
6. Quadratic residues

6.1 Quadratic residues
Assume that p ≥ 3 is prime and that x is such that 1 ≤ x ≤ p−1. For any integer a with
(a, p) = 1, there exists a unique x′ with 1 ≤ x′ ≤ p−1 such that xx′ ≡ a (mod p).

Definition 6.1 We call x′ the associate of x with respect to a modulo p if

xx′ ≡ a (mod p)

with 1 ≤ x′ ≤ p−1.

We are in particular interested in the case where the associate of x is itself.
Definition 6.2 Let p be a prime and a be such that (a, p) = 1. We say that a is a
quadratic residue modulo p if there exists an x such that

x2 ≡ a (mod p).

We usually write a R p is this case. If such x does not exist, we say that a is a quadratic
non-residue modulo p, and write a N p.

Note that when p= 2, for any a such that (a,2) = 1, we always have a≡ 1= 12 (mod 2).
Thus, all such a’s are quadratic residues modulo 2. Below, we only focus on the case where
p ≥ 3.

Lemma 6.1 Let p ≥ 3 be a prime and x0 be such that (x0, p) = 1. Then

x2 ≡ x2
0 (mod p) (6.1)

has exactly two solutions

x+ ≡ x0 (mod p) and x− ≡−x0 (mod p),

and in particular x+ ̸≡ x− (mod p).

Proof. We rewite (6.1) as

(x− x0)(x+ x0)≡ 0 (mod p).
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Since p is prime, it follows that p | (x− x0) or p | (x+ x0), thereby leading to the two
solutions x±. Also, x+ ̸≡ x− (mod p); otherwise, we have x0 ≡ −x0 (mod p), or p | 2x0, or
p | x0 since p ≥ 3 is prime, which violates the assumption that (x0, p) = 1. ■

Theorem 6.2 Let p ≥ 3 be a prime.
(i) If a is a quadratic residue modulo p, then there are exactly two distinct residue

classes x ≡ x1,x2 modulo p with x2 ≡−x1 (mod p) such that x2 ≡ a (mod p).
(ii) There are exactly p−1

2 quadratic residues modulo p, and p−1
2 quadratic non-residues

modulo p. In particular, the quadratic residues can be represented by the residue
classes {12,22, . . . ,( p−1

2 )2} modulo p.

Proof. (i). Since a is a quadratic residue, we may always find an x1 such that x2
1 ≡ a

(mod p). Thus, by Lemma 6.1, the only two solutions to x2 ≡ a ≡ x2
1 (mod p) are x ≡±x1

(mod p) and they are distinct.
(ii). First, Part (i) implies that there are at most p−1

2 quadratic residues modulo p.
Otherwise, if there are ≥ p+1

2 quadratic residues, then there are ≥ 2 · p+1
2 = p+1 residue

classes modulo p, which is impossible. Next, we show that {12, . . . ,( p−1
2 )2} are pairwise

distinct residue classes modulo p. To see this, we choose 1 ≤ i, j ≤ p−1
2 with i ̸= j. We

claim that i2 ̸≡ j2 (mod p). Otherwise, if i2 ≡ j2 (mod p), then p | (i− j)(i+ j). But since
1 ≤ i, j ≤ p−1

2 and i ̸= j, both i− j and i+ j are not multiples of p, thereby leading to
a contradiction. Thus, there are exactly p−1

2 quadratic residues modulo p, characterized
by {12, . . . ,( p−1

2 )2} modulo p, and as a consequence, there are exactly (p−1)− p−1
2 = p−1

2
quadratic non-residues modulo p. ■

Theorem 6.3 Let p ≥ 3 be a prime.
(i) If a is a quadratic residue modulo p, then

(p−1)! ≡−a
p−1

2 (mod p). (6.2)

(ii) If a is a quadratic non-residue modulo p, then

(p−1)! ≡ a
p−1

2 (mod p). (6.3)

Proof. Recall that for each a with (a, p) = 1, every integer x with 1 ≤ x ≤ p−1 has a unique
associate x′ (with respect to a modulo p) of one another with 1 ≤ x′ ≤ p−1.

For quadratic residues a, we know from Theorem 6.2(i) that there are exactly two x’s,
say x = x1 and x = p− x1, whose associate is itself. Therefore, we may group {1, . . . , p−1}
into (x1), (p− x1) and p−3

2 distinct unordered pairs (x,x′) with

x2
1 ≡ (p− x1)

2 ≡ a (mod p)

and
xx′ ≡ a (mod p).

Thus,

(p−1)! = x1 · (p− x1) ·∏(xx′)≡−x2
1 ·∏(xx′)≡−a ·a

p−3
2 =−a

p−1
2 (mod p).

For quadratic non-residues a, we cannot find any x such that x2 ≡ a (mod p). Therefore,
we group {1, . . . , p−1} into p−1

2 distinct unordered pairs (x,x′) with

xx′ ≡ a (mod p).
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Thus,

(p−1)! = ∏(xx′)≡ a
p−1

2 (mod p).

The proof is therefore complete. ■

6.2 Wilson’s Theorem
Let us take a look at the special case a = 1 of Theorem 6.3, which is known as Wilson’s
Theorem.

Theorem 6.4 (Wilson’s Theorem). Let p be a prime. Then

(p−1)! ≡−1 (mod p). (6.4)

Proof. If p = 2, we simply have 1 ≡ −1 (mod 2), which is trivial. If p is an odd prime,
then we note that 1 is a quadratic residue modulo p, for 1 ≡ 12 (mod p). Therefore, taking
a = 1 in (6.2) yields (6.4). ■

Note that (6.4) is always false if the prime p is replaced by a composite.

