
4. Fermat–Euler Theorem

4.1 Reduced residue systems
Definition 4.1 A set {a1,a2, . . . ,ah} is called a reduced residue system modulo m, or a
reduced system modulo m, if

(i) ai ̸≡ a j (mod m) for any i ̸= j;
(ii) (ai,m) = 1 for 1 ≤ i ≤ h;
(iii) For any integer a with (a,m) = 1, there exists an index i such that a ≡ ai (mod m).

■ Example 4.1 (i). {1,5} is a reduced system modulo 6; (ii). {1,2, . . . , p−1} is a reduced
system modulo p for p a prime. ■

Theorem 4.1 Let {a1, . . . ,ah} be a reduced system modulo m and let k be an integer with
(k,m) = 1. Then {ka1, . . . ,kah} is also a reduced system modulo m.

Proof. This proof is similar to that for Theorem 3.6.
(i). The same as Part (i) in the proof of Theorem 3.6.
(ii). Show (kai,m) = 1 for 1 ≤ i ≤ h. Since k and ai have no common divisors > 1 with

m, so does their product kai.
(iii). Show a≡ kai (mod m) for some i for any a with (a,m)= 1. Since (k,m)= 1, we may

find an integer k′ with kk′ ≡ 1 (mod m). Note that (k′,m) = 1 for if d is a common divisor
of k′ and m, then d | (kk′−mx) = 1 where x is such that kk′− 1 = mx. Thus, (ak′,m) = 1.
Choose i such that ai ≡ ak′ (mod m). Then kai ≡ k(ak′) = a(kk′)≡ a (mod m). ■

4.2 Euler’s totient function
Note that a reduced system modulo m is a subset of a complete system modulo m. In
particular, the size h of any reduced system modulo m equals the number of integers
among {1,2, . . . ,m} that are coprime to m.

Definition 4.2 Let n be a positive integer. The Euler totient function ϕ(n) denotes the
number of integers among {1,2, . . . ,n} that are coprime to n.

■ Example 4.2 (i). ϕ(1) = 1 for 1 is the only integer in {1} that is coprime to 1; (ii).
ϕ(3) = 2 for 1 and 2 are the integers in {1,2,3} that are coprime to 3; (iii). ϕ(6) = 2 for 1
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and 5 are the integers in {1,2,3,4,5,6} that are coprime to 6. ■

R We may replace {1,2, . . . ,n} in the definition of Euler’s totient function by any com-
plete system modulo n.

Theorem 4.2 Let p be a prime and k be a positive integer. Then

ϕ(pk) = pk − pk−1. (4.1)

Proof. Recall that ϕ(pk) equals the number of integers in {1, . . . , pk} that are coprime to
pk, or in other words, that are not divisible by p. Since there are pk−1 integers among
{1, . . . , pk} that are multiples of p, namely, p · 1, p · 2, . . ., p · pk−1, we have ϕ(pk) = pk −
pk−1. ■

How to determine ϕ(n) if n is not a prime power?

Theorem 4.3 Let m and n be such that (m,n) = 1. Then

ϕ(mn) = ϕ(m)ϕ(n). (4.2)

Proof. We have shown in Theorem 3.7 that {bm+an : 1 ≤ a ≤ m,1 ≤ b ≤ n} is a complete
system modulo mn. Thus, to compute ϕ(mn), it suffices to count the number of such
bm+an with (bm+an,mn) = 1. Note that

(bm+an,mn) = 1 ⇔ (bm+an,m) = 1 & (bm+an,n) = 1

⇔ (an,m) = 1 & (bm,n) = 1

⇔ (a,m) = 1 & (b,n) = 1.

Thus, there are ϕ(m) possibilities of a and ϕ(n) possibilities of b, and therefore ϕ(m)ϕ(n)
possibilities of admissible bm+an. It follows that ϕ(mn) = ϕ(m)ϕ(n). ■

R Given a function f : Z→C, we say that it is multiplicative if f (1) = 1 and for any m
and n with (m,n) = 1,

f (mn) = f (m) f (n).

Corollary 4.4 For any integer n ≥ 2,

ϕ(n) = n ·∏
p|n

(
1− 1

p

)
, (4.3)

where the product runs over all prime divisors of n.

Proof. We write n in its canonical form n = ∏r
i=1 pαi

i . Then by Theorem 4.3,

ϕ(n) =
r

∏
i=1

ϕ(pαi
i ).

