoted by λT, is the
partition whose Ferrers diagram is obtained by fliping the diagram of λ along its main
diagonal.

■ Example 10.4 For the partition λ = 5+ 3+ 3+
2+2+1, its conjugate is λT = 6+5+3+1+1. ■

• • • • •

• • •

• • •

• •

• •

•

• • • • • •

• • • • •

• • •

•

•

Theorem 10.8 Let p(N,n) count the number of partitions of n with at most N parts. We
have

∑
n≥0

p(N,n)qn =
N

∏
k=1

1
1−qk . (10.8)

Proof. Note that for any partition with at most N parts, its conjugate is a partition with
largest part at most N. Hence, p(N,n) = p≤N(n). Recalling Theorem 10.1 gives the desired
result. ■

10.5 Euler’s summations
Note that the above generating functions are represented in the product form. Now, we
introduce the q-Pochhammer symbols for notational brevity.

Definition 10.7 Let q ∈ C be such that |q|< 1. Let n ∈ N. The q-Pochhammer symbols
are given by

(A;q)n :=
n−1

∏
k=0

(1−Aqk),

(A;q)∞ := ∏
k≥0

(1−Aqk).

We first present refinements of Theorems 10.2 and 10.6.

Theorem 10.9 Let P be the set of partitions and D be the set of distinct partitions.
We have

∑
λ∈P

zℓ(λ )q|λ | =
1

(zq;q)∞
, (10.9)

∑
λ∈D

zℓ(λ )q|λ | = (−zq;q)∞. (10.10)

Proof. We have

∑
λ∈P

zℓ(λ )q|λ | = ∏
k≥1

(
1+ zqk + z2q2k + · · ·

)
= ∏

k≥1

1
1− zqk =

1
(zq;q)∞

.

Similarly,

∑
λ∈D

zℓ(λ )q|λ | = ∏
k≥1

(
1+ zqk)= (−zq;q)∞,

as required. ■
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Now, our objective is two important summation formulas due to Euler.

Theorem 10.10 (Euler’s Summations). We have

∑
k≥0

zkqk

(q;q)k
=

1
(zq;q)∞

, (10.11)

∑
k≥0

zkq
k(k+1)

2

(q;q)k
= (−zq;q)∞. (10.12)

Proof. For Euler’s first summation, we consider partitions λ = (λ1,λ2, . . . ,λk) ∈ P with
exactly k parts. Then λ1 ≥ λ2 ≥ ·· · ≥ λk ≥ 1. Now, we construct a new partition λ ′ =
(λ ′

1,λ ′
2, . . . ,λ ′

k) with λ ′
i = λi − 1. Noting that λ ′

1 ≥ λ ′
2 ≥ ·· · ≥ λ ′

k ≥ 0, we find that λ ′ is a
partition with at most k parts. Since |λ |= |λ ′|+ k, we have

∑
λ∈P

zℓ(λ )q|λ | = ∑
k≥0

zkqk ∑
n≥0

p(k,n)qn = ∑
k≥0

zkqk

(q;q)k
,

where we make use of Theorem 10.8. Recalling (10.9) gives what we want.
For Euler’s second summation, we consider partitions π = (π1,π2, . . . ,πk) ∈ D with

exactly k parts. Then π1 > π2 > · · · > πk ≥ 1. Now, we construct a new partition π ′ =
(π ′

1,π ′
2, . . . ,π ′

k) with π ′
i = πi − (k+ 1− i). Noting that π ′

1 ≥ π ′
2 ≥ ·· · ≥ π ′

k ≥ 0, we find that
π ′ is a partition with at most k parts. Since |π|= |π ′|+(1+2+ · · ·+ k) = |π ′|+ k(k+1)

2 , we
have

∑
π∈D

zℓ(π)q|π| = ∑
k≥0

zkq
k(k+1)

2 ∑
n≥0

p(k,n)qn = ∑
k≥0

zkq
k(k+1)

2

(q;q)k
,

where we also use Theorem 10.8. Recalling (10.10) implies the desired result. ■

R The above proof can also be understood
graphically.

Euler’s first sum:

• • • • •

• • •

• • •

• •

•

•

•

•

•

•

Euler’s second sum:

• • • • • • • •

• • • • • •

• • • • •

• • •

•

• • • • •

• • • •

• • •

• •

•

10.6 Durfee squares
From the Ferrers diagram of a partition, another important concept can be introduced.

Definition 10.8 Given a partition, its Durfee square is the largest square contained in
its Ferrers diagram.

R Durfee squares are named after the American mathematician William Pitt Durfee,
a student of James Joseph Sylvester.

■ Example 10.5 The partition 5+ 3+ 3+ 2+ 2+ 1 has a
Durfee square of size 3, as shown in the Ferrers diagram. ■

• • • • •

• • •

• • •

• •

• •

•
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Theorem 10.11 We have

∑
k≥0

qk2

(q;q)2
k
=

1
(q;q)∞

. (10.13)

Proof. We consider partitions λ whose Durfee square is of size k. Note that below the
Durfee square, we have a partition µ with largest part at most k; and that to the right of
the Durfee square, we have a partition ν with at most k parts. Since |λ | = |µ|+ |ν |+ k2

where k2 is contributed by the Durfee square, we have

∑
λ∈P

q|λ | = ∑
k≥0

qk2 ∑
n≥0

p≤k(n)qn ∑
n≥0

p(k,n)qn = ∑
k≥0

qk2

(q;q)2
k
,

where we use Theorems 10.1 and 10.8. The desired identity follows from Theorem 10.2. ■


