5. Primitive roots

5.1 Powers of integers

Let *m* be a positive integer and *a* be an integer with (a,m) = 1. Let $k \ge 0$ be a nonnegative integer.

- (i) For nonnegative powers of a, we know that a^k is an integer, and hence we may directly determine the residue class of a^k modulo m.
- (ii) For negative powers of a, we recall from Definition 3.3 that there exists an integer \overline{a} such that $a\overline{a} \equiv 1 \pmod{m}$. Thus, we may use a^{-1} to represent the residue class of \overline{a} modulo m. In particular, we have $aa^{-1} \equiv 1 \pmod{m}$, which is a natural analogy to the usual inverse of integers; this explains why we call \overline{a} the modular inverse of a in Definition 3.3. Now, we may naturally define negative powers of a modulo m by $a^{-k} \equiv (a^{-1})^k \pmod{m}$.

Note that if a is such that (a,m) > 1, then there is no integer \overline{a} such that $a\overline{a} \equiv 1 \pmod{m}$, since by Theorem 2.5, ax - 1 = my has no integer solutions (x, y). Thus, we cannot define negative powers of $a \mod m$ in this case. However, nonnegative powers of a can be defined as the normal powers.

From the above definition, we have the following trivial fact.

Theorem 5.1 Let *m* be a positive integer and *a*, *b* be integers with (a,m) = (b,m) = 1 and $a \equiv b \pmod{m}$. Then for any integer *x*,

$$a^x \equiv b^x \pmod{m}. \tag{5.1}$$

The next two results show that integer powers in the modular sense have similar properties to normal powers of integers.

Theorem 5.2 Let *m* be a positive integer and a, b be integers with (a, m) = (b, m) = 1. Then for any integer *x*,

$$(ab)^x \equiv a^x b^x \pmod{m}. \tag{5.2}$$

Proof. If $x \ge 0$, then $(ab)^x = a^x b^x$ as normal integer powers, and hence they are congruent

modulo *m*. If x < 0, we first note that $(ab)^{-1} \equiv a^{-1}b^{-1} \pmod{m}$ for

$$(ab) \cdot (a^{-1}b^{-1}) = (aa^{-1}) \cdot (bb^{-1}) \equiv 1 \cdot 1 = 1 \pmod{m}.$$

Thus,

$$(ab)^{x} \equiv ((ab)^{-1})^{-x} \equiv (a^{-1}b^{-1})^{-x} = (a^{-1})^{-x}(b^{-1})^{-x} \equiv a^{x}b^{x} \pmod{m},$$

as desired.

Theorem 5.3 Let *m* be a positive integer and *a* be an integer with (a,m) = 1. Then

- (i) $1^{-1} \equiv 1 \pmod{m};$
- (ii) $(a^{-1})^{-1} \equiv a \pmod{m};$
- (iii) For any integers x and y, we have $a^{x+y} \equiv a^x a^y \pmod{m}$;
- (iv) For any integers x and y, we have $a^{xy} \equiv (a^x)^y \pmod{m}$.

Proof. (i). Note that $1 \cdot 1 \equiv 1 \pmod{m}$, and hence $1^{-1} \equiv 1 \pmod{m}$.

(ii). Note that a^{-1} is the modular inverse of a modulo m and vice versa by definition. This means that $(a^{-1})^{-1} \equiv a \pmod{m}$.

