5. Primitive roots

5.1 Powers of integers

Let m be a positive integer and a be an integer with (a,m) =1. Let k > 0 be a nonnegative
integer.
(i) For nonnegative powers of a, we know that a* is an integer, and hence we may
directly determine the residue class of ¢ modulo m.
(ii) For negative powers of a, we recall from Definition 3.3 that there exists an integer
@ such that aa =1 (mod m). Thus, we may use a~! to represent the residue class of
@ modulo m. In particular, we have aa~! =1 (mod m), which is a natural analogy
to the usual inverse of integers; this explains why we call @ the modular inverse of a
in Definition 3.3. Now, we may naturally define negative powers of a modulo m by
a*=(a"H* (mod m).

R ) Note that if a is such that (a,m) > 1, then there is no integer @ such that aa =1
(mod m), since by Theorem 2.5, ax — 1 = my has no integer solutions (x,y). Thus,
we cannot define negative powers of @ modulo m in this case. However, nonnegative
powers of a can be defined as the normal powers.

From the above definition, we have the following trivial fact.

Theorem 5.1 Let m be a positive integer and a,b be integers with (a,m) = (b,m) =1 and
a=b (mod m). Then for any integer x,

a'=b" (mod m). (5.1)

The next two results show that integer powers in the modular sense have similar
properties to normal powers of integers.

Theorem 5.2 Let m be a positive integer and a,b be integers with (a,m) = (b,m) = 1.
Then for any integer x,

(ab)* =a*b* (mod m). (5.2)

Proof. If x > 0, then (ab)* = a*b* as normal integer powers, and hence they are congruent
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modulo m. If x < 0, we first note that (ab)~' =a~'b~! (mod m) for
(ab)-(a'b™)=(aa™")-(bb™")=1-1=1 (mod m).

Thus,
(ab) = ((ab) ") " =(a b )y T =(@ )y (b ) T =ab* (modm),

as desired. [ |

Theorem 5.3 Let m be a positive integer and a be an integer with (a,m) = 1. Then
(i) 17'=1 (mod m);
(i) (@ ")~'=a (mod m);
(iii) For any integers x and y, we have a*™ = a*a” (mod m);
(iv) For any integers x and y, we have ¥ = (a*)’ (mod m).

Proof. (i). Note that 1-1=1 (mod m), and hence 1! =1 (mod m).

(ii). Note that a~! is the modular inverse of @ modulo m and vice versa by definition.
This means that (a=!)~' =a (mod m).

(iii). This relation is trivial if x and y are simultaneously nonnegative, or simultaneously
nonpositive. Without loss of generality, we assume that x > 0 > y. In particular, we may
further assume that x+y > 0, for if x4+y < 0, we only need to rewrite the congruence as
(@)~ = (a7 ¥(a=')™ (mod m). Now, we note that a* = "™ = a*?a™Y for both

x+y and —y are nonnegative integers. Hence,
a-@=@a?)-@=@Va) (a )V =a" (a-a) V=17 =a"  (mod m).

(iv). We require three basic facts. Firstly, for x and y nonnegative integers,

—

a’) =a"; (5.3)
this is a property of normal integer powers. Secondly, for x a nonnegative integer,
(aY=a™* (modm); (5.4)

this follows from the definition of negative powers in the modular sense. Thirdly, for x an
integer,

(@) '=a (5.5)

this follows from Part (iii) as a*a* = a** "% =% =1 (mod m), namely, a—* is the modular
inverse of a*. Now, we prove Part (iv) according to the following four cases. (a). If x,y >0,
then by (5.3) a¥ = (a*)” and thus they are congruent modulo m. (b). If x >0 >y, then

G Ny B G (58, g (5
)E«a)l)):(a )yz((al))yZ(al) Y ="a” (mod m).

(@)

(c). If y>0>x, then

(ax)y (524) ((afl)fx)y (5;3) (a71>7xy = v (mod m)

(@) = ((a")fl) = (a7 @ g (mod m).

