
2. Fundamental theorem of arithmetic

2.1 Greatest common divisor and Euclidean algorithm
Theorem 2.1 Given integers a and b, not both 0. There exists a unique positive integer
d such that

(i) d | a and d | b;
(ii) If δ | a and δ | b, then δ | d.

Definition 2.1 The number d in Theorem 2.1 is called the greatest common divisor of a
and b, written as d = gcd(a,b) = (a,b).

R The gcd of a and b is the largest positive integer that is a divisor of both a and b.

Definition 2.2 If (a,b) = 1, we say that a and b are relatively prime, or coprime.

The proof of Theorem 2.1 is based on the so-called Euclidean Algorithm.

Proof (Euclidean Algorithm). Without loss of generality, we assume that a ≥ b > 0. We
also put r−1 = a and r0 = b. Now, we iteratively write

r−1 = q1r0 + r1, 0 < r1 < r0; (2.1a)
r0 = q2r1 + r2, 0 < r2 < r1; (2.1b)
r1 = q3r2 + r3, 0 < r3 < r2; (2.1c)

· · ·
rk−2 = qkrk−1 + rk, 0 < rk < rk−1; (2.1d)
rk−1 = qk+1rk +0. (2.1e)

We claim that d = rk > 0.
(i). By (2.1e), we have rk | rk−1. Then by (2.1d), rk | rk−2. Continuing this process, we

have rk | r0 = b and rk | r−1 = a.
(ii). If δ | a = r−1 and δ | b = r0, we know from (2.1a) that δ | r1, and then by (2.1b),

δ | r2. Continuing this process, we have δ | rk = d. ■

We may use the Euclidean algorithm to calculate the gcd.
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■ Example 2.1 Find (1071,462):

1071 = 2×462+147;

462 = 3×147+21;

147 = 7×21+0.

Thus, (1071,462) = 21. ■

Definition 2.3 The greatest common divisor of n1, . . . ,nk is the largest positive integer
that divides all of n1, . . . ,nk.

2.2 Modular systems
Definition 2.4 A modular system S is a subset of integers such that

(i) If n ∈ S, then −n ∈ S;
(ii) If m,n ∈ S, then m+n ∈ S.

R Modular systems are instances of additive groups under the “+” operation.

■ Example 2.2 The set of integers {. . . ,−2,−1,0,1,2, . . .} is a modular system. The set of
multiples of 3, namely, {. . . ,−6,−3,0,3,6, . . .}, is also a modular system. Further, the set
{0} is also a modular system. ■

Theorem 2.2 Let S be a modular system such that S ̸= /0. Then
(i) 0 ∈ S;
(ii) If n ∈ S and x is an integer, then xn ∈ S.

Proof. (i). Let m ∈ S since S is non-empty. Then by definition, −m ∈ S. Finally, 0 =
m+(−m) ∈ S.

(ii). Without loss of generality, we assume that x is a nonnegative integer. Otherwise,
we write xn = (−x)(−n). Note that the statement is true for x = 0 by Part (i). Assume
that it is true for x = 0, . . . ,k for some k ≥ 0, i.e., xn ∈ S for x = 0, . . . ,k. Then for x = k+1,
we have (k+1)n = n+ kn ∈ S since both n and kn are in S. The statement then follows by
induction. ■

Theorem 2.3 Let a and b be integers. Then S = {ax+by : x,y ∈ Z} is a modular system.

Proof. (i). Given any n ∈ S, it is of the form n = ax+by for some integers x and y. Now,
−n =−(ax+by) = a · (−x)+b · (−y) ∈ S.

(ii). Given any m,n ∈ S, then they are of the form m = ax1 + by1 and n = ax2 + by2.
Now, m+n = a(x1 + x2)+b(y1 + y2) ∈ S. ■

Theorem 2.4 Let S be a modular system such that S is neither /0 nor {0}. Let δ be the
smallest positive integer in S. Then S = {kδ : k ∈ Z}.

Proof. We first note that kδ ∈ S for all integers k by Theorem 2.2(ii). Now assume that
there exists an integer n ∈ S such that n is not a multiple of δ . Then we may write

n = q ·δ + r, 0 < r < δ .

This implies that r = n−qδ ∈ S. But it contradicts to the assumption that δ is the smallest
positive integer in S. ■
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Theorem 2.5 Let a and b be integers, not both 0. Let d = (a,b). Then

{ax+by : x,y ∈ Z}= {kd : k ∈ Z}.

In other words, an integer n can be written as

n = ax+by, x,y ∈ Z

if and only if n is a multiple of (a,b).

