
5. Primitive roots

5.1 Powers of integers
Let m be a positive integer and a be an integer with (a,m) = 1. Let k ≥ 0 be a nonnegative
integer.

(i) For nonnegative powers of a, we know that ak is an integer, and hence we may
directly determine the residue class of ak modulo m.

(ii) For negative powers of a, we recall from Definition 3.3 that there exists an integer
a such that aa ≡ 1 (mod m). Thus, we may use a−1 to represent the residue class of
a modulo m. In particular, we have aa−1 ≡ 1 (mod m), which is a natural analogy
to the usual inverse of integers; this explains why we call a the modular inverse of a
in Definition 3.3. Now, we may naturally define negative powers of a modulo m by
a−k ≡ (a−1)k (mod m).

R Note that if a is such that (a,m) > 1, then there is no integer a such that aa ≡ 1
(mod m), since by Theorem 2.5, ax− 1 = my has no integer solutions (x,y). Thus,
we cannot define negative powers of a modulo m in this case. However, nonnegative
powers of a can be defined as the normal powers.

From the above definition, we have the following trivial fact.

Theorem 5.1 Let m be a positive integer and a,b be integers with (a,m) = (b,m) = 1 and
a ≡ b (mod m). Then for any integer x,

ax ≡ bx (mod m). (5.1)

The next two results show that integer powers in the modular sense have similar
properties to normal powers of integers.

Theorem 5.2 Let m be a positive integer and a,b be integers with (a,m) = (b,m) = 1.
Then for any integer x,

(ab)x ≡ axbx (mod m). (5.2)

Proof. If x ≥ 0, then (ab)x = axbx as normal integer powers, and hence they are congruent
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modulo m. If x < 0, we first note that (ab)−1 ≡ a−1b−1 (mod m) for

(ab) · (a−1b−1) = (aa−1) · (bb−1)≡ 1 ·1 = 1 (mod m).

Thus,
(ab)x ≡

(
(ab)−1)−x ≡ (a−1b−1)−x = (a−1)−x(b−1)−x ≡ axbx (mod m),

as desired. ■

Theorem 5.3 Let m be a positive integer and a be an integer with (a,m) = 1. Then
(i) 1−1 ≡ 1 (mod m);
(ii) (a−1)−1 ≡ a (mod m);
(iii) For any integers x and y, we have ax+y ≡ axay (mod m);
(iv) For any integers x and y, we have axy ≡ (ax)y (mod m).

Proof. (i). Note that 1 ·1 ≡ 1 (mod m), and hence 1−1 ≡ 1 (mod m).
(ii). Note that a−1 is the modular inverse of a modulo m and vice versa by definition.

This means that (a−1)−1 ≡ a (mod m).
(iii). This relation is trivial if x and y are simultaneously nonnegative, or simultaneously

nonpositive. Without loss of generality, we assume that x > 0 > y. In particular, we may
further assume that x+ y ≥ 0, for if x+ y < 0, we only need to rewrite the congruence as
(a−1)−(x+y) ≡ (a−1)−x(a−1)−y (mod m). Now, we note that ax = ax+y−y = ax+ya−y for both
x+ y and −y are nonnegative integers. Hence,

ax ·ay = (ax+ya−y) ·ay ≡ (ax+ya−y) · (a−1)−y = ax+y · (a ·a−1)−y ≡ ax+y ·1−y = ax+y (mod m).

(iv). We require three basic facts. Firstly, for x and y nonnegative integers,

(ax)y = axy; (5.3)

this is a property of normal integer powers. Secondly, for x a nonnegative integer,

(a−1)x ≡ a−x (mod m); (5.4)

this follows from the definition of negative powers in the modular sense. Thirdly, for x an
integer,

(ax)−1 = a−x; (5.5)

this follows from Part (iii) as axa−x ≡ ax+(−x) = a0 = 1 (mod m), namely, a−x is the modular
inverse of ax. Now, we prove Part (iv) according to the following four cases. (a). If x,y≥ 0,
then by (5.3) axy = (ax)y and thus they are congruent modulo m. (b). If x ≥ 0 > y, then

(ax)y (5.4)
≡
(
(ax)−1)−y (5.5)

≡ (a−x)−y (5.4)
≡
(
(a−1)x)−y (5.3)

= (a−1)−xy (5.4)
≡ axy (mod m).

(c). If y ≥ 0 > x, then

(ax)y (5.4)
≡
(
(a−1)−x)y (5.3)

= (a−1)−xy (5.4)
≡ axy (mod m).