(iii). This relation is trivial if x and y are simultaneously nonnegative, or simultaneously nonpositive. Without loss of generality, we assume that x > 0 > y. In particular, we may further assume that $x + y \ge 0$, for if x + y < 0, we only need to rewrite the congruence as $(a^{-1})^{-(x+y)} \equiv (a^{-1})^{-x}(a^{-1})^{-y} \pmod{m}$. Now, we note that $a^x = a^{x+y-y} = a^{x+y}a^{-y}$ for both x + y and -y are nonnegative integers. Hence,

$$a^{x} \cdot a^{y} = (a^{x+y}a^{-y}) \cdot a^{y} \equiv (a^{x+y}a^{-y}) \cdot (a^{-1})^{-y} = a^{x+y} \cdot (a \cdot a^{-1})^{-y} \equiv a^{x+y} \cdot 1^{-y} = a^{x+y} \pmod{m}.$$

(iv). We require three basic facts. Firstly, for x and y nonnegative integers,

$$(a^x)^y = a^{xy};$$
 (5.3)

this is a property of normal integer powers. Secondly, for x a nonnegative integer,

$$(a^{-1})^x \equiv a^{-x} \pmod{m}; \tag{5.4}$$

this follows from the definition of negative powers in the modular sense. Thirdly, for x an integer,

$$(a^x)^{-1} = a^{-x}; (5.5)$$

this follows from Part (iii) as $a^{x}a^{-x} \equiv a^{x+(-x)} = a^{0} = 1 \pmod{m}$, namely, a^{-x} is the modular inverse of a^{x} . Now, we prove Part (iv) according to the following four cases. (a). If $x, y \ge 0$, then by (5.3) $a^{xy} = (a^{x})^{y}$ and thus they are congruent modulo m. (b). If $x \ge 0 > y$, then

$$(a^{x})^{y} \stackrel{(5.4)}{\equiv} ((a^{x})^{-1})^{-y} \stackrel{(5.5)}{\equiv} (a^{-x})^{-y} \stackrel{(5.4)}{\equiv} ((a^{-1})^{x})^{-y} \stackrel{(5.3)}{=} (a^{-1})^{-xy} \stackrel{(5.4)}{\equiv} a^{xy} \pmod{m}$$

(c). If $y \ge 0 > x$, then

$$(a^{x})^{y} \stackrel{(5.4)}{\equiv} ((a^{-1})^{-x})^{y} \stackrel{(5.3)}{\equiv} (a^{-1})^{-xy} \stackrel{(5.4)}{\equiv} a^{xy} \pmod{m}.$$

(d). If x, y < 0, then

$$(a^{x})^{y} \stackrel{(5.4)}{\equiv} ((a^{x})^{-1})^{-y} \stackrel{(5.5)}{\equiv} (a^{-x})^{-y} \stackrel{(5.3)}{=} a^{xy} \pmod{m}.$$

The desired result hence holds true.

5.2 Orders

By the Fermat–Euler Theorem (Theorem 4.6), we have $a^{\phi(m)} \equiv 1 \pmod{m}$, indicating that there exists at least one positive integer x such that $a^x \equiv 1 \pmod{m}$.

Definition 5.1 Let *m* be a positive integer and *a* be an integer with (a,m) = 1. The smallest positive integer *d* such that

$$a^d \equiv 1 \pmod{m} \tag{5.6}$$

is called the order of a modulo m, denoted by $\operatorname{ord}_m a$.

Example 5.1 (i). We have $\operatorname{ord}_5 2 = 4$ for $2^1 \equiv 2$, $2^2 \equiv 4$, $2^3 \equiv 3$ and $2^4 \equiv 1 \pmod{5}$. (ii). We have $\operatorname{ord}_7 2 = 3$ for $2^1 \equiv 2$, $2^2 \equiv 4$ and $2^3 \equiv 1 \pmod{7}$.

Theorem 5.4 Let *m* be a positive integer and *a* be an integer with (a,m) = 1. Then an integer *x* satisfies $a^x \equiv 1 \pmod{m}$ if and only if $\operatorname{ord}_m a \mid x$. In particular, $\operatorname{ord}_m a \mid \phi(m)$.

