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4. Fermat—Euler Theorem

Reduced residue systems

Definition 4.1 A set {aj,az,...,a,} is called a reduced residue system modulo m, or a
reduced system modulo m, if

(i) a; #aj (mod m) for any i # j;
(ii) (aj,m)=1 for 1 <i<h;
(iii) For any integer a with (a,m) =1, there exists an index i such that a =a; (mod m).

= Example 4.1 (i). {1,5} is a reduced system modulo 6; (ii). {1,2,...,p—1} is a reduced

system modulo p for p a prime. =
Theorem 4.1 Let {ay,...,a,} be a reduced system modulo m and let k be an integer with
(k,m) = 1. Then {kay,...,ka} is also a reduced system modulo m.

Proof. This proof is similar to that for Theorem 3.6.

(i). The same as Part (i) in the proof of Theorem 3.6.

(ii). Show (kaj,m) =1 for 1 <i<h. Since k and a; have no common divisors > 1 with
m, so does their product ka;.

(iii). Show a =ka; (mod m) for some i for any a with (a,m)=1. Since (k,m) =1, we may
find an integer k' with kK =1 (mod m). Note that (kK';m) =1 for if d is a common divisor
of K and m, then d | (k' —mx) =1 where x is such that k' —1 = mx. Thus, (ak’,m) = 1.
Choose i such that a; =ak’ (mod m). Then ka; = k(ak’) = a(kk') = a (mod m). [ |

Euler’s totient function

Note that a reduced system modulo m is a subset of a complete system modulo m. In
particular, the size h of any reduced system modulo m equals the number of integers
among {1,2,...,m} that are coprime to m.

Definition 4.2 Let n be a positive integer. The Euler totient function ¢(n) denotes the
I number of integers among {1,2,...,n} that are coprime to n.

= Example 4.2 (i). ¢(1) =1 for 1 is the only integer in {1} that is coprime to 1; (ii).
¢(3) =2 for 1 and 2 are the integers in {1,2,3} that are coprime to 3; (iii). ¢(6) =2 for 1
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and 5 are the integers in {1,2,3,4,5,6} that are coprime to 6. u

R ) We may replace {1,2,...,n} in the definition of Euler’s totient function by any com-
plete system modulo n.

Theorem 4.2 Let p be a prime and k be a positive integer. Then

o(p")=p—p . (4.1)

Proof. Recall that ¢(p*) equals the number of integers in {I,...,p*} that are coprime to
p¥, or in other words, that are not divisible by p. Since there are p*~! integers among

{1,...,p*} that are multiples of p, namely, p-1, p-2, ..., p-p*~!, we have ¢(p*) = pF —
k—1
P |

How to determine ¢(n) if n is not a prime power?

Theorem 4.3 Let m and n be such that (m,n) = 1. Then

¢(mn) = ¢(m)¢(n). (4.2)

Proof. We have shown in Theorem 3.7 that {bm+an:1<a <m,1 <b<n} is a complete
system modulo mn. Thus, to compute ¢(mn), it suffices to count the number of such
bm+ an with (bm+ an,mn) = 1. Note that
(bm+an,mn)=1 < (bm+an,m)=1 & (bm+an,n)=1
< (an,m) =1 & (bm,n) =1
& (am)=1 & (b,n)=1.

Thus, there are ¢(m) possibilities of a and @(n) possibilities of b, and therefore ¢(m)¢(n)
possibilities of admissible bm+ an. It follows that ¢ (mn) = ¢(m)¢(n). [

R ) Given a function f:7Z — C, we say that it is multiplicative if (1) =1 and for any m

and n with (m,n) =1,
f(mn) = f(m)f(n).

Corollary 4.4 For any integer n > 2,

¢(n):n-H(l—;>, (4.3)

pln

where the product runs over all prime divisors of n.

Proof. We write n in its canonical form n =[], p{". Then by Theorem 4.3,

o(n) —_ijp?‘v.

Further, making use of Theorem 4.2 gives
4 o« w1 — 1 L @ T 1 ! 1
H‘P(Pi') :H(Pi'—l’iﬁ ) :HPil <1 __> _Hpil'H<1 _,) =n (1 —_>;
i=1 i=1 i=1 i i=1 i=1 i

implying the desired result. |
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Theorem 4.5 Let n be a positive integer. Then

Y o(d) =

dln

where the sum runs over all divisors of n.

Proof. We write n =[], p*. Then the divisors of n are of the form Hp‘npﬁ with0<B <a
for each p. Thus,

Yo =Yo| [I P|=X II ¢("

din pln pln
0<p<a 0<p<a
=T X ¢ )=TT10+p-1)+@—p)++“—p*")
pln 0<B<a pln
pln
giving the desired result. u

r) This relatlon can also be understood as follows. Consider the n fractions %, %, et
. For each , we can uniquely write it in the irreducible form k = 4 with (a,d) = 1.
Note that d | n. Also, since 1 <k <n, we have 1 <a <d. Since there are exactly ¢(d)

such 4, and they correspond to exactly ¢(d) fractions among {% :1 <k <n}, we have

n= Zd|n¢(d)

4.3 Fermat—Euler Theorem

Theorem 4.6 (Fermat—Euler Theorem). If (a,m) = 1, then

a®™ =1 (mod m). (4.4)

Proof. Let {xi,...,x(m)} be a reduced system modulo m. Thus, (x;,m)=1 for each i.
Since (a,m) =1, we know from Theorem 4.1 that {axy,...axy()} is also a reduced system
modulo m. Thus,

¢(m) ¢(m) o(m)
HxiEHax, =a’ H (mod m).
i=1 i=1

i=1

Since (x;,m) =1 for each i, we have ([[;x;,m) = 1. Thus, by Corollary 3.5, a® =1
(mod m). [

The m equal to a prime p case is also known as Fermat’s Theorem.