(d). If x,y < 0, then

(ax)y (5.4)
≡
(
(ax)−1)−y (5.5)

≡ (a−x)−y (5.3)
= axy (mod m).

The desired result hence holds true. ■
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5.2 Orders
By the Fermat–Euler Theorem (Theorem 4.6), we have aϕ(m) ≡ 1 (mod m), indicating that
there exists at least one positive integer x such that ax ≡ 1 (mod m).

Definition 5.1 Let m be a positive integer and a be an integer with (a,m) = 1. The
smallest positive integer d such that

ad ≡ 1 (mod m) (5.6)

is called the order of a modulo m, denoted by ordm a.

■ Example 5.1 (i). We have ord5 2 = 4 for 21 ≡ 2, 22 ≡ 4, 23 ≡ 3 and 24 ≡ 1 (mod 5). (ii).
We have ord7 2 = 3 for 21 ≡ 2, 22 ≡ 4 and 23 ≡ 1 (mod 7). ■

Theorem 5.4 Let m be a positive integer and a be an integer with (a,m) = 1. Then an
integer x satisfies ax ≡ 1 (mod m) if and only if ordm a | x. In particular, ordm a | ϕ(m).

Proof. Let d = ordm a. Then ad ≡ 1 (mod m) by definition. If d | x, then we may write
x = q ·d and thus,

ax = aqd ≡ (ad)q ≡ 1q = 1 (mod m).

Assume that there exists an x with d ∤ x such that ax ≡ 1 (mod m). Thus, we may write
x = q ·d + r for q and r integers with 0 < r < d. It follows that

1 ≡ ax = aqd+r ≡ aqd ·ar ≡ (ad)q ·ar ≡ 1 ·ar = ar (mod m).

But this violates the assumption that d is the smallest positive integer such that ad ≡ 1
(mod m). Finally, ordm a | ϕ(m) since aϕ(m) ≡ 1 (mod m) by the Fermat–Euler Theorem. ■

Theorem 5.5 Let m be a positive integer and a be an integer with (a,m) = 1. If we write
d = ordm a, then for any integer k,

ordm ak =
d

(d,k)
. (5.7)

In particular, for any positive d∗ with d∗ | d, we have ordm a
d

d∗ = d∗.

Proof. We write d′ = ordm ak and δ = (d,k). First, noting that (ak)
d
δ = (ad)

k
δ ≡ 1

k
δ = 1

(mod m), we have d′ | d
δ by Theorem 5.4. Also, akd′

= (ak)d′ ≡ 1 (mod m), and therefore
d | kd′ by Theorem 5.4, implying that d

δ | k
δ d′. Further, we have ( d

δ ,
k
δ ) = 1 since δ = (d,k).

Hence, d
δ | d′. It follows that d′ = d

δ . Finally, we choose k = d
d∗ and note that (d, d

d∗ ) =
d
d∗ ,

thereby getting the last part. ■

Theorem 5.6 Let m be a positive integer and a,b be integers with (a,m) = (b,m) = 1.
Let da = ordm a and db = ordm b. If (da,db) = 1, then ordm(ab) = dadb.

Proof. Let d = ordm(ab). First, noting that (ab)dadb = (ada)db ·(bdb)da ≡ 1db ·1da = 1 (mod m),
we have d | dadb. Also, addb = addb ·1d ≡ addb ·(bdb)d = (ab)ddb =

(
(ab)d

)db ≡ 1db = 1 (mod m),
and thus da | ddb. Noting further that (da,db) = 1, we have da | d. Similarly, db | d and thus
dadb | d since (da,db) = 1. It follows that d = dadb. ■
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Theorem 5.7 Let m be a positive integer and {a1,a2, . . . ,aϕ(m)} be a reduced residue
system modulo m. Let di = ordm ai for 1 ≤ i ≤ ϕ(m) and define D = max1≤i≤ϕ(m){di}.
Then D | ϕ(m), and di | D for each 1 ≤ i ≤ ϕ(m).