Proof. Let $d = \operatorname{ord}_m a$. Then $a^d \equiv 1 \pmod{m}$ by definition. If $d \mid x$, then we may write $x = q \cdot d$ and thus,

$$a^x = a^{qd} \equiv (a^d)^q \equiv 1^q = 1 \pmod{m}.$$

Assume that there exists an x with $d \nmid x$ such that $a^x \equiv 1 \pmod{m}$. Thus, we may write $x = q \cdot d + r$ for q and r integers with 0 < r < d. It follows that

$$1 \equiv a^{x} = a^{qd+r} \equiv a^{qd} \cdot a^{r} \equiv (a^{d})^{q} \cdot a^{r} \equiv 1 \cdot a^{r} = a^{r} \pmod{m}.$$

But this violates the assumption that d is the smallest positive integer such that $a^d \equiv 1 \pmod{m}$. Finally, $\operatorname{ord}_m a \mid \phi(m)$ since $a^{\phi(m)} \equiv 1 \pmod{m}$ by the Fermat-Euler Theorem.

Theorem 5.5 Let *m* be a positive integer and *a* be an integer with (a,m) = 1. If we write $d = \operatorname{ord}_m a$, then for any integer *k*,

$$\operatorname{ord}_{m} a^{k} = \frac{d}{(d,k)}.$$
(5.7)

In particular, for any positive d^* with $d^* \mid d$, we have $\operatorname{ord}_m a^{\frac{d}{d^*}} = d^*$.

Proof. We write $d' = \operatorname{ord}_m a^k$ and $\delta = (d, k)$. First, noting that $(a^k)^{\frac{d}{\delta}} = (a^d)^{\frac{k}{\delta}} \equiv 1^{\frac{k}{\delta}} = 1$ (mod m), we have $d' \mid \frac{d}{\delta}$ by Theorem 5.4. Also, $a^{kd'} = (a^k)^{d'} \equiv 1 \pmod{m}$, and therefore $d \mid kd'$ by Theorem 5.4, implying that $\frac{d}{\delta} \mid \frac{k}{\delta}d'$. Further, we have $(\frac{d}{\delta}, \frac{k}{\delta}) = 1$ since $\delta = (d, k)$. Hence, $\frac{d}{\delta} \mid d'$. It follows that $d' = \frac{d}{\delta}$. Finally, we choose $k = \frac{d}{d^*}$ and note that $(d, \frac{d}{d^*}) = \frac{d}{d^*}$, thereby getting the last part.

Theorem 5.6 Let *m* be a positive integer and *a*, *b* be integers with (a,m) = (b,m) = 1. Let $d_a = \operatorname{ord}_m a$ and $d_b = \operatorname{ord}_m b$. If $(d_a, d_b) = 1$, then $\operatorname{ord}_m(ab) = d_a d_b$.

Proof. Let $d = \operatorname{ord}_m(ab)$. First, noting that $(ab)^{d_a d_b} = (a^{d_a})^{d_b} \cdot (b^{d_b})^{d_a} \equiv 1^{d_b} \cdot 1^{d_a} = 1 \pmod{m}$, we have $d \mid d_a d_b$. Also, $a^{dd_b} = a^{dd_b} \cdot 1^d \equiv a^{dd_b} \cdot (b^{d_b})^d = (ab)^{dd_b} = ((ab)^d)^{d_b} \equiv 1^{d_b} = 1 \pmod{m}$, and thus $d_a \mid dd_b$. Noting further that $(d_a, d_b) = 1$, we have $d_a \mid d$. Similarly, $d_b \mid d$ and thus $d_a d_b \mid d$ since $(d_a, d_b) = 1$. It follows that $d = d_a d_b$.

Theorem 5.7 Let *m* be a positive integer and $\{a_1, a_2, \ldots, a_{\phi(m)}\}$ be a reduced residue system modulo *m*. Let $d_i = \operatorname{ord}_m a_i$ for $1 \le i \le \phi(m)$ and define $D = \max_{1 \le i \le \phi(m)} \{d_i\}$. Then $D \mid \phi(m)$, and $d_i \mid D$ for each $1 \le i \le \phi(m)$.

