6. Quadratic residues

6.1 Quadratic residues

Assume that p > 3 is prime and that x is such that 1 <x < p—1. For any integer a with
(a,p) =1, there exists a unique x’ with 1 <x' < p—1 such that xx’ =a (mod p).

Definition 6.1 We call X’ the associate of x with respect to a modulo p if
xx'=a (mod p)
with 1 <x' <p-1.

We are in particular interested in the case where the associate of x is itself.

Definition 6.2 Let p be a prime and a be such that (a,p) = 1. We say that a is a
quadratic residue modulo p if there exists an x such that

x*=a (mod p).
We usually write a R p is this case. If such x does not exist, we say that a is a quadratic
non-residue modulo p, and write a N p.

Note that when p =2, for any a such that (a,2) = 1, we always have a=1 =1 (mod 2).
Thus, all such a’s are quadratic residues modulo 2. Below, we only focus on the case where
p=>3.

Lemma 6.1 Let p >3 be a prime and xp be such that (xo,p) =1. Then
> =x3 (mod p) (6.1)

has exactly two solutions

Xy =x9 (mod p) and  x_=-x9 (mod p),

and in particular x; Zx_ (mod p).

Proof. We rewite (6.1) as
(x—x0)(x+x0) =0 (mod p).
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Since p is prime, it follows that p | (x —xp) or p | (x+xp), thereby leading to the two
solutions x4. Also, x; #x_ (mod p); otherwise, we have xo = —xo (mod p), or p | 2xp, or
p | xo since p >3 is prime, which violates the assumption that (xo,p) = 1. |

Theorem 6.2 Let p >3 be a prime.
(i) If a is a quadratic residue modulo p, then there are exactly two distinct residue
classes x = x1,x; modulo p with x, = —x; (mod p) such that x> =a (mod p).
(ii) There are exactly ’%1 quadratic residues modulo p, and prl quadratic non-residues
modulo p. In particular, the quadratic residues can be represented by the residue
classes {12,22,...,(%1)2} modulo p.

Proof. (i). Since a is a quadratic residue, we may always find an x; such that x; =a
(mod p). Thus, by Lemma 6.1, the only two solutions to x> = a Ex% (mod p) are x = +x
(mod p) and they are distinct.

(ii). First, Part (i) implies that there are at most pT_l quadratic residues modulo p.
Otherwise, if there are > pTH quadratic residues, then there are > 2- % = p+ 1 residue
classes modulo p, which is impossible. Next, we show that {12,..., (pT—l)Z} are pairwise
distinct residue classes modulo p. To see this, we choose 1 <i,j < % with i #£ j. We
claim that i # j2 (mod p). Otherwise, if i = j> (mod p), then p | (i— j)(i+ j). But since
1<i,j < pT_l and i # j, both i —j and i+ j are not multiples of p, thereby leading to

a contradiction. Thus, there are exactly prl quadratic residues modulo p, characterized

by {12,...,(’%1)2} modulo p, and as a consequence, there are exactly (p—1) — prl = prl
quadratic non-residues modulo p. |
Theorem 6.3 Let p > 3 be a prime.
(i) If a is a quadratic residue modulo p, then
(p—D!=—a"T (mod p). (6.2)
(ii) If @ is a quadratic non-residue modulo p, then
(p—D!=a"" (mod p). (6.3)

Proof. Recall that for each a with (a, p) =1, every integer x with 1 <x < p—1 has a unique
associate x’ (with respect to @ modulo p) of one another with 1 <x' <p—1.

For quadratic residues a, we know from Theorem 6.2(i) that there are exactly two x’s,

say x =x; and x = p —xj, whose associate is itself. Therefore, we may group {1,...,p—1}
into (x1), (p—x1) and p;3 distinct unordered pairs (x,x") with
X=(p-x1)*’=a (mod p)
and
xx'=a (mod p).
Thus,

3 —1

(p—D!'=x1-(p—x1)-[J(=x') = =7 - [J(=') = —a-a’” =—a'T (mod p).

For quadratic non-residues a, we cannot find any x such that x> =a (mod p). Therefore,

we group {1,...,p—1} into 2 ;] distinct unordered pairs (x,x") with

xx'=a (mod p).
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Thus,

p—1

(p—=]J(xx)=a> (mod p).
The proof is therefore complete. |

Wilson’s Theorem

Let us take a look at the special case a =1 of Theorem 6.3, which is known as Wilson’s
Theorem.

