
3. Linear congruences

3.1 Congruences
Definition 3.1 Let m be a positive integer. Let a and b be integers. We say that a is
congruent to b modulo m if

m | (a−b).

We write
a ≡ b (mod m).

If m ∤ (a−b), we write
a ̸≡ b (mod m).

Theorem 3.1 Let m be a positive integer.
(i) a ≡ a (mod m);
(ii) If a ≡ b (mod m), then b ≡ a (mod m);
(iii) If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

Proof. (i). We have a−a = 0 and m | 0.
(ii). Since a ≡ b (mod m), we have m | (a−b), and thus m | −(a−b) = (b−a), thereby

implying that b ≡ a (mod m).
(iii). Since a ≡ b (mod m) and b ≡ c (mod m), we have m | (a−b) and m | (b− c), and

thus m |
(
(a−b)+(b− c)

)
= (a− c), thereby implying that a ≡ c (mod m). ■

R A relation “∼” between the elements of a set M is an equivalence if
(i) a ∼ a (reflexivity);
(ii) If a ∼ b, then b ∼ a (symmetry);
(iii) If a ∼ b and b ∼ c, then a ∼ c (transitivity).
Congruence modulo a fixed m is an equivalence relation.

Theorem 3.2 We have
(i) a ≡ b (mod m) if and only if a−b ≡ 0 (mod m);
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(ii) If a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m), then

a1 +a2 ≡ b1 +b2 (mod m),

a1a2 ≡ b1b2 (mod m);

(iii) If a ≡ b (mod m), then for any positive integer k,

ak ≡ bk (mod m);

(iv) If f (x1,x2, . . .) is a multivariate polynomial with integer coefficients, and a1 ≡ b1
(mod m), a2 ≡ b2 (mod m), ..., then

f (a1,a2, . . .)≡ f (b1,b2, . . .) (mod m).

Proof. Exercise. ■

Theorem 3.3 If a ≡ b (mod m) and a ≡ b (mod n), then

a ≡ b (mod [m,n]).

R If (m,n) = 1, then by Theorem 2.10, we have [m,n] = mn
(m,n) = mn. Thus in this case

a ≡ b (mod mn).

Proof. Since a ≡ b (mod m) and a ≡ b (mod n), we have m | (a−b) and n | (a−b). Thus,
a−b is a common multiple of m and n, and thus a multiple of [m,n]. ■

Note that if ka ≡ ka′ (mod m), it is not always true that a ≡ a′ (mod m).
■ Example 3.1 We have 10×1 ≡ 10×4 (mod 15), but 1 ̸≡ 4 (mod 15). However, it is true
that 1 ≡ 4 (mod 3) where 3 = 15

(10,15) =
15
5 . ■

Theorem 3.4 If (k,m) = d, then ka ≡ ka′ (mod m) if and only if a ≡ a′ (mod m
d ).

Proof. We write k = k1d and m = m1d so that (k1,m1) = 1. Thus,

ka− ka′

m
=

k(a−a′)
m

=
k1(a−a′)

m1
.

Since (k1,m1) = 1, the left-hand side is an integer if and only if m1 | (a−a′), namely, a ≡ a′

(mod m1) while we also note that m1 =
m
d . ■

Now, we can determine in which case one may apply “division” to congruences.

Corollary 3.5 If (k,m) = 1, then ka ≡ ka′ (mod m) if and only if a ≡ a′ (mod m).

3.2 Residue classes
Definition 3.2 A set {a1,a2, . . . ,am} is called a complete residue system modulo m, or a
complete system modulo m, if

(i) ai ̸≡ a j (mod m) for any i ̸= j;
(ii) For any integer a, there exists an index i such that a ≡ ai (mod m).
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■ Example 3.2 (i). {0,7,2,−3,−8,5} is a complete system modulo 6; (ii). {0,1,2, . . . ,n−1}
is a complete system modulo n. ■

R Given a set of m integers, to verify whether it forms a complete system modulo m, it
suffices to check if the m integers are pairwise distinct modulo m.

Theorem 3.6 Let {a1, . . . ,am} be a complete system modulo m and let k be an integer
with (k,m) = 1. Then {ka1, . . . ,kam} is also a complete system modulo m.

Proof. (i). Show kai ̸≡ ka j (mod m) for i ̸= j. Otherwise, if kai ≡ ka j (mod m), then since
(k,m) = 1, we have ai ≡ a j (mod m) by Corollary 3.5, yielding to a contradiction to the
assumption that {a1, . . . ,am} is a complete system modulo m.

