3. Linear congruences

3.1 Congruences

Definition 3.1 Let m be a positive integer. Let a and b be integers. We say that a is congruent to b modulo m if

 $m \mid (a-b).$

We write

 $a \equiv b \pmod{m}$.

If $m \nmid (a-b)$, we write

 $a \not\equiv b \pmod{m}$.

Theorem 3.1 Let m be a positive integer.

(i) $a \equiv a \pmod{m}$;

(ii) If $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$;

(iii) If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

Proof. (i). We have a - a = 0 and $m \mid 0$.

(ii). Since $a \equiv b \pmod{m}$, we have $m \mid (a-b)$, and thus $m \mid -(a-b) = (b-a)$, thereby implying that $b \equiv a \pmod{m}$.

(iii). Since $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, we have $m \mid (a-b)$ and $m \mid (b-c)$, and thus $m \mid ((a-b)+(b-c)) = (a-c)$, thereby implying that $a \equiv c \pmod{m}$.

R A relation "~" between the elements of a set M is an equivalence if
(i) a ~ a (reflexivity);
(ii) If a ~ b, then b ~ a (symmetry);
(iii) If a ~ b and b ~ c, then a ~ c (transitivity).
Congruence modulo a fixed m is an equivalence relation.

Theorem 3.2 We have

(i) $a \equiv b \pmod{m}$ if and only if $a - b \equiv 0 \pmod{m}$;

(ii) If $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$, then

$$a_1 + a_2 \equiv b_1 + b_2 \pmod{m},$$
$$a_1 a_2 \equiv b_1 b_2 \pmod{m};$$

(iii) If $a \equiv b \pmod{m}$, then for any positive integer k,

 $a^k \equiv b^k \pmod{m};$

(iv) If $f(x_1, x_2, ...)$ is a multivariate polynomial with integer coefficients, and $a_1 \equiv b_1 \pmod{m}$, $a_2 \equiv b_2 \pmod{m}$, ..., then

$$f(a_1, a_2, \ldots) \equiv f(b_1, b_2, \ldots) \pmod{m}.$$

Proof. Exercise.

Theorem 3.3 If $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, then

 $a \equiv b \pmod{[m,n]}$.

If (m,n) = 1, then by Theorem 2.10, we have $[m,n] = \frac{mn}{(m,n)} = mn$. Thus in this case $a \equiv b \pmod{mn}$.

Proof. Since $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, we have $m \mid (a-b)$ and $n \mid (a-b)$. Thus, a-b is a common multiple of m and n, and thus a multiple of [m,n].

Note that if $ka \equiv ka' \pmod{m}$, it is not always true that $a \equiv a' \pmod{m}$.

Example 3.1 We have $10 \times 1 \equiv 10 \times 4 \pmod{15}$, but $1 \not\equiv 4 \pmod{15}$. However, it is true that $1 \equiv 4 \pmod{3}$ where $3 = \frac{15}{(10,15)} = \frac{15}{5}$.

Theorem 3.4 If (k,m) = d, then $ka \equiv ka' \pmod{m}$ if and only if $a \equiv a' \pmod{\frac{m}{d}}$.

Proof. We write $k = k_1 d$ and $m = m_1 d$ so that $(k_1, m_1) = 1$. Thus,

$$\frac{ka - ka'}{m} = \frac{k(a - a')}{m} = \frac{k_1(a - a')}{m_1}.$$

Since $(k_1, m_1) = 1$, the left-hand side is an integer if and only if $m_1 \mid (a - a')$, namely, $a \equiv a' \pmod{m_1}$ while we also note that $m_1 = \frac{m}{d}$.

Now, we can determine in which case one may apply "division" to congruences.

Corollary 3.5 If (k,m) = 1, then $ka \equiv ka' \pmod{m}$ if and only if $a \equiv a' \pmod{m}$.

3.2 Residue classes

Definition 3.2 A set $\{a_1, a_2, \ldots, a_m\}$ is called a *complete residue system modulo m*, or a *complete system modulo m*, if

- (i) $a_i \not\equiv a_j \pmod{m}$ for any $i \neq j$;
- (ii) For any integer a, there exists an index i such that $a \equiv a_i \pmod{m}$.

Example 3.2 (i). $\{0, 7, 2, -3, -8, 5\}$ is a complete system modulo 6; (ii). $\{0, 1, 2, ..., n-1\}$ is a complete system modulo n.

R Given a set of m integers, to verify whether it forms a complete system modulo m, it suffices to check if the m integers are pairwise distinct modulo m.

Theorem 3.6 Let $\{a_1, \ldots, a_m\}$ be a complete system modulo m and let k be an integer with (k,m) = 1. Then $\{ka_1, \ldots, ka_m\}$ is also a complete system modulo m.

Proof. (i). Show $ka_i \neq ka_j \pmod{m}$ for $i \neq j$. Otherwise, if $ka_i \equiv ka_j \pmod{m}$, then since (k,m) = 1, we have $a_i \equiv a_j \pmod{m}$ by Corollary 3.5, yielding to a contradiction to the assumption that $\{a_1, \ldots, a_m\}$ is a complete system modulo m.

(ii). Show $a \equiv ka_i \pmod{m}$ for some *i*. Since (k,m) = 1, we may find integers k' and m' such that kk' + mm' = 1 by Theorem 2.5, and thus $kk' \equiv 1 \pmod{m}$. Choose *i* such that $a_i \equiv ak' \pmod{m}$. Then $ka_i \equiv k(ak') = a(kk') \equiv a \pmod{m}$.

Theorem 3.7 Let m and m' be such that (m,m') = 1. Suppose that a runs through a complete system modulo m and a' runs through a complete system modulo m'. Then a'm + am' runs through a complete system modulo mm'.