Proof. First, $D \mid \phi(m)$ follows from Theorem 5.4 and the fact that D is the order of a certain a_i , say x. For the second part, we prove by contradiction. Assume that there exists a y such that $d = \operatorname{ord}_m y \nmid D$. If we write in the canonical form $d = \prod_i p_i^{\alpha_i}$ and $D = \prod_i p_i^{\beta_i}$, then there exists at least one index i such that $\alpha_i > \beta_i$ since $d \nmid D$. Then $\operatorname{lcm}(d,D) > D$ as $\operatorname{lcm}(d,D) = \prod_i p_i^{\max(\alpha_i,\beta_i)}$. Now, we define $d' = \prod_{k:\alpha_k > \beta_k} p_k^{\alpha_k}$ and $D' = \prod_{\ell:\beta_\ell \ge \alpha_\ell} p_\ell^{\beta_\ell}$. Then $d' \mid d, D' \mid D, (d',D') = 1$ and $d'D' = \operatorname{lcm}(d,D)$. By Theorem 5.5, there exists an a of order d' and a b of order D'. Thus, by Theorem 5.6, $\operatorname{ord}_m(ab) = d'D' = \operatorname{lcm}(d,D) > D$. But this violates the fact that D is the maximum among the orders.

5.3 Primitive roots

Recall that the orders modulo m are always divisors of $\phi(m)$. We now focus on the case where the order equals $\phi(m)$.

Definition 5.2 An integer g is called a primitive root of m if $\operatorname{ord}_m g = \phi(m)$.

Theorem 5.8 If *m* has a primitive root *g*, then $\{g, g^2, \ldots, g^{\phi(m)}\}$ gives a reduced residue system modulo *m*.

R If *m* has a primitive root, then the multiplicative group \mathbb{Z}_m^{\times} is cyclic.

Proof. Note that the $\phi(m)$ integers $g, ..., g^{\phi(m)}$ are coprime to m since (g,m) = 1. Hence, it suffices to show that they are pairwise distinct modulo m. Assume not; then there are integers i and j with $1 \le i < j \le \phi(m)$ such that $g^i \equiv g^j \pmod{m}$, or $g^{j-i} \equiv 1 \pmod{m}$. But g is a primitive root of m, and thus $\operatorname{ord}_m g = \phi(m)$. By Theorem 5.4, $\phi(m) \mid (j-i)$, which is impossible.

Theorem 5.9 If *m* has a primitive root, then there are $\phi(\phi(m))$ primitive roots among $1, 2, \ldots, m$.

Proof. Let g be a primitive root of m and hence $\operatorname{ord}_m g = \phi(m)$. Then Theorem 5.8 tells us that the reduced system modulo m can be represented by $\{g, \ldots, g^{\phi(m)}\}$. Thus, it suffices to determine the number of *i*'s with $1 \le i \le \phi(m)$ such that $\operatorname{ord}_m g^i = \phi(m)$. On the other hand, we know from Theorem 5.5 that $\operatorname{ord}_m g^i = \frac{\phi(m)}{(i,\phi(m))}$. So we only need to count the number of *i*'s such that $(i, \phi(m)) = 1$ and there are $\phi(\phi(m))$ such *i*'s among $1, \ldots, \phi(m)$.

5.4 Lagrange's polynomial congruence theorem

Here, we present a theorem of Lagrange, which will be a key for confirming the existence of primitive roots of an odd prime.

Theorem 5.10 (Lagrange's Polynomial Congruence Theorem). Let p be a prime. Let $f(x) = a_n x^n + \cdots + a_1 x + a_0$ be a polynomial with integer coefficients such that $p \nmid a_n$. Then the congruence

 $f(x) \equiv 0 \pmod{p}$

has at most n solutions modulo p.

