
1. Primes

1.1 Divisibility
Definition 1.1 Let a and b be integers. We say that

“a divides b” or “b is divisible by a”

if there exists an integer x such that

b = ax.

We usually write a | b if a divides b. Otherwise, if a does not divide b, we write a ∤ b.

■ Example 1.1 Since 18 = 2×9, we have 2 | 18; since 35 = 7×5, we have 7 | 35. ■

Definition 1.2 If a | b, then a is called a divisor of b. In particular, a positive divisor of
b which is different from b is called a proper divisor.

Theorem 1.1 Assume that all variables in this theorem are integers.
(i) 1 | a, a | a and a | 0;
(ii) If a | b, then a | bc;
(iii) If a | b and b | c, then a | c;
(iv) If a | b, then ac | bc;
(v) If a | bi for i = 1 . . . ,r, then a | (m1b1 + · · ·+mrbr).

Proof. (i). Since a = 1 ·a = a ·1, we have 1 | a and a | a; since 0 = a ·0, we have a | 0.
(ii). Note that a | b implies that b = ax for some integer x. Thus, bc = (ax) ·c = a · (cx),

implying that a | bc.
(iii). Note that a | b implies that b = ax and that b | c implies that c = by. Thus,

c = by = (ax) · y = a · (xy), implying that a | c.
(iv). Note that a | b implies that b = ax. Thus, bc = (ax) · c = (ac) · x, implying that

ac | bc.
(v). Note that a | bi implies that bi = axi. Thus,

m1b1 + · · ·+mrbr =
r

∑
i=1

mi · (axi) = a
r

∑
i=1

mixi,
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implying that a | (m1b1 + · · ·+mrbr). ■

1.2 Primes
Definition 1.3 A positive integer p is a prime if

(i) p ≥ 2;
(ii) p has no positive divisors other than 1 and p.

A positive integer greater than 1 that is not prime is a composite.

R 1 is neither prime nor composite.

■ Example 1.2 The sequence of primes starts with
2,3,5,7,11,13,17,19,23,29, . . .

The sequence of composites starts with
4,6,8,9,10,12,14,15,16,18,20, . . .

■

1.3 Infinitude of primes
Now, there is a natural question:

Question 1.1 Will the sequence of primes terminate at some place? Or is it infinite?

The first answer to this question was given over 2,000 years ago by Euclid (c. 300
BCE).

Theorem 1.2 (Euclid). The number of primes is infinite.

Proof (of Euclid). Let {p1, . . . pk} be a finite set of primes. Consider
n = p1 p2 · · · pk +1.

Then p ≥ 3. Note that n has a prime factor p. But p is not one of pi’s; otherwise, we
have p | p1 · · · pk and since p | n, it follows that p | (n− p1 · · · pk). Thus, p | 1, leading to a
contradiction.

Therefore, for any finite set of primes, we are always able to generate a new prime. In
other words, a finite set of primes cannot cover all primes. ■

The idea of the above proof is very natural. In fact, one may modify it to establish
other interesting results.

Theorem 1.3 The number of primes of the form 4s+3 is infinite.

Proof. Let {p1, . . . pk} be a finite set of primes. Consider
n = 4p1 p2 · · · pk −1.

Note that n is of the form 4s+3. We claim that n has at least one prime factor p of the
form 4s+ 3. Otherwise, if all prime factors of n are of the form 4s+ 1, then so is their
product, namely, n, leading to a contradiction. Further, the above p is not one of 2, p1,
..., pk by a similar argument to that for Theorem 1.2. Thus, we arrive at a new prime of
the form 4s+3 from the set {p1, . . . pk}, thereby implying the infinitude of primes of the
form 4s+3. ■
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Theorem 1.4 The number of primes of the form 6s+5 is infinite.