Further, making use of Theorem 4.2 gives
r

∏
i=1

ϕ(pαi
i ) =

r

∏
i=1

(
pαi

i − pαi−1
i

)
=

r

∏
i=1

pαi
i

(
1− 1

pi

)
=

r

∏
i=1

pαi
i ·

r

∏
i=1

(
1− 1

pi

)
= n ·

r

∏
i=1

(
1− 1

pi

)
,

implying the desired result. ■
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Theorem 4.5 Let n be a positive integer. Then

∑
d|n

ϕ(d) = n,

where the sum runs over all divisors of n.

Proof. We write n = ∏p|n pα . Then the divisors of n are of the form ∏p|n pβ with 0 ≤ β ≤ α
for each p. Thus,

∑
d|n

ϕ(d) = ∑ϕ

 ∏
p|n

0≤β≤α

pβ

= ∑ ∏
p|n

0≤β≤α

ϕ(pβ )

= ∏
p|n

∑
0≤β≤α

ϕ(pβ ) = ∏
p|n

(
1+(p−1)+(p2 − p)+ · · ·+(pα − pα−1)

)
= ∏

p|n
pα = n,

giving the desired result. ■

R This relation can also be understood as follows. Consider the n fractions 1
n , 2

n , . . .,
n
n . For each k

n , we can uniquely write it in the irreducible form k
n = a

d with (a,d) = 1.
Note that d | n. Also, since 1 ≤ k ≤ n, we have 1 ≤ a ≤ d. Since there are exactly ϕ(d)
such a

d , and they correspond to exactly ϕ(d) fractions among { k
n : 1 ≤ k ≤ n}, we have

n = ∑d|n ϕ(d).

4.3 Fermat–Euler Theorem
Theorem 4.6 (Fermat–Euler Theorem). If (a,m) = 1, then

aϕ(m) ≡ 1 (mod m). (4.4)

Proof. Let {x1, . . . ,xϕ(m)} be a reduced system modulo m. Thus, (xi,m) = 1 for each i.
Since (a,m) = 1, we know from Theorem 4.1 that {ax1, . . .axϕ(m)} is also a reduced system
modulo m. Thus,

ϕ(m)

∏
i=1

xi ≡
ϕ(m)

∏
i=1

(axi) = aϕ(m)
ϕ(m)

∏
i=1

xi (mod m).

Since (xi,m) = 1 for each i, we have (∏i xi,m) = 1. Thus, by Corollary 3.5, aϕ(m) ≡ 1
(mod m). ■

The m equal to a prime p case is also known as Fermat’s Theorem.

Corollary 4.7 (Fermat’s Theorem). If p is a prime and p ∤ a, then

ap−1 ≡ 1 (mod p). (4.5)

4.4 Binomial coefficients
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Definition 4.3 For integers m ≥ n ≥ 0, the binomial coefficients are defined by(
m
n

)
=

m!
n!(m−n)!

=
m(m−1) · · ·(m−n+1)

n(n−1) · · ·1
.

In particular,
(m

0

)
= 1.

Theorem 4.8 (Pascal’s identity). For integers m ≥ n > 0,(
m+1

n

)
=

(
m
n

)
+

(
m

n−1

)
. (4.6)

Proof. We have(
m
n

)
+

(
m

n−1

)
=

m!
n!(m−n)!

+
m!

(n−1)!(m−n+1)!

=
m!

(n−1)!(m−n)!
· 1

n
+

m!
(n−1)!(m−n)!

· 1
m−n+1

=
m!

(n−1)!(m−n)!
· m+1

n(m−n+1)

=
(m+1)!

(n)!(m−n+1)!
,

which is exactly
(m+1

n

)
. ■

Theorem 4.9 (Binomial Theorem). For n ≥ 1,

(x+ y)n =
n

∑
r=0

(
n
r

)
xryn−r. (4.7)

Proof. We prove by induction on n. First, when n = 1, both sides of (4.7) are x + y.
Assuming that (4.7) is true for some n ≥ 1, we want to show that it is also true for n+1.
Note that

(x+ y)n+1 = (x+ y)(x+ y)n

= (x+ y)

(
n

∑
r=0

(
n
r

)
xryn−r

)