Corollary 4.7 (Fermat’s Theorem). If p is a prime and pta, then

a’'=1 (mod p). (4.5)

4.4 Binomial coefficients
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Definition 4.3 For integers m > n > 0, the binomial coefficients are defined by

<m> m! m(m—l)-n(m—n—i—l)'

n _n!(m—n)!_ nn—1)---1

In particular, (7)) =1.

Theorem 4.8 (Pascal’s identity). For integers m >n > 0,

<m:1> - (m) " (n’fl) (4.6)

Proof. We have

(7;) + (ﬂl) - n!(nznin)! RRCENT (Z! At 1)

_ m! 1 m! 1
= D)lm=n) 7 = Dlm=n)! m—n+tl
_ m! m—+1
T (i=D!m—n)! n(m—n+1)
B (m+1)!
() (m—n+1)
which is exactly (mH). [ |

Theorem 4.9 (Binomial Theorem). For n > 1,

(x+y)" = Z <’:>xy (4.7)

r=0

Proof. We prove by induction on n. First, when n =1, both sides of (4.7) are x+y.
Assuming that (4.7) is true for some n > 1, we want to show that it is also true for n+1.
Note that

(x+y)" = (x+y)(x+y)"

_ (o) (z )
—Z()+Z()

_ < n+1+2 < ) rlyn— r) + <yn+1+z <’r’>xryn—r+1>
r=1
(xn-i-l + Z <r_ 1>xryn—r+l> + <yn+l + Z (’:)xryn—r-i-l)
r=1
_ n+l n+1 n n r.n—r+1
oy () ()

:xn+1+yn+1+2n: <”+1)xrynr+1
r=1 r
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_nil<n+1> r.n—r+1

which is exactly the n+ 1 case of (4.7). [

Corollary 4.10 The binomial coefficients (':l’) are integers.

Theorem 4.11 Let p be a prime. Given any nonzero integer n, we denote by v,(n) the
unique nonnegative integer k such that p* | n and p**!{n, namely, v,(n) is the power of
p in the canonical form of n. Let a be a positive integer. For 1 < r < p%,

Vp ((p:‘)) =0 —V,(r). (4.8)

In particular, for any r with 1 <r < p—1, we have p | (f)

Proof. Recall that ( ) (" ;(i) 1)(’?_0[17”1). For each s with 1 <s <r—1 < p%, we observe

the simple fact that v,(s) = v,(p* —s). Hence, vp((p:f)) =v,(p%)—Vvp(r)=0o—vy(r). N

Theorem 4.11 has two important consequences.

Theorem 4.12 For o > 1 and p prime, if
m=1 (mod p%),

then

mP=1 (mod p*th).

Proof. We write m = kp®+1 for a certain integer k. Then

m? = (kp* +1)F = f‘, (1;) (kp®)" =1+ f‘, (p) (kp®)".

r=0 r=1

Now, for 1 <r < p, ([r') -(p*)" is always divisible by p®*!. |

Theorem 4.13 For k> 1 and p prime,

(x1+x+-+x)P =x{+x5 4% (mod p). (4.9)

Proof. We apply induction on k. The k=1 case is trivial. Assume that the statement is
true for some k> 1. Then we prove the k+ 1 case:

(X1 Fx2 4 ) = (x1 + o+t x))”

= Z ( )xl Xo X))’

+ (v + - xpg)?

xf
'xf X2 + X£+1 (mOd p)a

by our inductive assumption. |
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Euler’s proof of the Fermat—Euler Theorem

We first prove that for & > 1 and p prime, if a is such that (a,p) =1,

a®P) =1 (mod p%). (4.10)
For its proof, we first choose k = a in Theorem 4.13 and then put x; =--- =x, = 1. Thus,
a’ =a (mod p). Since (a,p) =1, we have a?~! =1 (mod p). Now, by an iterative appli-
cation of Theorem 4.12, we have a?"V? =1 (mod p?), ..., and alr=r" " = (mod p%),

which is exactly (4.10).

Now, for integers m, we write m =[]; p{". Assume that a is such that (a,m) =1, and thus
(a,pi) =1 for each i. We also write for convenience m = pf‘imi. Since ¢ is multiplicative,

o (m) = ¢(p{")¢(m;). Thus, by (4.10),
a?m — (ad’(P?i))‘p(m’) = 1¢0m) — 1 (mod p;X;).

That is, a®™ —1 is a multiple of each pYi, and thus a multiple of m =[];pY". In other
words,
a®™ =1 (mod m),

as desired.