Proof. Exercise. ■

R In general, let a and m be positive integers such that 1 ≤ a ≤ m and (a,m) = 1. Then
number of primes of the form ms+ a is infinite. Furthermore, let πa,m(x) count the
number of primes ≤ x that are of the form ms+a. For fixed m, let a1 and a2 be such
that 1 ≤ a1,a2 ≤ m and (a1,m) = (a2,m) = 1. Then

lim
x→∞

πa1,m(x)
πa2,m(x)

= 1.

This is known as Dirichlet’s theorem on primes in arithmetic progressions.

1.4 Fermat numbers and the second proof of the infinitude of primes
Definition 1.4 Fermat numbers are those of the form Fn = 22n

+1 with n = 0,1,2, . . .

Pierre de Fermat wrote to Marin Mersenne on December 25, 1640 that:

If I can determine the basic reason why

3,5,17,257,65537, . . . ,

are prime numbers, I feel that I would find very interesting results, for I have
already found marvelous things [along these lines] which I will tell you about
later.

However, Fermat’s conjecture that all Fn are primes is unfortunately proved incorrect as
Euler discovered in 1732 that

F5 = 4294967297 = 641×6700417.

Furthermore, the known prime Fermat numbers, also known as Fermat primes are still the
five numbers F0, . . . ,F4 examined by Fermat. As of 2014, it is known that Fn is composite
for 5 ≤ n ≤ 32. The largest Fermat number known to be composite is F18233954, and its
prime factor 7×218233956 +1 was discovered in October 2020. It is now conjectured that
just the first 5 Fermat numbers are primes.

Theorem 1.5 For n ≥ 1,

Fn −2 =
n−1

∏
i=0

Fi.

Proof. We prove this result by induction on n. First, it is true for n= 1 since F1−2= 3=F0.
Next, we assume that it is true for n = k for some k ≥ 1. Thus,

Fk −2 =
k−1

∏
i=0

Fi.

Now, we have

Fk+1 −2 = (22k+1
+1)−2 = 22k+1 −1 = (22k

+1)(22k −1)
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= Fk(Fk −2) = Fk ·
k−1

∏
i=0

Fi

=
k

∏
i=0

Fi,

implying that the statement is also valid for n = k+1. ■

Corollary 1.6 Any two distinct Fermat numbers have no common divisor greater than 1.

Proof. Assume that a prime p divides both Fm and Fn with 0 ≤ m < n. Since p | Fm, we
have p | ∏n−1

i=0 Fi. Now, p | Fn implies that p |
(
Fn −∏n−1

i=0 Fi
)
, and thus p | 2 by Theorem 1.5.

Thus, p = 2. But this is impossible since all Fermat numbers are odd. ■

Now we are in a position to present the second proof of the infinitude of primes.

Second Proof of Theorem 1.2. Note that the sequence of Fermat numbers is infinite. We
collect prime factors of these Fermat numbers, and by Corollary 1.6, they are pairwise
distinct. Therefore, there are infinite primes. ■

1.5 Fundamental theorem of arithmetic
Theorem 1.7 Every integer n ≥ 2 is a product of primes.

Proof. We prove by induction on n. First, 2 is a prime itself, and thus the statement is
true for n = 2. Assume that the statement is true for n = 2 . . . ,k for some k ≥ 2. Then if
n = k+1 is prime, there is nothing to prove. If n = k+1 is composite, then we may write
k+ 1 = x · y such that 1 < x,y < k+ 1. By our assumption, both x and y are products of
products, so is their product xy = k+1. Hence, the statement is also true for n = k+1. ■

Now, a natural question is how many representations are there to factorize n ≥ 2 as a
product of primes? This question is answered by the Fundamental Theorem of Arithmetic,
also known as the Unique Factorization Theorem.

Theorem 1.8 (Fundamental Theorem of Arithmetic). Every integer n ≥ 2 has a unique (up
to order of factors) representation as a product of primes.

This theorem, although intuitionistic, is far more than trivial. We will give its proof
in the next lecture.

1.6 Divergence of ∑p
1
p and the third proof of the infinitude of primes

Now, we have a straightforward consequence of the Fundamental Theorem of Arithmetic.
Consider

∏
p prime

p≤n

(
1+

1
p
+

1
p2 + · · ·

)
.