The desired result hence holds true. [ |
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Orders

By the Fermat-Euler Theorem (Theorem 4.6), we have a®™ =1 (mod m), indicating that
there exists at least one positive integer x such that ¢* =1 (mod m).

Definition 5.1 Let m be a positive integer and a be an integer with (a,m) =1. The
smallest positive integer d such that

a’=1 (mod m) (5.6)
is called the order of a modulo m, denoted by ord,,a.

= Example 5.1 (i). We have ords2 =4 for 2! =2,22=4,23=3 and 2*=1 (mod 5). (ii).
We have ord;2 =3 for 2! =2, 22 =4 and 2 =1 (mod 7). ]

Theorem 5.4 Let m be a positive integer and a be an integer with (a,m) = 1. Then an
integer x satisfies * =1 (mod m) if and only if ord,a | x. In particular, ord,,a | ¢ (m).

Proof. Let d = ord,,a. Then a? =1 (mod m) by definition. If d | x, then we may write

x=gq-d and thus,

by qd

a=a (a)¥=19=1 (mod m).

Assume that there exists an x with d {x such that * =1 (mod m). Thus, we may write
x=gq-d+r for g and r integers with 0 < < d. It follows that

l=a"=a""=a" 0" = (a")-d"=1-" =d" (mod m).

But this violates the assumption that d is the smallest positive integer such that a? = 1
(mod m). Finally, ord, a | ¢ (m) since a®™ =1 (mod m) by the Fermat-Euler Theorem. M

Theorem 5.5 Let m be a positive integer and a be an integer with (a,m) = 1. If we write
d = ord,, a, then for any integer k,

ord,, a* =

o (5.7)

In particular, for any positive d* with d* | d, we have ordmadl* =d*.

Proof. We write d’ = ord,,a* and § = (d,k). First, noting that (ak)% = (ad)§ =15 =1
(mod m), we have d’ | % by Theorem 5.4. Also, a* = (d)¥ =1 (mod m), and therefore
d | kd' by Theorem 5.4, implying that & | 5d’. Further, we have (4, %) =1 since & = (d,k).
Hence, % |d’. Tt follows that d’' = %. Finally, we choose k = % and note that (d, di) = %,
thereby getting the last part. |

Theorem 5.6 Let m be a positive integer and a,b be integers with (a,m) = (b,m) = 1.
Let d, = ord,,a and d, = ord,, b. If (d,,d) = 1, then ord,,(ab) = d,dp.

Proof. Let d =ord,,(ab). First, noting that (ab)% = (a)% . (b%)% = 1%.1% =1 (mod m),
we have d | d,dj,. Also, a®® = a%¥ .14 = g% . (b%)4 = (ab)¥ = ((ab)d)d” =1% =1 (mod m),
and thus d, | ddp. Noting further that (d,,d,) = 1, we have d, | d. Similarly, dj, | d and thus
dadp | d since (dg,dp) = 1. It follows that d = d,dp. [
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Theorem 5.7 Let m be a positive integer and {al,az,...,aq,(m)} be a reduced residue
system modulo m. Let d; = ord,a; for 1 <i < ¢(m) and define D = max;<j<y(m)idi}-
Then D | ¢(m), and d; | D for each 1 <i < ¢(m).

Proof. First, D | ¢(m) follows from Theorem 5.4 and the fact that D is the order of a
certain a;, say x. For the second part, we prove by contradiction. Assume that there exists
a y such that d = ord,,y{ D. If we write in the canonical form d =[], p{ and D =TJ; p? "
then there exists at least one index i such that o; > f; since d { D. Then lem(d,D) > D
as lem(d,D) = H,-p;nax(a"’ﬁ"). Now, we define d’ = [T.q>p, Pp* and D' =Tlpp,54, pf”. Then
d|d, D' |D, (d',D')=1and d'D’' =lcm(d,D). By Theorem 5.5, there exists an a of order
d" and a b of order D'. Thus, by Theorem 5.6, ord,,(ab) = d'D’ =lcm(d,D) > D. But this
violates the fact that D is the maximum among the orders. |

Primitive roots

Recall that the orders modulo m are always divisors of ¢(m). We now focus on the case
where the order equals ¢ (m).