Theorem 6.4 (Wilson's Theorem). Let p be a prime. Then

(p—1)!'=-1 (mod p). (6.4)

Proof. If p=2, we simply have 1 = —1 (mod 2), which is trivial. If p is an odd prime,
then we note that 1 is a quadratic residue modulo p, for 1 =12 (mod p). Therefore, taking
a=11n (6.2) yields (6.4). [

Note that (6.4) is always false if the prime p is replaced by a composite.

Theorem 6.5 For m > 2, we have (m—1)! = —1 (mod m) if and only if m is prime. ‘

Proof. The “if” part is exactly Wilson’s Theorem. For the “only if” part, we assume that m
is composite. Then m has a divisor d with 1 <d <m. Thus, thisd isamong 2,...,m—1, and
thus d | (m—1)!. This then implies that d{ ((m—1)!+1). But if (m—1)! = —1 (mod m),
or equivalently, m | ((m -1+ 1), then all the divisors of m also divide (m—1)!+1, thereby
leading to a contradiction. |

Legendre symbol

We usually use the Legendre symbol to characterize whether an integer a is a quadratic
residue modulo an odd prime p.

Definition 6.3 Let p > 3 be a prime and a be an integer. The Legendre symbol (%) is
defined by

0, if p|a,
a
<p> =41, if a is a quadratic residue modulo p,

—1, if a is a quadratic non-residue modulo p.

Theorem 6.6 Let p >3 be a prime and a be such that (a,p) =1. Then

<Z> =a"7  (mod p). (6.5)

Proof. Note that Theorem 6.3 can be understood as
a 1

(p—1)'=~ <p> .a">  (mod p).

On the other hand, Wilson’s Theorem asserts that
(p—1)!'=-1 (mod p).

The desired result therefore follows. [ |
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Theorem 6.7 Let p >3 be a prime and m,n be integers. Then
(5)-G)G) 6
p p p
Proof. If one of m and n is a multiple of p, so is mn. Thus, in this case,
(5)-G)G)-o
p p p
Now, we assume that (m,p) = (n,p) =1 and thus (mn,p) = 1. Then by Theorem 6.6,

(™) = o =t = () (%) (moa )

that is, p | }(%) — (%) (%H However, the values of (%), ( ) and (%) are taken from
{=1,1}. Thus, }(’"”) (%)(%)‘ <2, implying that (%) - (%) (%) =0, as desired. [ |

R ) Given an arithmetic function f:7Z — C, we say that it is completely multiplicative if
for any m and n,

f(mn) = f(m)f(n).

“Multiplicative” vs “Completely multiplicative”: For completely multiplica-
tive functions, the above relation holds true even if (m,n) > 1.

6.4 When is —1 a quadratic residue modulo p?

Theorem 6.8 Let p > 3 be a prime. Then

(:>:@nv. (6.7)

In particulae, —1 is a quadratic residue modulo p if p =1 (mod 4), and a quadratic
non-residue modulo p if p=3 (mod 4).

Proof. We know from Theorem 6.6 that (_71) = (—1)% (mod p), and thus (6.7) follows
since (%) takes value from {—1,1} for odd primes p. Finally, prl isevenif p=1 (mod 4),

and odd if p=3 (mod 4). [

6.5 Starters for sums of squares

We prove two additional results based on the knowledge of quadratic residues; they will
be used in our later study of the “sum of squares” problems.

Theorem 6.9 Let p > 3 be a prime such that p=1 (mod 4). Then there exists an integer
x such that
¥ +1=mp

with 0 <m < p.
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Proof. For primes p =1 (mod 4), Theorem 6.8 tells us that —1 is a quadratic residue
modulo p. Thus, there exists an x among 1, ..., p—1 such that

x*=-1 (mod p).

< p;l, for if x satisfies the above congruence, so

In particular, we may choose x with 1 <x 5
g)z—i-l p?. Thus, x>+ 1=mpwithO<m<p. R

—~ IN

does p—x. Finally, we have 0 <x* 41 <

Theorem 6.10 Let p > 3 be a prime. Then there exist integers x and y such that

4y 1 =mp

with 0 <m < p.

Proof. Consider the following p+ 1 integers: x* for 0 < x < pT_l and —(y>+1) for 0<y <
pT_l. Since there are p residue classes modulo p, by the pigeonhole principle, at least two
of the p+1 integers fall into the same residue class. Note that all the x*’s are incongruent
modulo p, and so are the —(y*>+1)’s. Thus, the two integers falling into the same residue
class must be one x> and one —(y>+1). That is, there exists x and y with 0 < x,y < %
such that x> = —(y*+1) (mod p), or x> +y?>+1 = mp for an integer m. Finally, we have
0< 14224y <142(%)% < p2 Thus, 0 <m < p. |