Proof. We write

S1 = {ax+by : x,y ∈ Z},
S2 = {kd : k ∈ Z}.

(i). Show S1 ⊂ S2. That is, if n = ax+by, then n ∈ S2. This is obvious since both a and
b are multiples of d = (a,b), so is ax+by.

(ii). Show S2 ⊂ S1. That is, there exist integers x and y such that kd = ax+ by for
any k ∈ Z. Note that it suffices to prove the case k = 1, i.e., d = ax+ by or d ∈ S1. We
will require the process in the Euclidean algorithm. Note that S1 is a modular system by
Theorem 2.3 and a,b ∈ S1. By (2.1a), r1 ∈ S1, and then by (2.1b), r2 ∈ S1. Continuing this
process, we find that d = rk ∈ S1, as desired.

We conclude that S1 = S2 since they are subsets of one another. ■

2.3 Proof of the fundamental theorem of arithmetic
Theorem 2.6 If a | bc and (a,b) = 1, then a | c.

Proof. By Theorem 2.5, we may find integers x and y such that 1 = ax+by. Now,

c = c ·1 = c · (ax+by) = a · (cx)+(bc) · y.

Since bc is a multiple of a, we have a | c. ■

Corollary 2.7 If a prime p | p1 p2 · · · pk with p1, . . . , pk primes, then p = p j for at least one
j.

Proof. Since p | p1(p2 · · · pk), we have either p | p1, which implies p = p1, or p | p2 · · · pk
by Theorem 2.6 since (p, p1) = 1 for p ̸= p1. Now, we repeat the process for the latter
case. ■

Now, we are in a position to prove the Fundamental Theorem of Arithmetic in Theorem
1.8.
Fundamental Theorem of Arithmetic Every integer n ≥ 2 has a unique (up to order of
factors) representation as a product of primes.

Proof. In Theorem 1.7, we have shown that every integer n ≥ 2 is a product of primes. It
suffices to establish the uniqueness. Assume that n has prime factorizations

n = p1 p2 · · · pk = q1q2 · · ·qℓ.
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Then p1 | q1q2 · · ·qℓ, and thus by renumbering the q’s, we have p1 = q1 by Corollary 2.7.
Dividing by p1 on both sides, we have

p2 · · · pk = q2 · · ·qℓ.

Repeating this process gives the desired result. ■

R We often write a (positive) integer n in its canonical form

n =
k

∏
j=1

p
α j
j

with p j its distinct prime factors and α j > 0.

Theorem 2.8 If
a =

r

∏
j=1

pα j
j and b =

r

∏
j=1

pβ j
j ,

where p j’s are distinct prime factors of either a or b and α j,β j ≥ 0, then

(a,b) =
r

∏
j=1

pmin(α j,β j)
j .

Proof. We write

(a,b) =
r

∏
j=1

pδ j
j .

Then δ j ≤ α j and δ j ≤ β j but δ j is not smaller than both of α j and β j. ■

2.4 Least common multiple
Definition 2.5 Let a and b be integers with a,b ̸= 0. Then the least common multiple of
a and b is the positive integer m such that

(i) a | m and b | m;
(ii) If a | µ and b | µ, then m | µ.

We write m = lcm(a,b) = [a,b].

R The lcm of a and b is the smallest positive integer that is a multiple of both a and b.

Definition 2.6 The least common multiple of n1, . . . ,nk is the smallest positive integer
that is divisible by all of n1, . . . ,nk.

Theorem 2.9 If
a =

r

∏
j=1

pα j
j and b =

r

∏
j=1

pβ j
j ,

where p j’s are distinct prime factors of either a or b and α j, ]beta j ≥ 0, then

[a,b] =
r

∏
j=1

pmax(α j,β j)
j .

Proof. This is a direct consequence of the definition of lcm. ■
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Theorem 2.10 Let a and b be positive integers. Then

[a,b] =
ab

(a,b)
.

Proof. Note that if we write a = ∏r
j=1 pα j

j and b = ∏r
j=1 pβ j

j , then

[a,b] · (a,b) =
r

∏
j=1

pmax(α j,β j)
j ·

r

∏
j=1

pmin(α j,β j)
j

=
r

∏
j=1

pmax(α j,β j)+min(α j,β j)
j

=
r

∏
j=1

pα j+β j
j

=
r

∏
j=1

pα j
j ·

r

∏
j=1

pβ j
j

= ab,

where we make use of the fact that max(α,β )+min(α,β ) = α +β . ■


