
7. Quadratic reciprocity

7.1 Gauss’s Lemma
Lemma 7.1 (Gauss’s Lemma). Let p ≥ 3 be a prime and a be such that (a, p) = 1. For
each k with 1 ≤ k ≤ p−1

2 , let rk be the smallest nonnegative residue of ak modulo p. If
µ = µa counts the number of rk greater than p

2 , then(
a
p

)
= (−1)µ . (7.1)

Proof. Since (a, p) = 1, we have 1 ≤ rk ≤ p−1 for each k. Assume that x1, . . . ,xµ are those
rk >

p
2 and y1, . . . ,yν are those rk <

p
2 . Note that µ +ν = p−1

2 . Also, the x’s are pairwise
distinct and so are the y’s. We further claim that there are no xi and y j with p− xi = y j;
otherwise, we have ki and k j such that aki+ak j ≡ 0 (mod p), or ki+k j ≡ 0 (mod p), which
is impossible since 1 ≤ ki,k j ≤ p−1

2 . Noting that 1 ≤ (p− x),y < p
2 , we conclude that the

p−1
2 integers (p− x1), . . . ,(p− xµ) and y1, . . . ,yν form a rearrangement of 1, . . . , p−1

2 . Thus,
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)
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∏
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∏
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µ

∏
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(p− xi) ·
ν

∏
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y j = (−1)µ
(

p−1
2

)
! (mod p).

Since ( p−1
2 )! is coprime to p, we have a

p−1
2 ≡ (−1)µ (mod p). Finally, (7.1) follows since( a

p

)
takes value from {±1} by definition and

( a
p

)
≡ a

p−1
2 (mod p) by Theorem 6.6. ■

For any real number x, let ⌊x⌋ denote the largest integer not exceeding x.

Lemma 7.2 With the notation in Lemma 7.1, we have

µa ≡ (a−1) · p2 −1
8

+
(p−1)/2

∑
k=1

⌊
ak
p

⌋
(mod 2). (7.2)

Proof. Note that each rk is the remainder of ak divided by p. Thus, ak = p ·⌊ ak
p ⌋+rk. Now,
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recalling that p is an odd prime,
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8

(mod 2),

thereby yielding the desired result. ■

7.2 When is 2 a quadratic residue modulo p?
Theorem 7.3 Let p ≥ 3 be a prime. Then(

2
p

)
= (−1)

p2−1
8 . (7.3)

In particulae, 2 is a quadratic residue modulo p if p ≡ ±1 (mod 8), and a quadratic
non-residue modulo p if p ≡±3 (mod 8).

Proof. Note that for k with 1 ≤ k ≤ p−1
2 , we have 0 < 2k

p < 1 and thus ⌊2k
p ⌋ = 0. Now,

taking a = 2 in (7.3) gives µ2 ≡ p2−1
8 (mod 2), and it follows from Gauss’s Lemma that( 2

p

)
≡ (−1)

p2−1
8 (mod p). Hence, (7.3) follows since

( 2
p

)
takes value from {−1,1} for odd

primes p. Finally, p2−1
8 is even if p ≡±1 (mod 8), and odd if p ≡±3 (mod 8). ■

7.3 Guass’s law of quadratic reciprocity
We have witnessed from Gauss’s Lemma (Lemma 7.1) and Lemma 7.2 that for p ≥ 3 a
prime and a an integer with (a, p) = 1,(

a
p

)
= (−1)(a−1)· p2−1

8 +∑(p−1)/2
k=1 ⌊ ak

p ⌋.

Now, we further assume that q ≥ 3 is a prime such that q ̸= p. Then (q−1) · p2−1
8 is even

for q−1 is even and p2−1
8 = ∑(p−1)/2

k=1 k is an integer. It follows that(
q
p

)
= (−1)∑(p−1)/2

k=1 ⌊ kq
p ⌋.

Similarly, (
p
q

)
= (−1)∑(q−1)/2

k=1 ⌊ kp
q ⌋.

It turns out that (
q
p

)(
p
q

)
= (−1)∑(p−1)/2

k=1 ⌊ kq
p ⌋+∑(q−1)/2

k=1 ⌊ kp
q ⌋. (7.4)
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Theorem 7.4 Let p,q ≥ 3 be primes with p ̸= q. Then

(p−1)/2

∑
k=1

⌊
kq
p

⌋
+

(q−1)/2

∑
k=1

⌊
kp
q

⌋
=

(p−1)(q−1)
4

. (7.5)
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Figure 7.1: Integer lattices and y = q
p x

Proof. For convenience, we write p′ = p−1
2 and q′ = q−1

2 . Consider the line

ℓ : y =
q
p

x

on the xy-plane. We begin with some observations.
Observation 1. For any integer k ≥ 1, ⌊ kq

p ⌋ equals the number of points with integer
coordinates, or lattices for short, (k,y) which are below ℓ (with lattices on ℓ included).
For its proof, we note that ℓ touches the vertical line x = k at (k, kq

p ). Thus, such
lattices are those with 1 ≤ y ≤ kq

p , and the number of them equals the integer part of
kq
p , that is ⌊ kq

p ⌋.
Observation 2. For any integer k ≥ 1, ⌊ kp

q ⌋ equals the number of lattices (x,k) which
are above ℓ (with lattices on ℓ included). The proof is similar to that for the first
observation — we only need to note that ℓ touches the horizontal line y = k at ( kp

q ,k).
Observation 3. There is no lattice (x,y) with 1 ≤ x ≤ p′ or 1 ≤ y ≤ q′ that is on ℓ.

