2. Fundamental theorem of arithmetic

2.1 Greatest common divisor and Euclidean algorithm

Theorem 2.1 Given integers a and b, not both 0. There exists a unique positive integer
d such that

(i) d|a and d | b;

(ii) If 6 |a and & | b, then & | d.

Definition 2.1 The number d in Theorem 2.1 is called the greatest common divisor of a
I and b, written as d = ged(a,b) = (a,b).

R ) The ged of a and b is the largest positive integer that is a divisor of both a and b.
| Definition 2.2 If (a,b) = 1, we say that a and b are relatively prime, or coprime.

The proof of Theorem 2.1 is based on the so-called Fuclidean Algorithm.

Proof (Euclidean Algorithm). Without loss of generality, we assume that a > b > 0. We
also put r_; =a and ro = b. Now, we iteratively write

r—1=qiro+ri, 0<r <ro; (2.1a)
ro = qar1+r, 0<r<r; (2.1b)
r=qsra+rs, 0<r3<ry (2.1c)
k=2 = qilk—1 + 1k, 0 <rk <re-1; (2.1d)
k=1 = qr+17% +0. (2.1e)

We claim that d =r, > 0.

(i). By (2.1e), we have ry | re—1. Then by (2.1d), rx | rr—2. Continuing this process, we
have ry |ro=>b and ry | r—; = a.

(ii). If 8 |[a=r_; and & | b = ry, we know from (2.1a) that 6 | r;, and then by (2.1b),
0 | r2. Continuing this process, we have 8 | r, =d. [

We may use the Euclidean algorithm to calculate the ged.
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= Example 2.1 Find (1071,462):

1071 =2 x 462 + 147,
462 =3 x 147 +21;

147 =7x21+0.
Thus, (1071,462) =21. u
Definition 2.3 The greatest common divisor of ny,...,n; is the largest positive integer
I that divides all of ny,...,ng.

Modular systems

Definition 2.4 A modular system S is a subset of integers such that
(i) If n€ S, then —n € S;
(ii) f myn € S, then m+n € S.

R ) Modular systems are instances of additive groups under the “+” operation.

= Example 2.2 The set of integers {...,—2,—1,0,1,2,...} is a modular system. The set of
multiples of 3, namely, {...,—6,—3,0,3,6,...}, is also a modular system. Further, the set
{0} is also a modular system. 0

Theorem 2.2 Let S be a modular system such that §# 0. Then
(i) 0€S;
(ii) If n € S and x is an integer, then xn € S.

Proof. (i). Let m € S since S is non-empty. Then by definition, —m € S. Finally, 0 =
m+(—m) € S.

(ii). Without loss of generality, we assume that x is a nonnegative integer. Otherwise,
we write xn = (—x)(—n). Note that the statement is true for x =0 by Part (i). Assume
that it is true for x =0,...,k for some k>0, i.e., xn € S for x=0,...,k. Then for x=k+1,
we have (k+ 1)n=n+kn € S since both n and kn are in S. The statement then follows by
induction. |

Theorem 2.3 Let a and b be integers. Then S = {ax+by:x,y € Z} is a modular system.

Proof. (i). Given any n € S, it is of the form n = ax+ by for some integers x and y. Now,
—n=—(ax+by)=a-(—x)+b-(—y) €S.

(ii). Given any m,n € S, then they are of the form m = ax; + by, and n = ax, + by,.
Now, m+n=a(x; +x)+b(y1 +y2) €. [ |

Theorem 2.4 Let S be a modular system such that S is neither @ nor {0}. Let § be the
smallest positive integer in S. Then S={kd : k € Z}.

Proof. We first note that kd € S for all integers k by Theorem 2.2(ii). Now assume that
there exists an integer n € S such that n is not a multiple of §. Then we may write

n=gq-0+r, 0<r<o.

This implies that r=n—¢gd € S. But it contradicts to the assumption that 6 is the smallest
positive integer in S. |
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Theorem 2.5 Let a and b be integers, not both 0. Let d = (a,b). Then
{ax+by:x,ycZ}={kd: k€ Z}.
In other words, an integer n can be written as
n = ax-+ by, x,yEeZ

if and only if n is a multiple of (a,b).

