
9. Generating functions

9.1 Generating functions
In the previous lecture, we have shown the existence of a representation as the sum of
four squares for each nonnegative integer n. Now a natural question is how many such
representations do we have? Is there a formula, or at least a nice way, to characterize the
number of such representations for each n?

In general, for {an}n≥0 a sequence of numbers, not necessarily integers, we want to find
a clothesline on which we hang up {an} for display.

Definition 9.1 Let {an}n≥0 be a sequence of numbers. The the power series

∑
n≥0

anxn = a0 +a1x+a2x2 + · · ·

is called the generating function of {an}.

R Since we are considering power series, a natural question is their radii of convergence.
However, this question is uaually not very interesting for generating functions, and in
many cases we only treat these power series as formal power series. However, there are
still occassions that the radii of convergence should be taken into account, especially
when analytic techniques are applied. For instance, when we want to make use of
Cauchy’s integral formula to recover the coefficients an from its generating function
A(x) = ∑n≥0 anxn:

an =
1

2πi

∮ A(x)
xn+1 dx,

we must be careful about the convergence conditions when choosing the contour.

9.2 Formal power series
Definition 9.2 A formal power series is an expression of the form

a0 +a1x+a2x2 + · · · ,

where the sequence {an}n≥0 is called the sequence of coefficients.
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We say two series A(x) = ∑n≥0 anxn and B(x) = ∑n≥0 bnxn are equal if an = bn for all n ≥ 0.
We can also define the usual operations for formal power series:
▷ Addition/Subtraction:

∑
n≥0

anxn ± ∑
n≥0

bnxn = ∑
n≥0

(an ±bn)xn;

▷ Multiplication by the Cauchy product rule:(
∑
n≥0

anxn

)(
∑
n≥0

bnxn

)
= ∑

n≥0
cnxn, where cn =

n

∑
k=0

akbn−k.

To determine if division works, we need to check if a series has a reciprocal.
Definition 9.3 Given a formal power series ∑n≥0 anxn, we say a series ∑n≥0 bnxn is the
reciprocal of ∑n≥0 anxn if (

∑
n≥0

anxn

)(
∑
n≥0

bnxn

)
= 1.

Theorem 9.1 A formal power series A(x) =∑n≥0 anxn has a reciprocal if and only if a0 ̸= 0.
In that case, the reciprocal is unique.

Proof. (i). If A(x) has a reciprocal, say B(x) = ∑n≥0 bnxn. Then A(x)B(x) = 1. Hence,
a0b0 = 1, which implies that a0 ̸= 0. Further, b0 is uniquely given by 1/a0. Also, for n ≥ 1,
we have 0 = ∑n

k=0 akbn−k. Therefore,

bn =− 1
a0

n

∑
k=1

akbn−k.

By induction, the bn’s are uniquely determined.
(ii). If an ̸= 0, we choose b0 = 1/a0, and iteratively define bn = − 1

a0
∑n

k=1 akbn−k. Then
we get a series B(x) = ∑n≥0 bnxn. It is straightforward to verify that A(x)B(x) = 1, and
hence B(x) is a reciprocal of A(x). ■

■ Example 9.1 We have
(1− x)(1+ x+ x2 + · · ·) = 1.

Hence, the reciprocal of 1− x is given by 1+ x+ x2 + · · · , written as
1

1− x
= 1+ x+ x2 + · · · .

This is exactly identical to what is obtained by applying the Taylor expansion to 1
1−x . ■

Definition 9.4 Let A(x) = ∑n≥0 anxn be a formal power series. Its derivative is the series

A′(x) = ∑
n≥1

nanxn−1.

■ Example 9.2 We know that
ex = ∑

n≥0

xn

n!
.

Now, (
∑
n≥0

xn

n!

)′

= ∑
n≥1

nxn−1

n!
= ∑

n≥1

xn−1

(n−1)!
= ex.

This is exactly identical to (ex)′ = ex. ■
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9.3 Fibonacci numbers
The Fibonacci numbers are named after the Italian mathematician Leonardo of Pisa, later
known as Fibonacci, for his famous “Rabbit Puzzle” in his 1202 book Liber Abaci:

Assume that we have a pair of fictional rabbits, and they
(i) produce a new pair of rabbits every month, starting from the second month

that they are alive;
(ii) and the new generations always repeat the trajectory of their parents’ life.

If rabbits never die and continue breeding forever, how many pairs will there
be in one year?

Assume that there are Fn pairs of rabbits after n months, starting with F0 = 0 and
F1 = 1. Now, for Fn with n ≥ 2, the rabbits are from the alive ones of the previous month,
Fn−1 pairs in total, and the newly born rabbits produced by those of at least two-month-old,
Fn−2 pairs in total. Therefore, for n ≥ 2,

Fn = Fn−1 +Fn−2. (9.1)

Theorem 9.2 We have

∑
n≥0

Fnxn =
x

1− x− x2 . (9.2)

Proof. We multiply (9.1) by xn, and then sum over n ≥ 2. Then

∑
n≥2

Fnxn = ∑
n≥2

(Fn−1 +Fn−2)xn = x ∑
n≥2

Fn−1xn−1 + x2 ∑
n≥2

Fn−2xn−2 = x ∑
n≥1

Fnxn + x2 ∑
n≥0

Fnxn.

