3. Linear congruences

3.1 Congruences

Definition 3.1 Let m be a positive integer. Let a and b be integers. We say that a is
congruent to b modulo m if

m| (a—D>).
We write
a=b (mod m).
If mt(a—>b), we write
aZb (mod m).

Theorem 3.1 Let m be a positive integer.
(i) a=a (mod m);
(ii) If a=b (mod m), then b =a (mod m);
(iii) If a=b (mod m) and b =c¢ (mod m), then a = ¢ (mod m).

Proof. (i). We have a—a =0 and m | 0.

(ii). Since a =b (mod m), we have m | (a—b), and thus m | —(a —b) = (b —a), thereby
implying that b =a (mod m).

(iii). Since a =b (mod m) and b =c¢ (mod m), we have m | (a—b) and m | (b—c), and
thus m | ((a—b) + (b—c)) = (a—c), thereby implying that a = ¢ (mod m). [ |

R ) A relation “~” between the elements of a set M is an equivalence if
(i) a~ a (reflexivity);
(ii) If a ~ b, then b ~ a (symmetry);
(iii) If a ~ b and b ~ ¢, then a ~ ¢ (transitivity).
Congruence modulo a fixed m is an equivalence relation.

Theorem 3.2 We have
(i) a=b (mod m) if and only if a—b =0 (mod m);
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(ii) If @ =b; (mod m) and a, = by (mod m), then

ay+ay=by+b, (modm),
ajay =bi1b, (mod m);
(iii) If a=b (mod m), then for any positive integer k,
d=b* (mod m);

(iv) If f(x1,x2,...) is a multivariate polynomial with integer coefficients, and a; = b;
(mod m), ap = b, (mod m), ..., then

f(al,az,. 0 ) = f(bl,bz,. o ) (mod m)

Proof. Exercise. u

Theorem 3.3 If a=b (mod m) and a =b (mod n), then

a=b (mod [m,n]).

R ) If (m,n) =1, then by Theorem 2.10, we have [m,n] = g = mn. Thus in this case

a=b (mod mn).

Proof. Since a=b (mod m) and a=b (mod n), we have m | (a—b) and n | (a—b). Thus,
a—b is a common multiple of m and n, and thus a multiple of [m,n]. [

Note that if ka = ka’ (mod m), it is not always true that a =4’ (mod m).
= Example 3.1 We have 10 x1=10x4 (mod 15), but 1 #4 (mod 15). However, it is true

that 1=4 (mod 3) WhereSZﬁ:g—S, .

Theorem 3.4 If (k,m) =d, then ka = ka’ (mod m) if and only if a =4’ (mod 7).

Proof. We write k = kjd and m = md so that (k;,m;) = 1. Thus,

ka—ka'  k(a—d') ki(a—ad')

m m my

Since (ky,m;) = 1, the left-hand side is an integer if and only if m; | (a —d’), namely, a = d
(mod m;) while we also note that m; = 4. [

Now, we can determine in which case one may apply “division” to congruences.

Corollary 3.5 If (k,m) =1, then ka = ka’ (mod m) if and only if a =d’ (mod m).

Residue classes

Definition 3.2 A set {aj,ay,...,a,} is called a complete residue system modulo m, or a
complete system modulo m, if

(i) a; #aj; (mod m) for any i # j;
(ii) For any integer a, there exists an index i such that a =a; (mod m).
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® Example 3.2 (i). {0,7,2,—3,—8,5} is a complete system modulo 6; (ii). {0,1,2,...,n—1}
is a complete system modulo n. =

R ) Given a set of m integers, to verify whether it forms a complete system modulo m, it
suffices to check if the m integers are pairwise distinct modulo m.

Theorem 3.6 Let {aj,...,a,} be a complete system modulo m and let k be an integer
with (k,m) = 1. Then {kay,... ,kan} is also a complete system modulo m.

Proof. (i). Show ka; # ka; (mod m) for i # j. Otherwise, if ka; = ka; (mod m), then since
(k,m) =1, we have a; = a; (mod m) by Corollary 3.5, yielding to a contradiction to the
assumption that {aj,...,an} is a complete system modulo m.