(ii). Show a ≡ kai (mod m) for some i. Since (k,m) = 1, we may find integers k′ and
m′ such that kk′+mm′ = 1 by Theorem 2.5, and thus kk′ ≡ 1 (mod m). Choose i such that
ai ≡ ak′ (mod m). Then kai ≡ k(ak′) = a(kk′)≡ a (mod m). ■

Theorem 3.7 Let m and m′ be such that (m,m′) = 1. Suppose that a runs through a
complete system modulo m and a′ runs through a complete system modulo m′. Then
a′m+am′ runs through a complete system modulo mm′.

Proof. There are mm′ numbers a′m+am′. Thus, it suffices to verify that they are pairwise
distinct modulo mm′. Note that if

a′1m+a1m′ ≡ a′2m+a2m′ (mod mm′),

then since (m,m′) = 1, it follows from Corollary 3.5 that

a1m′ ≡ a2m′ (mod m) ⇒ a1 ≡ a2 (mod m)

and

a′1m ≡ a′2m (mod m′) ⇒ a′1 ≡ a′2 (mod m′).

leading to the same choice of a′m+ am′ as a runs through a complete system modulo m
and a′ runs through a complete system modulo m′. ■

3.3 Linear congruences
Theorem 3.8 The linear congruence

ax ≡ b (mod m) (3.1)

is solvable if and only if (a,m) | b. In this case, there is a unique solution modulo m
(a,m) .

Proof. The congruence ax ≡ b (mod m) is equivalent to b−ax = my for some y. That is

ax+my = b. (3.2)

By Theorem 2.5, it has integer solutions (x,y) if and only if b is a multiple of (a,m).
For the second part, assume that (x0,y0) is a solution to (3.2). Then we parametrize

its solutions as follows. First, note that

ax+my = b = ax0 +my0.
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Thus, a(x− x0) = m(y0 − y), or if we put d = (a,m),

a
d
(x− x0) =

m
d
(y0 − y).

Since ( a
d ,

m
d ) = 1, we have that for k ∈ Z,{

x− x0 = k · m
d ,

y0 − y = k · a
d ,

⇒

{
x = x0 + k · m

d ,

y = y0 − k · a
d .

Thus, modulo m
d , x has only one possibility. ■

Now, our question is how to construct an explicit expression of the solution to ax ≡ b
(mod m).

Definition 3.3 Let a and m be such that (a,m) = 1. We say that a is a modular inverse
of a modulo m if

aa ≡ 1 (mod m).

Theorem 3.9 Let a, b and m be such that d | b where d = (a,m). Then the solution to
ax ≡ b (mod m) is given by

x ≡ a′ · b
d

(mod
m
d
),

where a′ is the modular inverse of a
d modulo m

d .

Proof. Note that we may rewrite ax ≡ b (mod m) as

d · a
d

x ≡ d · b
d

(mod m),

which is equivalent to
a
d

x ≡ b
d

(mod
m
d
).

by Theorem 3.4 as (d,m) = d. Note also that a′ · a
d ≡ 1 (mod m

d ). Thus,

x ≡ a′ · b
d

(mod
m
d
),

which is our desired result. ■

■ Example 3.3 Solve 10x ≡ 15 (mod 35): We have d = (10,35) = 5. Also, 10
5 × 4 ≡ 1

(mod 35
5 ). Thus, x ≡ 4× 15

5 = 12 (mod 35
5 ), that is x ≡ 5 (mod 7). ■

3.4 Chinese remainder theorem
We have seen that linear congruences are essentially equivalent to x ≡ c (mod m).

Theorem 3.10 The system

x ≡ c1 (mod m1), (3.3a)
x ≡ c2 (mod m2), (3.3b)

has a solution if and only if (m1,m2) | (c2 − c1). The solution, if it exists, is unique
modulo [m1,m2].
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Proof. From (3.3a), we may write x = m1y+ c1 for some indeterminate y. Substituting it
into (3.3b), we have

m1y+ c1 ≡ c2 (mod m2),

or
m1y ≡ c2 − c1 (mod m2).

By Theorem 3.8, it is solvable if and only if (m1,m2) | (c2 − c1). Further, the solution y is
unique modulo m2

(m1,m2)
, and thus the solution x is unique modulo m1 · m2

(m1,m2)
= [m1,m2] by

Theorem 2.10. ■

Corollary 3.11 Let m1 and m2 be such that (m1,m2) = 1. Then the system in Theorem
3.10 is solvable, and its solution is unique modulo m1m2.

In general, we may consider an analogous system with multiple linear congruences.
Along this line, we have the Chinese Remainder Theorem, which first appears in the
writings of Sun Tzu (孙武: 孙子兵法), and was further developed by Qin Jiushao (秦九
韶).

Theorem 3.12 (Chinese Remainder Theorem). Let m1, . . . ,mr be such that (mi,m j) = 1
for i ̸= j. Then the system x ≡ ci (mod mi) for 1 ≤ i ≤ r has a unique solution modulo
m1 · · ·mr.

Proof. This result follows by an iterative application of Corollary 3.11. ■