Proof. First, D | ϕ(m) follows from Theorem 5.4 and the fact that D is the order of a
certain ai, say x. For the second part, we prove by contradiction. Assume that there exists
a y such that d = ordm y ∤ D. If we write in the canonical form d = ∏i pαi

i and D = ∏i pβi
i ,

then there exists at least one index i such that αi > βi since d ∤ D. Then lcm(d,D) > D
as lcm(d,D) = ∏i pmax(αi,βi)

i . Now, we define d′ = ∏k:αk>βk
pαk

k and D′ = ∏ℓ:βℓ≥αℓ
pβℓ

ℓ . Then
d′ | d, D′ | D, (d′,D′) = 1 and d′D′ = lcm(d,D). By Theorem 5.5, there exists an a of order
d′ and a b of order D′. Thus, by Theorem 5.6, ordm(ab) = d′D′ = lcm(d,D)> D. But this
violates the fact that D is the maximum among the orders. ■

5.3 Primitive roots
Recall that the orders modulo m are always divisors of ϕ(m). We now focus on the case
where the order equals ϕ(m).

Definition 5.2 An integer g is called a primitive root of m if ordm g = ϕ(m).

Theorem 5.8 If m has a primitive root g, then {g,g2, . . . ,gϕ(m)} gives a reduced residue
system modulo m.

R If m has a primitive root, then the multiplicative group Z×
m is cyclic.

Proof. Note that the ϕ(m) integers g, ..., gϕ(m) are coprime to m since (g,m) = 1. Hence,
it suffices to show that they are pairwise distinct modulo m. Assume not; then there are
integers i and j with 1 ≤ i < j ≤ ϕ(m) such that gi ≡ g j (mod m), or g j−i ≡ 1 (mod m). But
g is a primitive root of m, and thus ordm g = ϕ(m). By Theorem 5.4, ϕ(m) | ( j− i), which
is impossible. ■

Theorem 5.9 If m has a primitive root, then there are ϕ(ϕ(m)) primitive roots among
1,2, . . . ,m.

Proof. Let g be a primitive root of m and hence ordm g = ϕ(m). Then Theorem 5.8 tells us
that the reduced system modulo m can be represented by {g, . . . ,gϕ(m)}. Thus, it suffices
to determine the number of i’s with 1 ≤ i ≤ ϕ(m) such that ordm gi = ϕ(m). On the other
hand, we know from Theorem 5.5 that ordm gi = ϕ(m)

(i,ϕ(m)) . So we only need to count the
number of i’s such that (i,ϕ(m)) = 1 and there are ϕ(ϕ(m)) such i’s among 1, . . . ,ϕ(m). ■

5.4 Lagrange’s polynomial congruence theorem
Here, we present a theorem of Lagrange, which will be a key for confirming the existence
of primitive roots of an odd prime.

Theorem 5.10 (Lagrange’s Polynomial Congruence Theorem). Let p be a prime. Let f (x)=
anxn + · · ·+a1x+a0 be a polynomial with integer coefficients such that p ∤ an. Then the
congruence

f (x)≡ 0 (mod p)
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has at most n solutions modulo p.

Proof. We prove by induction on the degree n of f (x). When n = 1, f (x) is linear and the
statement is trivial. Now we assume that the statement is true for 1, . . . ,n with n ≥ 1. Let
f (x) be of degree n+1. If f (x)≡ 0 (mod p) has no solutions, then there is nothing to prove.
If there is one solution, say x ≡ x0 (mod p), then f (x0) ≡ 0 (mod p). Now, we consider
g(x) = f (x)− f (x0) = (x−x0)q(x) where q(x) is a polynomial with integer coefficients whose
degree is n. Note that f (x) ≡ 0 (mod p) is equivalent to g(x) ≡ 0 (mod p). Since p is a
prime, we either have x− x0 ≡ 0 (mod p) which has one solution modulo p, or q(x) ≡ 0
(mod p) which has at most n solutions modulo p by our inductive assumption. It follows
that there are at most n+1 solutions to f (x)≡ 0 (mod p), as desired. ■

5.5 Existence of primitive roots
Now, we are in a position to characterize which integers have primitive roots.

Theorem 5.11 Every odd prime p has a primitive root.

Proof. As in Theorem 5.7, we write dk = ordp k for 1 ≤ k ≤ p−1, and define D = maxk{dk}
so that D | ϕ(p) = p− 1. Since dk | D, we have kD ≡ 1 (mod p) for each k. It turns out
that the congruence xD − 1 ≡ 0 (mod p) has p− 1 solutions modulo p. By Lagrange’s
Polynomial Congruence Theorem (Theorem 5.10), we have D ≥ p− 1. Combining with
the fact that D | p− 1, we have D = p− 1, and hence, there exists an integer g of order
D = p−1 = ϕ(p), thereby giving our desired primitive root. ■

Lemma 5.12 For any odd prime p, there exists a primitive root g such that p | (gp−1−1)
and p2 ∤ (gp−1 −1).

