7.1

7. Quadratic reciprocity

Gauss’s Lemma

Lemma 7.1 (Gauss's Lemma) Let p >3 be a prime and a be such that (a,p) = 1. For
each k with 1 <k < 2~ let r; be the smallest nonnegative residue of ak modulo p. If
U = U, counts the number of ry greater than £, then

<;> = (1)~ (7.1)

Proof. Since (a,p) =1, we have 1 <r; < p—1 for each k. Assume that xi,...,x, are those

re > 5 and yy,...,yy are those ry < £. Note that pu+v = prl Also, the x’s are pairwise
distinct and so are the y’s. We further claim that there are no x; and y; with p —x; = y;;
otherwise, we have k; and k; such that ak;+ak; =0 (mod p), or k;+k; =0 (mod p), which

is impossible since 1 < k;,k; < prl Noting that 1 < (p—x),y < &, we conclude that the

’%1 integers (p—x1),...,(p—xu) and yi,...,yy form a rearrangement of 1,...,”2;1. Thus,

Since (pT_l)' is coprime to p, we have a b = (—1)*

(mod p). Finally, (7.1) follows since
( ) takes value from {£1} by definition and (7) =

1

a2 (mod p) by Theorem 6.6. [ ]

For any real number x, let [x] denote the largest integer not exceeding x.

Lemma 7.2 With the notation in Lemma 7.1, we have

2

te=(a—1)- + Z {kJ (mod 2). (7.2)

Proof. Note that each ry is the remainder of ak divided by p. Thus, ak=p- L%J +rr. Now,
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recalling that p is an odd prime,
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(p—1)/2 2
= {akJ —I—,u—i—p (mod 2)
k=1 LP
thereby yielding the desired result. |

7.2 When is 2 a quadratic residue modulo p?

Theorem 7.3 Let p >3 be a prime. Then

(2) — (_1)”%’1, (7.3)

In particulae, 2 is a quadratic residue modulo p if p=+1 (mod 8), and a quadratic
non-residue modulo p if p =43 (mod 8).

Proof. Note that for k with 1 <k < p—_l, we have 0 < % < 1 and thus L%kj =0. Now,
taking @ =2 in (7.3) gives Uy = 2—_ (mod 2), and it follows from Gauss’s Lemma that
(%) = (—l)pz% (mod p). Hence, (7.3) follows since (%) takes value from {—1,1} for odd
primes p. Finally, % is even if p=+1 (mod 8), and odd if p=+3 (mod 8). |

7.3 Guass’s law of quadratic reciprocity

We have witnessed from Gauss’s Lemma (Lemma 7.1) and Lemma 7.2 that for p >3 a
prime and a an integer with (a,p) =1,

<“> — (e s

p
Now, we further assume that q >3 is a prime such that ¢ # p. Then (g—1)- —_ is even
for g —1 is even and p = Zk ) D2k is an integer. It follows that

Similarly,

It turns out that
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Theorem 7.4 Let p,q > 3 be primes with p # g. Then

LG 1 R

=1 LP k=1 q 4

(0,9) (p,q)

(0,0) (r',0) (p,0)
Figure 7.1: Integer lattices and y = %x
Proof. For convenience, we write p’ = prl and ¢’ = %. Consider the line
l:y= 9,

p

on the xy-plane. We begin with some observations.

Observation 1. For any integer k > 1, L];—qj equals the number of points with integer
coordinates, or lattices for short, (k,y) which are below £ (with lattices on £ included).
For its proof, we note that ¢ touches the vertical line x =k at (k, ];—q) Thus, such
lattices are those with 1 <y < %q, and the number of them equals the integer part of
M that is | *2].

Observation 2. For any integer k > 1, L%pj equals the number of lattices (x,k) which
are above ¢ (with lattices on £ included). The proof is similar to that for the first
observation — we only need to note that ¢ touches the horizontal line y =k at (%p,k).

Observation 3. There is no lattice (x,y) with 1 <x<p' or 1 <y <q that is on ¢.
Otherwise, assume that there exists an xo with 1 < x¢ < p’ such that (xo, %xo) is a
lattice. Then %xo is an integer, which is impossible since p 1 ¢ for p,q are distinct
odd primes and p{xg for | <x<p'= % Similarly, if we assume that there exists
a yp with 1 <y < ¢’ such that (%yo,yo) is a lattice, then gyo is an integer, and it is
also impossible. The claim follows by contradiction.