(ii). Show a =ka; (mod m) for some i. Since (k,m) =1, we may find integers k" and
m' such that kK’ +mm’ =1 by Theorem 2.5, and thus kK’ =1 (mod m). Choose i such that
a; = ak’ (mod m). Then ka; = k(ak') = a(kk') = a (mod m). [ |

Theorem 3.7 Let m and m’ be such that (m,m’) =1. Suppose that a runs through a
complete system modulo m and &’ runs through a complete system modulo m’. Then
a'm+am’ Tuns through a complete system modulo mm’.

Proof. There are mm' numbers a'm+am’. Thus, it suffices to verify that they are pairwise
distinct modulo mm’. Note that if

aym+aym’ =dym+am’  (mod mm'),
then since (m,m’) =1, it follows from Corollary 3.5 that
aym’ = aym’  (mod m) = ai=a, (mod m)
and
dym=dym (mod m') = dy=d, (modm').
leading to the same choice of @'m+am’ as a runs through a complete system modulo m

and @' runs through a complete system modulo . |

Linear congruences

Theorem 3.8 The linear congruence

ax=b (mod m) (3.1)
is solvable if and only if (a,m) | b. In this case, there is a unique solution modulo @

Proof. The congruence ax =b (mod m) is equivalent to b —ax = my for some y. That is
ax+my =b. (3.2)

By Theorem 2.5, it has integer solutions (x,y) if and only if b is a multiple of (a,m).

For the second part, assume that (xo,yo) is a solution to (3.2). Then we parametrize
its solutions as follows. First, note that

ax+my = b = axg+ myy.
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Thus, a(x—xg) =m(yo—y), or if we put d = (a,m),

Slr—x0) =200 -).
Since (4,%) = 1, we have that for k € Z,
x—xo=k-5, N x=xo+k- 5,
yo—y=k-g, y=yo—k-g.
Thus, modulo 7, x has only one possibility. |

Now, our question is how to construct an explicit expression of the solution to ax =b
(mod m).

Definition 3.3 Let a and m be such that (a,m) = 1. We say that a is a modular inverse
| of a modulo m if

aa=1 (mod m).

Theorem 3.9 Let a, b and m be such that d | b where d = (a,m). Then the solution to
ax=>b (mod m) is given by
, b m

an'g (mod E),

where d' is the modular inverse of ¢ modulo %.

Proof. Note that we may rewrite ax =>b (mod m) as

b
d- d-=
d

X

(mod m),

U

which is equivalent to

X

Ul S

(mod —).

als
3

by Theorem 3.4 as (d,m) =d. Note also that ¢’-§ =1 (mod %). Thus,

/

m
= d —
X=a (mo d),

b
d
which is our desired result. [ |

= Example 3.3 Solve 10x =15 (mod 35): We have d = (10,35) =5. Also, 2 x4 =1

(mod 35—5) Thus, x =4 X 15—5 =12 (mod 35—5), that is x=15 (mod 7). .

Chinese remainder theorem

We have seen that linear congruences are essentially equivalent to x = ¢ (mod m).

Theorem 3.10 The system

x=c; (mod my), (3.3a)

=c¢; (mod my), (3.3b)

has a solution if and only if (m,my) | (c2 —c1). The solution, if it exists, is unique
modulo [my,my)].
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Proof. From (3.3a), we may write x = my+ ¢ for some indeterminate y. Substituting it
into (3.3b), we have
myy+cy =c; (mod my),

or
myy=cy;—c; (mod my).

By Theorem 3.8, it is solvable if and only if (m;,my) | (c2 —c1). Further, the solution y is

unique modulo —2— and thus the solution x is unique modulo m; - —2—~ = [my,m;] by
! (m1,ms) (m1,m;)
Theorem 2.10. u

Corollary 3.11 Let m; and my be such that (mj,m;) =1. Then the system in Theorem
3.10 is solvable, and its solution is unique modulo mm;.

In general, we may consider an analogous system with multiple linear congruences.
Along this line, we have the Chinese Remainder Theorem, which first appears in the
writings of Sun Tzu (MR Fh-FI&i%), and was further developed by Qin Jiushao (Z&JL

)

Theorem 3.12 (Chinese Remainder Theorem). Let my,...,m, be such that (m;,m;) =1
for i # j. Then the system x =¢; (mod m;) for 1 <i <r has a unique solution modulo
ml .. .mr'

Proof. This result follows by an iterative application of Corollary 3.11. |