I Definition 5.2 An integer g is called a primitive root of m if ord,, g = ¢ (m).

Theorem 5.8 If m has a primitive root g, then {g,g>,... ,g¢(m)} gives a reduced residue
system modulo m.

R ) If m has a primitive root, then the multiplicative group Z,, is cyclic.

Proof. Note that the ¢(m) integers g, ..., g?™ are coprime to m since (g,m) = 1. Hence,
it suffices to show that they are pairwise distinct modulo m. Assume not; then there are
integers i and j with 1 <i < j < ¢(m) such that g’ =g/ (mod m), or g¢/~'=1 (mod m). But
g is a primitive root of m, and thus ord,,g = ¢(m). By Theorem 5.4, ¢(m) | (j —i), which
is impossible. |

Theorem 5.9 If m has a primitive root, then there are ¢(¢(m)) primitive roots among
1,2,...,m.

Proof. Let g be a primitive root of m and hence ord,, g = ¢(m). Then Theorem 5.8 tells us
that the reduced system modulo m can be represented by {g,... ,g¢(m)}. Thus, it suffices

to determine the number of i’s with 1 <i < ¢(m) such that ord, g’ = ¢(m). On the other

hand, we know from Theorem 5.5 that ord, g’ = (i¢¢((mry2))' So we only need to count the

number of i’s such that (i,¢(m)) =1 and there are ¢(¢(m)) such i’s among 1,...,¢(m). N

Lagrange’s polynomial congruence theorem

Here, we present a theorem of Lagrange, which will be a key for confirming the existence
of primitive roots of an odd prime.

Theorem 5.10 (Lagrange’s Polynomial Congruence Theorem). Let p be a prime. Let f(x) =
apX" +---+ajx+ap be a polynomial with integer coefficients such that pta,. Then the
congruence

f()=0 (mod p)
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‘ has at most n solutions modulo p.

Proof. We prove by induction on the degree n of f(x). When n =1, f(x) is linear and the
statement is trivial. Now we assume that the statement is true for 1,...,n with n > 1. Let
f(x) be of degree n+1. If f(x) =0 (mod p) has no solutions, then there is nothing to prove.
If there is one solution, say x = xp (mod p), then f(xp) =0 (mod p). Now, we consider
g(x) = f(x)— f(x0) = (x—x0)q(x) where g(x) is a polynomial with integer coefficients whose
degree is n. Note that f(x) =0 (mod p) is equivalent to g(x) =0 (mod p). Since p is a
prime, we either have x —xp =0 (mod p) which has one solution modulo p, or g(x) =0
(mod p) which has at most n solutions modulo p by our inductive assumption. It follows
that there are at most n+ 1 solutions to f(x) =0 (mod p), as desired. [

Existence of primitive roots

Now, we are in a position to characterize which integers have primitive roots.

Theorem 5.11 Every odd prime p has a primitive root. ‘

Proof. As in Theorem 5.7, we write di = ord,k for 1 <k < p—1, and define D = max;{di}
so that D | ¢(p) = p—1. Since d; | D, we have kP =1 (mod p) for each k. It turns out
that the congruence x” — 1 =0 (mod p) has p — 1 solutions modulo p. By Lagrange’s
Polynomial Congruence Theorem (Theorem 5.10), we have D > p — 1. Combining with
the fact that D | p—1, we have D = p — 1, and hence, there exists an integer g of order
D =p—1=¢(p), thereby giving our desired primitive root. [

Lemma 5.12 For any odd prime p, there exists a primitive root g such that p | (g?~! —1)
and pf (g7 — 1),

Proof. Let g be an arbitrary primitive root of p. Then g”~! =1 (mod p), namely, p |
(g"~' —1). If we also have p?{ (gP~' —1), there is nothing to prove. If p?| (g?~' —1),
namely, g"~! —1 =0 (mod p?), then we note that g, = p+ g is also a primitive root of p.
Meanwhile,

p—1 —1
gl —1=(p+gl'-1=Y, (p . )p’g"”—l
r=0

=g ' +p(p—1)gF 2 —1=—pgF?#0 (mod p?).