Otherwise, assume that there exists an x0 with 1 ≤ x0 ≤ p′ such that (x0,
q
p x0) is a

lattice. Then q
p x0 is an integer, which is impossible since p ∤ q for p,q are distinct

odd primes and p ∤ x0 for 1 ≤ x ≤ p′ = p−1
2 . Similarly, if we assume that there exists

a y0 with 1 ≤ y0 ≤ q′ such that ( p
q y0,y0) is a lattice, then p

q y0 is an integer, and it is
also impossible. The claim follows by contradiction.

Now, we focus on the set of lattices (x,y) with 1 ≤ x ≤ p′ and y ≥ 1 that are strictly
below ℓ, denoted by B, and the set of lattices (x,y) with x ≥ 1 and 1 ≤ y ≤ q′ that are
strictly above ℓ, denoted by A .
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By the three observations (especially Observation 3, which allows us to add the strength-
ening of “strictly”), we have

(p−1)/2

∑
k=1

⌊
kq
p

⌋
+

(q−1)/2

∑
k=1

⌊
kp
q

⌋
= cardA + cardB.

First, it is apparent that all lattices (x,y) with 1 ≤ x ≤ p′ and 1 ≤ y ≤ q′ are in A ∪B.
Now, we show that they are the only lattices in A ∪B.

(i). For lattices with x > p′ and y > q′, they are not in A ∪B by definition.
(ii). For any lattice with 1 ≤ x ≤ p′ and y > q′ (so it is not in A ), we compute the slope

of the line connecting this lattice and the origin, which is y
x ≥ q′+1

p′ = q+1
p−1 > q

p , and
thus the lattice is above ℓ, so not in B.

(iii). For any lattice with x > p′ and 1 ≤ y ≤ q′ (so it is not in B), we compute the slope
of the line connecting this lattice and the origin, which is y

x ≤ q′
p′+1 = q−1

p+1 < q
p , and

thus the lattice is below ℓ, so not in A .
Noting that A and B are disjoint, we have cardA +cardB = cardA ∪B = p′q′. Thus,

(p−1)/2

∑
k=1

⌊
kq
p

⌋
+

(q−1)/2

∑
k=1

⌊
kp
q

⌋
= cardA + cardB = p′q′ =

(p−1)(q−1)
4

,

proving the desired result. ■

Now, we can state Guass’s law of quadratic reciprocity.

Theorem 7.5 (Guass’s Law of Quadratic Reciprocity). Let p,q ≥ 3 be primes with p ̸= q.
Then (

q
p

)(
p
q

)
= (−1)

(p−1)(q−1)
4 . (7.6)

Proof. This is a direct application of (7.4) and (7.5). ■

7.4 When is 3 a quadratic residue modulo p?
Theorem 7.6 Let p ≥ 5 be a prime. Then 3 is a quadratic residue modulo p if p ≡ ±1
(mod 12), and a quadratic non-residue modulo p if p ≡±5 (mod 12).

Proof. By Guass’s law of quadratic reciprocity, we have(
3
p

)( p
3

)
= (−1)

p−1
2 .

Further,
( p

3

)
equals 1 if p ≡ 1 (mod 3) and equals −1 if p ≡ −1 (mod 3). Also, (−1)

p−1
2

equals 1 if p ≡ 1 (mod 4) and equals −1 if p ≡−1 (mod 4). The desired result follows by
a simple calculation. ■

7.5 An upper bound for the least quadratic non-residue
Definition 7.1 Let p ≥ 3 be a prime. The least quadratic non-residue modulo p, usually
denoted by np, is the smallest positive integer that is a quadratic non-residue modulo
p.
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■ Example 7.1 We have n3 = 2, n5 = 2, n7 = 3, ... ■

R The least quadratic residue is less interesting because 1 is always a quadratic residue
modulo any odd prime p.

Recall from Theorem 6.2 that there are p−1
2 residues and p−1

2 non-residues modulo p
among 1, . . . , p−1. Therefore, we trivially have np ≤ p−1

2 +1 = p+1
2 . But the upper bound

for np could be sharper.

Theorem 7.7 Let p ≥ 3 be a prime. Then

np <
√

p+1. (7.7)

Proof. Note that 1 < np < p. Let m = ⌊ p
np
⌋+ 1. Since p

np
is not an integer, we have

(m− 1)np < p < mnp. Thus, 0 < mnp − p < np. Since np is the least non-residue, we have
that all 1, . . . ,np −1 are residues, and so is mnp − p. It follows that

1 =

(
mnp − p

p

)
=

(
mnp

p

)
=

(
m
p

)(
np

p

)
,

where Theorem 6.7 is used. Since np is a non-residue, we have
(np

p

)
= −1, and thus(m

p

)
=−1 from the above. Thus, m is also a non-residue. It follows that np ≤ m. So,

p > (m−1)np ≥ (np −1)np > (np −1)2,

yielding the desired result. ■

R The upper bound for np is far sharper than (7.7). The best bound known today is

np = Oε
(

p
1

4
√

e+ε)
,

for all ε > 0. It was proved with recourse to Burgess’s estimate of certain character
sums and Vinogradov’s sieving trick. An excellent exposition of the idea can be found
in Terry Tao’s blog post:

https://terrytao.wordpress.com/2009/08/18/the-least-quadratic-
nonresidue-and-the-square-root-barrier/

https://terrytao.wordpress.com/2009/08/18/the-least-quadratic-nonresidue-and-the-square-root-barrier/
https://terrytao.wordpress.com/2009/08/18/the-least-quadratic-nonresidue-and-the-square-root-barrier/