Proof. We prove by induction on the degree n of f(x). When n = 1, f(x) is linear and the statement is trivial. Now we assume that the statement is true for $1, \ldots, n$ with $n \ge 1$. Let f(x) be of degree n+1. If $f(x) \equiv 0 \pmod{p}$ has no solutions, then there is nothing to prove. If there is one solution, say $x \equiv x_0 \pmod{p}$, then $f(x_0) \equiv 0 \pmod{p}$. Now, we consider $g(x) = f(x) - f(x_0) = (x - x_0)q(x)$ where q(x) is a polynomial with integer coefficients whose degree is n. Note that $f(x) \equiv 0 \pmod{p}$ is equivalent to $g(x) \equiv 0 \pmod{p}$. Since p is a prime, we either have $x - x_0 \equiv 0 \pmod{p}$ which has one solution modulo p, or $q(x) \equiv 0 \pmod{p}$ which has at most n solutions modulo p by our inductive assumption. It follows that there are at most n+1 solutions to $f(x) \equiv 0 \pmod{p}$, as desired.

5.5 Existence of primitive roots

Now, we are in a position to characterize which integers have primitive roots.

Theorem 5.11 Every odd prime p has a primitive root.

Proof. As in Theorem 5.7, we write $d_k = \operatorname{ord}_p k$ for $1 \le k \le p-1$, and define $D = \max_k \{d_k\}$ so that $D \mid \phi(p) = p-1$. Since $d_k \mid D$, we have $k^D \equiv 1 \pmod{p}$ for each k. It turns out that the congruence $x^D - 1 \equiv 0 \pmod{p}$ has p-1 solutions modulo p. By Lagrange's Polynomial Congruence Theorem (Theorem 5.10), we have $D \ge p-1$. Combining with the fact that $D \mid p-1$, we have D = p-1, and hence, there exists an integer g of order $D = p-1 = \phi(p)$, thereby giving our desired primitive root.

Lemma 5.12 For any odd prime p, there exists a primitive root g such that $p \mid (g^{p-1}-1)$ and $p^2 \nmid (g^{p-1}-1)$.

Proof. Let g be an arbitrary primitive root of p. Then $g^{p-1} \equiv 1 \pmod{p}$, namely, $p \mid (g^{p-1}-1)$. If we also have $p^2 \nmid (g^{p-1}-1)$, there is nothing to prove. If $p^2 \mid (g^{p-1}-1)$, namely, $g^{p-1}-1 \equiv 0 \pmod{p^2}$, then we note that $g_* = p+g$ is also a primitive root of p. Meanwhile,

$$g_*^{p-1} - 1 = (p+g)^{p-1} - 1 = \sum_{r=0}^{p-1} {p-1 \choose r} p^r g^{p-1-r} - 1$$
$$\equiv g^{p-1} + p(p-1)g^{p-2} - 1 \equiv -pg^{p-2} \neq 0 \pmod{p^2}$$

Hence, in this case g_* is the desired primitive root.

Theorem 5.13 For any odd prime p, let g be a primitive root as in Lemma 5.12. Then for any positive integer α , g is also a primitive root of p^{α} . In particular, p^{α} always has an odd primitive root.

Proof. Since g is a primitive root of p as in Lemma 5.12, we have $\operatorname{ord}_p g = \phi(p) = p - 1$ and g is such that

$$g^{p-1} = px + 1$$

with $p \nmid x$. Let $\operatorname{ord}_{p^{\alpha}} g = d$. Then $g^{d} \equiv 1 \pmod{p^{\alpha}}$, and thus $g^{d} \equiv 1 \pmod{p}$. Hence, $(p-1) \mid d$. On the other hand, $d \mid \phi(p^{\alpha}) = (p-1)p^{\alpha-1}$. Hence, d is of the form $d = (p-1)p^{s}$

for some $0 \le s \le \alpha - 1$. Now, recalling that $p \nmid x$, we have, with an application of Theorem 4.11,

$$g^d = g^{(p-1)p^s} = (px+1)^{p^s} = \sum_{r=0}^{p^s} {p^s \choose r} (px)^r \equiv 1 + p^{s+1}x \not\equiv 1 \pmod{p^{s+2}}.$$

However, $g^d \equiv 1 \pmod{p^{\alpha}}$. Hence, $s+2 \ge \alpha + 1$. It follows that the only possibility is $s = \alpha - 1$, implying that $\operatorname{ord}_{p^{\alpha}} g = d = (p-1)p^{\alpha-1} = \phi(p^{\alpha})$, or g is a primitive root of p^{α} . Finally, we observe that both g and $g + p^{\alpha}$ are primitive roots of p^{α} , and they are of different parities, thereby concluding the last part.