Now, we focus on the set of lattices (x,y) with 1 <x < p’ and y > 1 that are strictly
below ¢, denoted by %, and the set of lattices (x,y) with x > 1 and 1 <y < ¢ that are
strictly above ¢, denoted by <.
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By the three observations (especially Observation 3, which allows us to add the strength-
ening of “strictly”), we have

(p=1)/2 (g—1)/2
{qu + Z VPJ = card & + card A.
q

=1 LP k=1

First, it is apparent that all lattices (x,y) with | <x<p'and 1 <y <’ are in &/ UZ.
Now, we show that they are the only lattices in o/ U %.
(i). For lattices with x > p" and y > ¢/, they are not in &/ UZ by definition.

(ii). For any lattice with 1 <x < p’ and y > ¢’ (so it is not in &), we compute the slope

'+1 +1
qp, = —;1)71 > %, and

of the line connecting this lattice and the origin, which is )y—c >
thus the lattice is above £, so not in 4.
(iii). For any lattice with x > p’ and 1 <y <4’ (so it is not in %), we compute the slope

of the line connecting this lattice and the origin, which is ¥ < p,‘il = % < %, and
thus the lattice is below £, so not in 2.

Noting that &/ and 2 are disjoint, we have card .« +card # = card.o/ U% = p'q’. Thus,

(p—1)/2 (g-1)/2 1M ag—1
) V“]J + ) {ka =cardo/ +card B = p'q = w,
k=1 LP k=1 Ld4 4
proving the desired result. |

Now, we can state Guass’s law of quadratic reciprocity.

Theorem 7.5 (Guass’s Law of Quadratic Reciprocity). Let p,q > 3 be primes with p # gq.
Then
q p (p=D(g=1)
=) {=]=(1) "+ 7.6)
() ()~ <
Proof. This is a direct application of (7.4) and (7.5). [

7.4 When is 3 a quadratic residue modulo p?

Theorem 7.6 Let p > 5 be a prime. Then 3 is a quadratic residue modulo p if p = £1
(mod 12), and a quadratic non-residue modulo p if p=+5 (mod 12).

Proof. By Guass’s law of quadratic reciprocity, we have

G-

Further, (§) equals 1 if p=1 (mod 3) and equals —1 if p = —1 (mod 3). Also, (—1)72
equals 1 if p=1 (mod 4) and equals —1 if p=—1 (mod 4). The desired result follows by
a simple calculation. [ |

7.5 An upper bound for the least quadratic non-residue

Definition 7.1 Let p >3 be a prime. The least quadratic non-residue modulo p, usually
denoted by n,, is the smallest positive integer that is a quadratic non-residue modulo

p-



7.5 An upper bound for the least quadratic non-residue 47

® Example 7.1 We have n3 =2, n5s =2, n; =3, ... =

R ) The least quadratic residue is less interesting because 1 is always a quadratic residue
modulo any odd prime p.

Recall from Theorem 6.2 that there are prl residues and prl non-residues modulo p

among 1,...,p— 1. Therefore, we trivially have n, < ’%1 +1= pTH. But the upper bound

for n, could be sharper.

Theorem 7.7 Let p >3 be a prime. Then

np < /p+1. (7.7)

Proof. Note that 1 <n, <p. Let m=|£]+1. Since £ is not an integer, we have
p p

(m—1)n, < p <mn,. Thus, 0 <mn,—p <n,. Since n, is the least non-residue, we have

that all 1,...,n, —1 are residues, and so is mn, — p. It follows that
= () -(5)-(G) (3)
p p p p
where Theorem 6.7 is used. Since n, is a non-residue, we have (%”) = —1, and thus
(%) = —1 from the above. Thus, m is also a non-residue. It follows that n, <m. So,

p>(m="1)n, > (n, —)ny > (n, —1)%,

yielding the desired result. |

R ) The upper bound for n, is far sharper than (7.7). The best bound known today is

1
np = O¢ (PWEJF&);

for all € > 0. It was proved with recourse to Burgess’s estimate of certain character
sums and Vinogradov’s sieving trick. An excellent exposition of the idea can be found
in Terry Tao’s blog post:

https://terrytao.wordpress.com/2009/08/18/the-least-quadratic-
nonresidue-and-the-square-root-barrier/
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