Proof. Let g be an arbitrary primitive root of p. Then gp−1 ≡ 1 (mod p), namely, p |
(gp−1 − 1). If we also have p2 ∤ (gp−1 − 1), there is nothing to prove. If p2 | (gp−1 − 1),
namely, gp−1 −1 ≡ 0 (mod p2), then we note that g∗ = p+g is also a primitive root of p.
Meanwhile,

gp−1
∗ −1 = (p+g)p−1 −1 =

p−1

∑
r=0

(
p−1

r

)
prgp−1−r −1

≡ gp−1 + p(p−1)gp−2 −1 ≡−pgp−2 ̸≡ 0 (mod p2).

Hence, in this case g∗ is the desired primitive root. ■

Theorem 5.13 For any odd prime p, let g be a primitive root as in Lemma 5.12. Then
for any positive integer α, g is also a primitive root of pα . In particular, pα always has
an odd primitive root.

Proof. Since g is a primitive root of p as in Lemma 5.12, we have ordp g = ϕ(p) = p− 1
and g is such that

gp−1 = px+1

with p ∤ x. Let ordpα g = d. Then gd ≡ 1 (mod pα), and thus gd ≡ 1 (mod p). Hence,
(p−1) | d. On the other hand, d | ϕ(pα) = (p−1)pα−1. Hence, d is of the form d = (p−1)ps
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for some 0 ≤ s ≤ α −1. Now, recalling that p ∤ x, we have, with an application of Theorem
4.11,

gd = g(p−1)ps
= (px+1)ps

=
ps

∑
r=0

(
ps

r

)
(px)r ≡ 1+ ps+1x ̸≡ 1 (mod ps+2).

However, gd ≡ 1 (mod pα). Hence, s+ 2 ≥ α + 1. It follows that the only possibility is
s = α −1, implying that ordpα g = d = (p−1)pα−1 = ϕ(pα), or g is a primitive root of pα .
Finally, we observe that both g and g+ pα are primitive roots of pα , and they are of
different parities, thereby concluding the last part. ■

Theorem 5.14 For any odd prime p and positive integer α, let g be an odd primitive
root of pα . Then g is also a primitive root of 2pα .

Proof. Note that g being an odd primitive root of pα implies that (g,2pα) = 1. Let
d = ord2pα g and we have d | ϕ(2pα). Then gd ≡ 1 (mod 2pα), and hence, gd ≡ 1 (mod pα).
Since g is a primitive root of pα , we have ϕ(pα) = ordpα g | d. However, ϕ(2pα) = ϕ(pα) =
(p−1)pα−1. It follows that d = ϕ(2pα), namely, g is a primitive root of 2pα . ■

Theorem 5.15 The positive integer m has a primitive root if and only if m is of the form
1, 2, 4, pα or 2pα where p is an odd prime and α is a positive integer.

Proof. Note that 1 has a primitive root 1, that 2 has a primitive root 1, and that 4 has a
primitive root 3. It remains to show that no other positive integers have primitive roots.

We first exclude ingeters m that can be written as m = st with s, t ≥ 3 and (s, t) = 1.
Note that Euler’s totient function ϕ is multiplicative, namely, ϕ(m) = ϕ(s)ϕ(t). Also, ϕ(s)
and ϕ(t) are even by recalling Theorem 4.2. Thus, ϕ(m)

2 is a integer. We prove that for
any a with (a,m) = 1, a

ϕ(m)
2 ≡ 1 (mod m). To see this, we have

a
ϕ(m)

2 =
(
aϕ(s)) ϕ(t)

2 ≡ 1
ϕ(t)

2 = 1 (mod s),

and similarly,

a
ϕ(m)

2 ≡ 1 (mod t).

Note that (s, t) = 1 and st = m. By Chinese Remainder Theorem, we have a
ϕ(m)

2 ≡ 1
(mod m). Hence, m has no primitive roots.

Finally, we exclude integers of the form 2α with α ≥ 3. Note that if a is such that
(a,2α) = 1, then a is odd and we write a= 2b+1. We prove that a

ϕ(2α )
2 = a2α−2 ≡ 1 (mod 2α)

always holds true. To see this, we have, with Theorem 4.11 applied,

a
ϕ(2α )

2 = (2b+1)2α−2
=

2α−2

∑
r=0

(
2α−2

r

)
(2b)r

≡ 1+2α−2(2b)+(2α−2 −1)2α−3(2b)2

≡ 1+2α−1(b−b2)≡ 1 (mod 2α).

Hence 2α (α ≥ 3) has no primitive roots. ■