Proof. We write

S1 ={ax+by:x,y€Z},
S, ={kd: k€ Z}.

(i). Show S} C S,. That is, if n = ax+ by, then n € S,. This is obvious since both a and
b are multiples of d = (a,b), so is ax+ by.

(ii). Show S, C S;. That is, there exist integers x and y such that kd = ax+ by for
any k € Z. Note that it suffices to prove the case k=1, i.e., d =ax+by or d € §;. We
will require the process in the Euclidean algorithm. Note that S; is a modular system by
Theorem 2.3 and a,b € S;. By (2.1a), r; € S1, and then by (2.1b), r, € §;. Continuing this
process, we find that d = r, € S, as desired.

We conclude that S; =8, since they are subsets of one another. [ |

Proof of the fundamental theorem of arithmetic

Theorem 2.6 If a | bc and (a,b) =1, then a | c.

Proof. By Theorem 2.5, we may find integers x and y such that 1 = ax+ by. Now,
c=c-1=c-(ax+by)=a-(cx)+ (bc)-y.

Since bc is a multiple of a, we have a | c. |

Corollary 2.7 If a prime p | p1ps--- pr with pi,..., px primes, then p = p; for at least one
J-

Proof. Since p | p1(p2---pk), we have either p | p;, which implies p = p;, or p | p2--- pk
by Theorem 2.6 since (p,p1) =1 for p # p;. Now, we repeat the process for the latter
case. |

Now, we are in a position to prove the Fundamental Theorem of Arithmetic in Theorem
1.8.

Fundamental Theorem of Arithmetic Every integer n > 2 has a unique (up to order of
factors) representation as a product of primes.

Proof. In Theorem 1.7, we have shown that every integer n > 2 is a product of primes. It
suffices to establish the uniqueness. Assume that n has prime factorizations

n=pip2:--Pk=49192" - qq-
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Then py | q192---q¢, and thus by renumbering the ¢’s, we have p; = ¢q; by Corollary 2.7.
Dividing by p; on both sides, we have

P2 Pk=4q2 " q¢-

Repeating this process gives the desired result. |

R ) We often write a (positive) integer n in its canonical form

k
n— Hp?./
j=1

with p; its distinct prime factors and cot; > 0.

Theorem 2.8 If ,
a= Hp?‘i and b= Hp?j,
j=1

where p;’s are distinct prime factors of either a or b and o, 8; > 0, then

(a,b) _ le;lin(aj:ﬁj)‘

j=1

Proof. We write
,
5.
(a,b) = Hpj'/'
J=1

Then 6; < o; and §; < B; but J; is not smaller than both of «; and B;. [

2.4 Least common multiple
Definition 2.5 Let a and b be integers with a,b # 0. Then the least common multiple of
a and b is the positive integer m such that
(i) a|m and b | m;
(ii) If a | w and b | p, then m | p.
We write m = lem(a,b) = [a, D).

R ) The lem of @ and b is the smallest positive integer that is a multiple of both a and b.

Definition 2.6 The least common multiple of ny,...,n; is the smallest positive integer
that is divisible by all of ny,..., n.

Theorem 2.9 If . ,
asz?’ and b:prj,
J=1 J=1

where p;’s are distinct prime factors of either a or b and ¢, |beta; > 0, then

fa,b] = [T .
j=1

Proof. This is a direct consequence of the definition of lcm. |
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Theorem 2.10 Let a and b be positive integers. Then

[a’b] =

(a,b)

Proof. Note that if we write a = ;:1]7]’ and b=]_ lpﬁ’ then

[a,b]-(a,b) =]] p;ﬂaxwﬁﬂ 11 p;ﬂiﬂ(%ﬁj)

J=1 J=1

- H max(a;,B;)-+min(e;,B;)

where we make use of the fact that max(a, )+ min(a, ) = a+ .