If we expand the product, then for each i with all its prime factors at most n, we have that
1
i appears as exactly one of the terms. In particular, such i’s include all integers m ≤ n.
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Therefore,

∏
p prime

p≤n

(
1+

1
p
+

1
p2 + · · ·

)
≥

n

∑
m=1

1
m
.

Then,

∏
p≤n

1
1− 1

p

= ∏
p≤n

∞

∑
k=0

1
pk >

n

∑
m=1

1
m

>
∫ n

1

dt
t
= logn.

On the other hand,

log ∏
p≤n

1
1− 1

p

= ∑
p≤n

log
1

1− 1
p

= ∑
p≤n

∞

∑
k=1

1
k · pk = ∑

p≤n

1
p
+ ∑

p≤n

∞

∑
k=2

1
k · pk

< ∑
p≤n

1
p
+ ∑

p≤n

∞

∑
k=2

1
2p2 · pk−2 = ∑

p≤n

1
p
+ ∑

p≤n

1
2p2

∞

∑
k=0

1
·pk

= ∑
p≤n

1
p
+ ∑

p≤n

1
2p2

p
p−1

≤ ∑
p≤n

1
p
+

1
2

n

∑
m=2

1
m(m−1)

< ∑
p≤n

1
p
+

1
2
.

Thus,

∑
p≤n

1
p
+

1
2
> log ∏

p≤n

1
1− 1

p

> log logn.

Theorem 1.9 We have

∑
p prime

p≤n

1
p
> log logn− 1

2
. (1.1)

In particular, ∑p prime
1
p diverges.

This result gives the third proof of the infinitude of primes.

Third Proof of Theorem 1.2. If there are finitely many primes, then ∑p
1
p is also finite,

which contradicts to the divergence of ∑p
1
p established in Theorem 1.9. ■

R In fact, as x → ∞,

∑
p≤x

1
p
∼ log logx,

or more precisely,

∑
p≤x

1
p
= log logx+B+o(1),

where B is a constant.
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1.7 Erdős’s proof of the divergence of ∑p
1
p

The previous proof of the divergence of ∑p
1
p has, more or less, an analytic flavor. What

will be provided here is an elegant elementrary attack due to Paul Erdős (Mathematica,
Zutphen. B. 7 (1938), 1–2).

Theorem 1.10 The series ∑p prime
1
p diverges.

Proof. We prove by contradiction. That is, we assume that ∑p
1
p converges. Let {p1, p2, . . .}

be the sequence of primes in increasing order.
First, given an arbitrary positive integer n and an index K, we denote by NK(n) the

number of positive integers m ≤ n such that the prime factors of m are exclusively from
p1, . . . , pK . Note that by the Fundamental Theorem of Arithmetic, each integer a can be
uniquely written as a = s2 · t where t has no square factor greater than 1. Meanwhile, the
squares no greater than n are 12, 22, ..., ⌊

√
n⌋2 where ⌊x⌋ denotes the largest integer not

exceeding a real x. Also, there are 2K integers of the form ∏K
i=1 pεi

i with εi ∈ {0,1}. Now, if
we write integers m counted by NK(n) as m = s2 · t, then s2 comes from the above squares
and t comes from the above ∏K

i=1 pεi
i . Hence, NK(n)≤ 2K√n.

On the other hand, the assumption of the convergence of ∑p
1
p means that the index

K may be choosen so that 1
pK+1

+ 1
pK+2

+ · · · < 1
2 . Now, we observe that the number N′

K(n)
of integers m′ ≤ n with at least one prime factor among pK+1, pK+2, . . . is bounded by

N′
K(n)≤

n
pK+1

+
n

pK+2
+ · · ·< n

2
.

Noting that NK(n)+N′
K(n) = n, we obtain that the following holds true for any positive

integer n:
n < 2K√n+

n
2
.

However, it fails when n = 22K+2, thereby giving a contradiction. Hence, ∑p
1
p diverges. ■