Theorem 5.14 For any odd prime p and positive integer α , let g be an odd primitive root of p^{α} . Then g is also a primitive root of $2p^{\alpha}$.

Proof. Note that g being an odd primitive root of p^{α} implies that $(g, 2p^{\alpha}) = 1$. Let $d = \operatorname{ord}_{2p^{\alpha}} g$ and we have $d \mid \phi(2p^{\alpha})$. Then $g^{d} \equiv 1 \pmod{2p^{\alpha}}$, and hence, $g^{d} \equiv 1 \pmod{p^{\alpha}}$. Since g is a primitive root of p^{α} , we have $\phi(p^{\alpha}) = \operatorname{ord}_{p^{\alpha}} g \mid d$. However, $\phi(2p^{\alpha}) = \phi(p^{\alpha}) = (p-1)p^{\alpha-1}$. It follows that $d = \phi(2p^{\alpha})$, namely, g is a primitive root of $2p^{\alpha}$.

Theorem 5.15 The positive integer *m* has a primitive root if and only if *m* is of the form 1, 2, 4, p^{α} or $2p^{\alpha}$ where *p* is an odd prime and α is a positive integer.

Proof. Note that 1 has a primitive root 1, that 2 has a primitive root 1, and that 4 has a primitive root 3. It remains to show that no other positive integers have primitive roots.

We first exclude ingeters *m* that can be written as m = st with $s, t \ge 3$ and (s,t) = 1. Note that Euler's totient function ϕ is multiplicative, namely, $\phi(m) = \phi(s)\phi(t)$. Also, $\phi(s)$ and $\phi(t)$ are even by recalling Theorem 4.2. Thus, $\frac{\phi(m)}{2}$ is a integer. We prove that for any *a* with (a,m) = 1, $a^{\frac{\phi(m)}{2}} \equiv 1 \pmod{m}$. To see this, we have

$$a^{\frac{\phi(m)}{2}} = (a^{\phi(s)})^{\frac{\phi(t)}{2}} \equiv 1^{\frac{\phi(t)}{2}} \equiv 1 \pmod{s},$$

and similarly,

$$a^{\frac{\varphi(m)}{2}} \equiv 1 \pmod{t}.$$

Note that (s,t) = 1 and st = m. By Chinese Remainder Theorem, we have $a^{\frac{\varphi(m)}{2}} \equiv 1 \pmod{m}$. Hence, *m* has no primitive roots.

Finally, we exclude integers of the form 2^{α} with $\alpha \geq 3$. Note that if a is such that $(a, 2^{\alpha}) = 1$, then a is odd and we write a = 2b+1. We prove that $a^{\frac{\phi(2^{\alpha})}{2}} = a^{2^{\alpha-2}} \equiv 1 \pmod{2^{\alpha}}$ always holds true. To see this, we have, with Theorem 4.11 applied,

$$a^{\frac{\phi(2^{\alpha})}{2}} = (2b+1)^{2^{\alpha-2}} = \sum_{r=0}^{2^{\alpha-2}} {\binom{2^{\alpha-2}}{r}} (2b)^r$$
$$\equiv 1 + 2^{\alpha-2}(2b) + (2^{\alpha-2} - 1)2^{\alpha-3}(2b)^2$$
$$\equiv 1 + 2^{\alpha-1}(b-b^2) \equiv 1 \pmod{2^{\alpha}}.$$

Hence 2^{α} ($\alpha \geq 3$) has no primitive roots.