Let f = ∑n≥2 Fnxn. We have

f − (0+ x) = x( f −0)+ x2 f ,

or
(1− x− x2) f = x.

This gives the desired result. ■

Can we find an explicit formula for Fn?

Theorem 9.3 For n ≥ 0,

Fn =
1√
5

((
1+

√
5

2

)n

−

(
1−

√
5

2

)n)
(9.3)

Proof. Let α = 1+
√

5
2 and β = 1−

√
5

2 . Then (1− x− x2) = (1−αx)(1−βx). Therefore,

x
1− x− x2 =

x
(1−αx)(1−βx)

=
1

α −β

(
1

1−αx
− 1

1−βx

)
=

1
α −β

(
∑
n≥0

αnxn − ∑
n≥0

β nxn

)
.
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By equating the coefficient of xn, we have

Fn =
αn −β n

α −β
,

which is exactly as desired. ■

In general, we may consider the sequence {Gn}n≥0 with G0 = a, G1 = b, and for n ≥ 2,
Gn = sGn−1 + tGn−2 where a, b, s and t are fixed.

Theorem 9.4 We have

∑
n≥0

Gnxn =
a+bx−asx
1− sx− tx2 . (9.4)

Proof. Note that
∑
n≥2

Gnxn = sx ∑
n≥1

Gnxn + tx2 ∑
n≥0

Gnxn.

Thus,

∑
n≥0

Gnxn − (a+bx) = sx

(
∑
n≥0

Gnxn −a

)
+ tx2 ∑

n≥0
Gnxn,

yielding the desired result. ■

For example, the Lucas numbers Ln, which were introduced by the Frence mathemati-
cian François Lucas, are given by L0 = 2, L1 = 1, and for n ≥ 2, Fn = Fn−1 +Fn−2.

Theorem 9.5 We have

∑
n≥0

Lnxn =
2− x

1− x− x2 . (9.5)

In particular, for n ≥ 0,

Ln =

(
1+

√
5

2

)n

+

(
1−

√
5

2

)n

. (9.6)

Proof. The first part is the (a,b,s, t) = (2,1,1,1) case of Theorem 9.4. For the second part,
we still write α = 1+

√
5

2 and β = 1−
√

5
2 . Then

2− x
1− x− x2 =

1
1−αx

+
1

1−βx
= ∑

n≥0
αnxn + ∑

n≥0
β nxn.

Equating the coefficient of xn implies the desired result. ■

9.4 Compositions
Generating functions are of significant use in combinatorics. Here, we will take composi-
tions as an example.

Definition 9.5 A composition of an integer n is a way of writing n as the sum of a
sequence of positive integers, and the order of these summands matters.

■ Example 9.3 There are four compositions of 3, namely, 3, 2+1, 1+2 and 1+1+1+1. ■
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Theorem 9.6 There are 2n−1 compositions of n.

Proof. We represent the integer n by n nodes in a row. Then there are n−1 gaps between
consecutive nodes. Now, let us choose to place a stick at each gap or not, and there are
2n−1 choices. Each choice will induce a unique composition of n by counting the number of
nodes between each consecutive pair of sticks while we assume that there are two invisible
sticks at the two ends. Hence, there are 2n−1 compositions of n.

For instance, the above diagram gives 2+3+2+1+1, which is a composition of 9. ■

Is it possible to avoid such a combinatorial argument?

Theorem 9.7 Let c(k,n) count the number of compositions of n into k parts. Then

∑
n≥1

c(k,n)xn =

(
x

1− x

)k

. (9.7)

Proof. Let us consider the product

(x+ x2 + · · ·)k = (x+ x2 + · · ·)(x+ x2 + · · ·) · · ·(x+ x2 + · · ·),

where there are k multiplicands. If we expand this product, then the terms are of the
form xn1+n2+···+nk =: xn where each xni comes from the i-th multiplicand. Also, this term
corresponds to a unique composition of n, given by n1+n2+ · · ·+nk, and there are exactly
k parts in this composition. Hence,

∑
n≥1

c(k,n)xn = (x+ x2 + · · ·)k =

(
x

1− x

)k

,

as required. ■

Theorem 9.8 Let c(n) count the number of compositions of n. Then

∑
n≥1

c(n)xn =
x

1−2x
. (9.8)

In particular, c(n) = 2n−1.

Proof. For the first part, we deduce from Theorem 9.7 that

∑
n≥1

c(n)xn = ∑
k≥1

∑
n≥1

c(k,n)xn = ∑
k≥1

(
x

1− x

)k

=
x

1−x

1− x
1−x

=
x

1−2x
.

Further, x
1−2x = ∑n≥1 2n−1xn. By equating the coefficient of xn, we arrive at the second

part. ■