Proof. There are mm' numbers a'm + am'. Thus, it suffices to verify that they are pairwise distinct modulo mm'. Note that if

$$a_1'm + a_1m' \equiv a_2'm + a_2m' \pmod{mm'},$$

then since (m, m') = 1, it follows from Corollary 3.5 that

 $a_1m' \equiv a_2m' \pmod{m} \implies a_1 \equiv a_2 \pmod{m}$

and

$$a'_1m \equiv a'_2m \pmod{m'} \Rightarrow a'_1 \equiv a'_2 \pmod{m'}.$$

leading to the same choice of a'm + am' as a runs through a complete system modulo m and a' runs through a complete system modulo m'.

3.3 Linear congruences

Theorem 3.8 The linear congruence

$$ax \equiv b \pmod{m} \tag{3.1}$$

is solvable if and only if $(a,m) \mid b$. In this case, there is a unique solution modulo $\frac{m}{(a,m)}$

Proof. The congruence $ax \equiv b \pmod{m}$ is equivalent to b - ax = my for some y. That is

$$ax + my = b. \tag{3.2}$$

By Theorem 2.5, it has integer solutions (x, y) if and only if b is a multiple of (a, m).

For the second part, assume that (x_0, y_0) is a solution to (3.2). Then we parametrize its solutions as follows. First, note that

$$ax + my = b = ax_0 + my_0.$$

Thus, $a(x - x_0) = m(y_0 - y)$, or if we put d = (a, m),

$$\frac{a}{d}(x-x_0) = \frac{m}{d}(y_0 - y).$$

Since $(\frac{a}{d}, \frac{m}{d}) = 1$, we have that for $k \in \mathbb{Z}$,

$$\begin{cases} x - x_0 = k \cdot \frac{m}{d}, \\ y_0 - y = k \cdot \frac{a}{d}, \end{cases} \implies \begin{cases} x = x_0 + k \cdot \frac{m}{d}, \\ y = y_0 - k \cdot \frac{a}{d}. \end{cases}$$

Thus, modulo $\frac{m}{d}$, x has only one possibility.

Now, our question is how to construct an explicit expression of the solution to $ax \equiv b \pmod{m}$.

Definition 3.3 Let a and m be such that (a,m) = 1. We say that \overline{a} is a modular inverse of a modulo m if

$$a\overline{a} \equiv 1 \pmod{m}$$
.

Theorem 3.9 Let a, b and m be such that $d \mid b$ where d = (a, m). Then the solution to $ax \equiv b \pmod{m}$ is given by

$$x \equiv a' \cdot \frac{b}{d} \pmod{\frac{m}{d}},$$

where a' is the modular inverse of $\frac{a}{d}$ modulo $\frac{m}{d}$.

Proof. Note that we may rewrite $ax \equiv b \pmod{m}$ as

$$d \cdot \frac{a}{d} x \equiv d \cdot \frac{b}{d} \pmod{m},$$

which is equivalent to

$$\frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{m}{d}}$$

by Theorem 3.4 as (d,m) = d. Note also that $a' \cdot \frac{a}{d} \equiv 1 \pmod{\frac{m}{d}}$. Thus,

$$x \equiv a' \cdot \frac{b}{d} \pmod{\frac{m}{d}},$$

which is our desired result.

Example 3.3 Solve $10x \equiv 15 \pmod{35}$: We have d = (10,35) = 5. Also, $\frac{10}{5} \times 4 \equiv 1 \pmod{\frac{35}{5}}$. Thus, $x \equiv 4 \times \frac{15}{5} = 12 \pmod{\frac{35}{5}}$, that is $x \equiv 5 \pmod{7}$.

3.4 Chinese remainder theorem

We have seen that linear congruences are essentially equivalent to $x \equiv c \pmod{m}$.

Theorem 3.10 The system

$$x \equiv c_1 \pmod{m_1},\tag{3.3a}$$

$$x \equiv c_2 \pmod{m_2},\tag{3.3b}$$

has a solution if and only if $(m_1, m_2) | (c_2 - c_1)$. The solution, if it exists, is unique modulo $[m_1, m_2]$.

Proof. From (3.3a), we may write $x = m_1y + c_1$ for some indeterminate y. Substituting it into (3.3b), we have

$$m_1y + c_1 \equiv c_2 \pmod{m_2},$$

or

$$m_1 y \equiv c_2 - c_1 \pmod{m_2}$$
.

By Theorem 3.8, it is solvable if and only if $(m_1, m_2) \mid (c_2 - c_1)$. Further, the solution y is unique modulo $\frac{m_2}{(m_1, m_2)}$, and thus the solution x is unique modulo $m_1 \cdot \frac{m_2}{(m_1, m_2)} = [m_1, m_2]$ by Theorem 2.10.

Corollary 3.11 Let m_1 and m_2 be such that $(m_1, m_2) = 1$. Then the system in Theorem 3.10 is solvable, and its solution is unique modulo m_1m_2 .

In general, we may consider an analogous system with multiple linear congruences. Along this line, we have the *Chinese Remainder Theorem*, which first appears in the writings of Sun Tzu (孙武: 孙子兵法), and was further developed by Qin Jiushao (秦九 韶).

Theorem 3.12 (Chinese Remainder Theorem). Let m_1, \ldots, m_r be such that $(m_i, m_j) = 1$ for $i \neq j$. Then the system $x \equiv c_i \pmod{m_i}$ for $1 \leq i \leq r$ has a unique solution modulo $m_1 \cdots m_r$.

Proof. This result follows by an iterative application of Corollary 3.11.