Hence, in this case g, is the desired primitive root. [

Theorem 5.13 For any odd prime p, let g be a primitive root as in Lemma 5.12. Then
for any positive integer o, g is also a primitive root of p%. In particular, p* always has
an odd primitive root.

Proof. Since g is a primitive root of p as in Lemma 5.12, we have ord,g = ¢(p) =p—1
and g is such that

g t=px+1

(mod p%), and thus g/ =1 (mod p). Hence,

with ptx. Let ordjeg =d. Then g =1
(p—1)p*~'. Hence, d is of the formd = (p—1)p*

(p—1)|d. On the other hand, d | ¢ (p%)
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for some 0 < s < a—1. Now, recalling that p{x, we have, with an application of Theorem
411,

S

P s
gl =g P = (px+1)" = Z <Ii > (px)"=14+px#1 (mod p*2).
r=0

However, g/ =1 (mod p%*). Hence, s+2 > o+ 1. It follows that the only possibility is
s=a— 1, implying that ordjag=d = (p—1)p*~! = ¢(p%), or g is a primitive root of p*.
Finally, we observe that both g and g+ p% are primitive roots of p%*, and they are of
different parities, thereby concluding the last part. |

Theorem 5.14 For any odd prime p and positive integer «, let g be an odd primitive
root of p%. Then g is also a primitive root of 2p%.

Proof. Note that g being an odd primitive root of p* implies that (g,2p*) = 1. Let
d = ordype g and we have d | ¢(2p®). Then g? =1 (mod 2p*), and hence, g? =1 (mod p%).
Since g is a primitive root of p%, we have ¢(p*) = ord,« g |d. However, ¢(2p%*) = ¢(p*) =
(p—1)p*~ 1. It follows that d = ¢(2p%), namely, g is a primitive root of 2p*. |

Theorem 5.15 The positive integer m has a primitive root if and only if m is of the form
1,2, 4, p® or 2p* where p is an odd prime and o is a positive integer.

Proof. Note that 1 has a primitive root 1, that 2 has a primitive root 1, and that 4 has a
primitive root 3. It remains to show that no other positive integers have primitive roots.

We first exclude ingeters m that can be written as m = st with s,7 >3 and (s,7) = 1.

Note that Euler’s totient function ¢ is multiplicative, namely, ¢ (m) = ¢(s)¢9(¢). Also, ¢(s)

and ¢(¢) are even by recalling Theorem 4.2. Thus, olm) s a integer. We prove that for

2
any a with (a,m) =1, A" =1 (mod m). To see this, we have

m () '
2 (a‘i’(s)) R (mod s),

and similarly,

(m)
Note that (s,#) =1 and st = m. By Chinese Remainder Theorem, we have a* =1

(mod m). Hence, m has no primitive roots.

Finally, we exclude integers of the form 2% with @ > 3. Note that if a is such that

(a,2%) =1, then a is odd and we write a =2b+1. We prove that 2 = =1 (mod 2%)
always holds true. To see this, we have, with Theorem 4.11 applied,

20-2 s yp—2
9(2%) qa-2 2 ,
=2b+1 = 2
a? =(2b+1) ;o'<">(b)

=1+42%2(2b) 4 (2%72 = 1)2%3(2b)?
=142 b—b*)=1 (mod 2%).

Hence 2% (a > 3) has no primitive roots. [