Theorem 6.5 For m ≥ 2, we have (m−1)! ≡−1 (mod m) if and only if m is prime.

Proof. The “if” part is exactly Wilson’s Theorem. For the “only if” part, we assume that m
is composite. Then m has a divisor d with 1< d <m. Thus, this d is among 2, . . . ,m−1, and
thus d | (m−1)!. This then implies that d ∤

(
(m−1)!+1

)
. But if (m−1)! ≡−1 (mod m),

or equivalently, m |
(
(m−1)!+1

)
, then all the divisors of m also divide (m−1)!+1, thereby

leading to a contradiction. ■

6.3 Legendre symbol
We usually use the Legendre symbol to characterize whether an integer a is a quadratic
residue modulo an odd prime p.

Definition 6.3 Let p ≥ 3 be a prime and a be an integer. The Legendre symbol
( a

p

)
is

defined by

(
a
p

)
=


0, if p | a,
1, if a is a quadratic residue modulo p,
−1, if a is a quadratic non-residue modulo p.

Theorem 6.6 Let p ≥ 3 be a prime and a be such that (a, p) = 1. Then(
a
p

)
≡ a

p−1
2 (mod p). (6.5)

Proof. Note that Theorem 6.3 can be understood as

(p−1)! ≡−
(

a
p

)
·a

p−1
2 (mod p).

On the other hand, Wilson’s Theorem asserts that
(p−1)! ≡−1 (mod p).

The desired result therefore follows. ■
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Theorem 6.7 Let p ≥ 3 be a prime and m,n be integers. Then(
mn
p

)
=

(
m
p

)(
n
p

)
. (6.6)

Proof. If one of m and n is a multiple of p, so is mn. Thus, in this case,(
mn
p

)
=

(
m
p

)(
n
p

)
= 0.

Now, we assume that (m, p) = (n, p) = 1 and thus (mn, p) = 1. Then by Theorem 6.6,(
mn
p

)
≡ (mn)

p−1
2 = m

p−1
2 n

p−1
2 ≡

(
m
p

)(
n
p

)
(mod p),

that is, p |
∣∣(mn

p

)
−
(m

p

)( n
p

)∣∣. However, the values of
(m

p

)
,
( n

p

)
and

(mn
p

)
are taken from

{−1,1}. Thus,
∣∣(mn

p

)
−
(m

p

)( n
p

)∣∣≤ 2, implying that
(mn

p

)
−
(m

p

)( n
p

)
= 0, as desired. ■

R Given an arithmetic function f : Z→ C, we say that it is completely multiplicative if
for any m and n,

f (mn) = f (m) f (n).

“Multiplicative” vs “Completely multiplicative”: For completely multiplica-
tive functions, the above relation holds true even if (m,n)> 1.

6.4 When is −1 a quadratic residue modulo p?
Theorem 6.8 Let p ≥ 3 be a prime. Then(

−1
p

)
= (−1)

p−1
2 . (6.7)

In particulae, −1 is a quadratic residue modulo p if p ≡ 1 (mod 4), and a quadratic
non-residue modulo p if p ≡ 3 (mod 4).

Proof. We know from Theorem 6.6 that
(−1

p

)
≡ (−1)

p−1
2 (mod p), and thus (6.7) follows

since
(−1

p

)
takes value from {−1,1} for odd primes p. Finally, p−1

2 is even if p ≡ 1 (mod 4),
and odd if p ≡ 3 (mod 4). ■

6.5 Starters for sums of squares
We prove two additional results based on the knowledge of quadratic residues; they will
be used in our later study of the “sum of squares” problems.

Theorem 6.9 Let p ≥ 3 be a prime such that p ≡ 1 (mod 4). Then there exists an integer
x such that

x2 +1 = mp

with 0 < m < p.
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Proof. For primes p ≡ 1 (mod 4), Theorem 6.8 tells us that −1 is a quadratic residue
modulo p. Thus, there exists an x among 1, . . ., p−1 such that

x2 ≡−1 (mod p).

In particular, we may choose x with 1 ≤ x ≤ p−1
2 , for if x satisfies the above congruence, so

does p−x. Finally, we have 0< x2+1<
( p

2

)2
+1< p2. Thus, x2+1=mp with 0<m< p. ■

Theorem 6.10 Let p ≥ 3 be a prime. Then there exist integers x and y such that

x2 + y2 +1 = mp

with 0 < m < p.

Proof. Consider the following p+1 integers: x2 for 0 ≤ x ≤ p−1
2 and −(y2 +1) for 0 ≤ y ≤

p−1
2 . Since there are p residue classes modulo p, by the pigeonhole principle, at least two

of the p+1 integers fall into the same residue class. Note that all the x2’s are incongruent
modulo p, and so are the −(y2 +1)’s. Thus, the two integers falling into the same residue
class must be one x2 and one −(y2 +1). That is, there exists x and y with 0 ≤ x,y ≤ p−1

2
such that x2 ≡ −(y2 + 1) (mod p), or x2 + y2 + 1 = mp for an integer m. Finally, we have
0 < 1+ x2 + y2 < 1+2

( p
2

)2
< p2. Thus, 0 < m < p. ■


