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What’s NUMBER THEORY?

We are expected to learn the properties of
▶ integers (0,±1,±2, . . .)

▶ especially primes (2, 3, 5, 7, 11, . . .)

▶ as well as mathematical objects made out of integers, e.g.,
rationals

▶ and generalizations of the integers, e.g., algebraic integers
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Examples
Let’s start with

9 + 16 = 25;

this is just simple arithmetic, not part of number theory.

Something trickier
32 + 42 = 52.

An instance of the Pythagorean theorem.
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Examples

More generally,
x2 + y2 = z2.

▶ A. Can we determine all its integer solutions?

▶ B. What integers can be written as x2 + y2 with x and y
integers? And how many such representations?

▶ C. What happens if we replace the square with an n-th power
with n ≥ 3

xn + yn = zn?

Do we still have integer solutions?
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Examples

A. All integer solutions of

x2 + y2 = z2.

Theorem
All integer solutions of

x2 + y2 = z2

can be parameterized as

x = k · (r2 − s2), y = k · 2rs, z = k · (r2 + s2).
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Examples
B. Representation of

m = x2 + y2.

Theorem (Pierre de Fermat)

A square-free integers m is representable as x2 + y2 with x and y
integers if and only if n has no prime factors of the form 4k + 3.
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Examples
C. Any integer solutions of

xn + yn = zn?

Theorem (Fermat’s last theorem, proved by Andrew Wiles)

There is no integer solution with x , y , z ̸= 0 to

xn + yn = zn

for n ≥ 3.
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Number-theoretic problems

A. Multiplicative problems

▶ Divisors

▶ Primes, composites

▶ Arithmetic functions

E.g.,

▶ Prime number theorem: The number of primes ≤ x .

▶ Gauss circle problem: The number of integer lattice points
there are in a circle centered at the origin and with radius r .
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Number-theoretic problems
B. Additive problems

▶ Representation of integers

E.g.,

▶ Sum of two squares: Representation of n = x2 + y2.
▶ Integer partitions: Representation of n as a sum of

nonincreasing positive integers.

5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1.
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Number-theoretic problems

C. Diophantine equations

▶ Integer solutions to polynomial equations

E.g.,

▶ Fermat’s last theorem: xn + yn = zn.

▶ Pell’s equation: x2 − dy2 = 1 with d a non-square positive
integer.

▶ Sum of three cubes: x3 + y3 + z3 = 33.

88661289752875283+(−8778405442862239)3+(−2736111468807040)3 = 33.

This is the first known solution to the above Diophantine
equation, discoved by Andrew Booker in 2019.
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Number-theoretic problems

D. Diophantine approximations

▶ Approximation of real numbers by rational numbers

E.g.,

▶ The best Diophantine approximation: Given a real number α,
find the rational number p/q such that∣∣∣∣α− p

q

∣∣∣∣ ≤ ∣∣∣∣α− p′

q′

∣∣∣∣
for every rational number p′/q′ with 0 < q′ ≤ q.
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Proofs: Why do we need PROOFS?

For Natural Sciences, especially Experimental Sciences, nobody
can prove that a phenomenon or a rule is real in general.

QUESTION. Will Newtonian mechanics expire in the scale of the
UNIVERSE or ATOMS?
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Proofs: Why do we need PROOFS?
Lord Kelvin’s two CLOUDS in physics
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Proofs: Why do we need PROOFS?

However, in Mathematics, with a few axioms, MOST statements
can be claimed True or False.

Theorem (Gödel’s incompleteness theorem)

There are statements which can neither be proved nor disproved in
an axiomatic system.

But what can be proved or disproved is already very vast!
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Theorem (Gödel’s incompleteness theorem)

There are statements which can neither be proved nor disproved in
an axiomatic system.

But what can be proved or disproved is already very vast!



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proofs: Why do we care about PROOFS?

The existence of large counterexamples!

▶ The GCD (greatest common divisor) of n17 + 9 and
(n + 1)17 + 9:

gcd(117 + 9, 217 + 9) = gcd(10, 131081) = 1;

gcd(217 + 9, 317 + 9) = gcd(131081, 129140172) = 1;

gcd(317 + 9, 417 + 9) = gcd(129140172, 17179869193) = 1.

Is it true for all positive integers n that

gcd(n17 + 9, (n + 1)17 + 9) = 1?

NO! But the first counterexample appears when

n = 8424432925592889329288197322308900672459420460792433.
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Proofs: Why do we care about PROOFS?

The existence of large counterexamples!

▶ Skewes’s number.

π(x) := the number of primes ≤ x ,

li(x) :=

∫ x

0

dt

log t
.

Prime number theorem. π(x) ∼ li(x). I.e.,

lim
x→∞

π(x)

li(x)
= 1.
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Proofs: Why do we care about PROOFS?