=
n

∑
r=0

(
n
r

)
xr+1yn−r +

n

∑
r=0

(
n
r

)
xryn−r+1

=

(
xn+1 +

n−1

∑
r=0

(
n
r

)
xr+1yn−r

)
+

(
yn+1 +

n

∑
r=1

(
n
r

)
xryn−r+1

)

=

(
xn+1 +

n

∑
r=1

(
n

r−1

)
xryn−r+1

)
+

(
yn+1 +

n

∑
r=1

(
n
r

)
xryn−r+1

)

= xn+1 + yn+1 +
n

∑
r=1

((
n

r−1

)
+

(
n
r

))
xryn−r+1

= xn+1 + yn+1 +
n

∑
r=1

(
n+1

r

)
xryn−r+1
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=
n+1

∑
r=0

(
n+1

r

)
xryn−r+1,

which is exactly the n+1 case of (4.7). ■

Corollary 4.10 The binomial coefficients
(m

n

)
are integers.

Theorem 4.11 Let p be a prime. Given any nonzero integer n, we denote by νp(n) the
unique nonnegative integer k such that pk | n and pk+1 ∤ n, namely, νp(n) is the power of
p in the canonical form of n. Let α be a positive integer. For 1 ≤ r ≤ pα ,

νp

((
pα

r

))
= α −νp(r). (4.8)

In particular, for any r with 1 ≤ r ≤ p−1, we have p |
(p

r

)
.

Proof. Recall that
(pα

r

)
= pα (pα−1)···(pα−r+1)

r(r−1)···1 . For each s with 1 ≤ s ≤ r−1 < pα , we observe
the simple fact that νp(s) = νp(pα − s). Hence, νp(

(pα

r

)
) = νp(pα)−νp(r) = α −νp(r). ■

Theorem 4.11 has two important consequences.

Theorem 4.12 For α ≥ 1 and p prime, if

m ≡ 1 (mod pα),

then
mp ≡ 1 (mod pα+1).

Proof. We write m = kpα +1 for a certain integer k. Then

mp = (kpα +1)p =
p

∑
r=0

(
p
r

)
(kpα)r = 1+

p

∑
r=1

(
p
r

)
(kpα)r.

Now, for 1 ≤ r ≤ p,
(p

r

)
· (pα)r is always divisible by pα+1. ■

Theorem 4.13 For k ≥ 1 and p prime,

(x1 + x2 + · · ·+ xk)
p ≡ xp

1 + xp
2 + · · ·xp

k (mod p). (4.9)

Proof. We apply induction on k. The k = 1 case is trivial. Assume that the statement is
true for some k ≥ 1. Then we prove the k+1 case:

(x1 + x2 + · · ·+ xk+1)
p =

(
x1 +(x2 + · · ·+ xk+1)

)p

=
p

∑
r=0

(
p
r

)
xr

1(x2 + · · ·+ xk+1)
p−r

≡ xp
1 +(x2 + · · ·+ xk+1)

p

≡ xp
1 + xp

2 + · · ·xp
k+1 (mod p),

by our inductive assumption. ■
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4.5 Euler’s proof of the Fermat–Euler Theorem
We first prove that for α ≥ 1 and p prime, if a is such that (a, p) = 1,

aϕ(pα ) ≡ 1 (mod pα). (4.10)

For its proof, we first choose k = a in Theorem 4.13 and then put x1 = · · ·= xa = 1. Thus,
ap ≡ a (mod p). Since (a, p) = 1, we have ap−1 ≡ 1 (mod p). Now, by an iterative appli-
cation of Theorem 4.12, we have a(p−1)p ≡ 1 (mod p2), ..., and a(p−1)pα−1 ≡ 1 (mod pα),
which is exactly (4.10).

Now, for integers m, we write m=∏i pαi
i . Assume that a is such that (a,m)= 1, and thus

(a, pi) = 1 for each i. We also write for convenience m = pαi
i mi. Since ϕ is multiplicative,

ϕ(m) = ϕ(pαi
i )ϕ(mi). Thus, by (4.10),

aϕ(m) =
(
aϕ(pαi

i )
)ϕ(mi) ≡ 1ϕ(mi) = 1 (mod pαi

i ).

That is, aϕ(m)− 1 is a multiple of each pαi
i , and thus a multiple of m = ∏i pαi

i . In other
words,

aϕ(m) ≡ 1 (mod m),

as desired.