The existence of large counterexamples!

▶ Skewes’s number.

What can we say about the difference π(x)− li(x)?
— It is negative for all small x .

John Littlewood (1914). π(x)− li(x) changes sign infinitely
often.

But for which x , the first sign change appears?
— We don’t know!

▶ Skewes proved that such x is smaller than

ee
ee

7.705

.

▶ It is believed that such x is around 10316.
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But for which x , the first sign change appears?
— We don’t know!

▶ Skewes proved that such x is smaller than

ee
ee

7.705

.

▶ It is believed that such x is around 10316.
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Proofs: Why do we care about PROOFS?

A BELIEF IS NEVER A PROOF.
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Methods of Proofs
▶ Direct deduction

E.g.

1 + 2 + · · ·+ n =
n(n + 1)

2
.

Proof.

Sn = 1 + 2 + · · · + n − 1 + n
Sn = n + n − 1 + · · · + 2 + 1

2Sn = (1 + n) + (2 + (n − 1)) + · · ·+ (n + 1)

= (n + 1) + (n + 1) + · · · (n + 1) [n copies of (n + 1)]

= n(n + 1).

1 + 2 + · · ·+ n = Sn =
n(n + 1)

2
.
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Methods of Proofs

▶ Induction

E.g.

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

Proof.

▶ Is the statement TRUE for n = 1?

12 = 1 =
1(1 + 1)(2× 1 + 1)

6
.
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▶ Induction
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Methods of Proofs

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

Proof.

▶ Assume that the statement is true for some n = k ≥ 1:

12 + 22 + · · ·+ k2 =
k(k + 1)(2k + 1)

6
.

Prove that it is also true for n = k + 1.

12 + 22 + · · ·+ k2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
(k + 1)(k + 2)(2(k + 1) + 1)

6
.

▶ Conclude that the statement is true for all positive integers n.
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Methods of Proofs
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.
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Methods of Proofs

▶ Contradiction

E.g.

Pigeonhole principle.

If N +1 balls are placed in N boxes, then there must
be some box with at least 2 balls.

Proof.

▶ Assume that no boxes contain at least 2 balls.
▶ Then the total number of balls is ≤ N × 1 = N.
▶ But there are N + 1 balls, thereby leading to a contradiction.
▶ So our assumption is false — There must be some box with at

least 2 balls.
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▶ Contradiction

E.g.

Pigeonhole principle.

If N +1 balls are placed in N boxes, then there must
be some box with at least 2 balls.

Proof.

▶ Assume that no boxes contain at least 2 balls.
▶ Then the total number of balls is ≤ N × 1 = N.
▶ But there are N + 1 balls, thereby leading to a contradiction.
▶ So our assumption is false — There must be some box with at

least 2 balls.
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Methods of Proofs

▶ Contradiction

E.g.

Pigeonhole principle.

If N +1 balls are placed in N boxes, then there must
be some box with at least 2 balls.

Proof.

▶ Assume that no boxes contain at least 2 balls.

▶ Then the total number of balls is ≤ N × 1 = N.
▶ But there are N + 1 balls, thereby leading to a contradiction.
▶ So our assumption is false — There must be some box with at

least 2 balls.
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▶ Contradiction

E.g.

Pigeonhole principle.

If N +1 balls are placed in N boxes, then there must
be some box with at least 2 balls.

Proof.

▶ Assume that no boxes contain at least 2 balls.
▶ Then the total number of balls is ≤ N × 1 = N.

▶ But there are N + 1 balls, thereby leading to a contradiction.
▶ So our assumption is false — There must be some box with at

least 2 balls.
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Methods of Proofs

▶ Contradiction

E.g.

Pigeonhole principle.

If N +1 balls are placed in N boxes, then there must
be some box with at least 2 balls.

Proof.

▶ Assume that no boxes contain at least 2 balls.
▶ Then the total number of balls is ≤ N × 1 = N.
▶ But there are N + 1 balls, thereby leading to a contradiction.

▶ So our assumption is false — There must be some box with at
least 2 balls.
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Methods of Proofs

▶ Contradiction

E.g.

Pigeonhole principle.

If N +1 balls are placed in N boxes, then there must
be some box with at least 2 balls.

Proof.

▶ Assume that no boxes contain at least 2 balls.
▶ Then the total number of balls is ≤ N × 1 = N.
▶ But there are N + 1 balls, thereby leading to a contradiction.
▶ So our assumption is false — There must be some box with at
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Unsolved Problems in Number Theory

Richard K. Guy, Unsolved Problems in Number Theory, Third
edition, Springer-Verlag, New York, 2004.
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MATH 3070 – Theory of Numbers

We will switch back to the traditional
“chalk-and-blackboard”

style in the rest of this semester.


